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Abstract

There are familiar examples of computable structures having various
computable Scott ranks. There are also familiar structures, such as the
Harrison ordering, that have Scott rank w{® + 1. Makkai [13] produced
a structure of Scott rank w{¥, which can be made computable [12], and
simplified so that it is just a tree [4]. In the present paper, we show
that there are further computable structures of Scott rank w{X in the
following classes: undirected graphs, fields of any characteristic, and linear
orderings. The new examples share with the Harrison ordering and the
tree in [4] a strong approximability property.

1 Introduction

Scott rank is a measure of model-theoretic complexity. For a countable struc-
ture, the Scott rank is a countable ordinal. For a computable structure, it is at
most w{'® + 1. There are familiar examples of computable structures of com-
putable Scott rank, and of Scott rank w{¥ 4 1. In [12], there is an example of
a computable tree 7 of Scott rank w{'¥. In fact, there is an example which is
strongly computably approzimable; i.e., for any 31 set S, there is a uniformly
computable sequence of trees (Cp,)ne, such that if n € S, then C, =2 7 and if
n ¢ S, then C, has computable Scott rank.

Here we produce further examples of computable structures of Scott rank
WK in some further familiar classes.

Main Theorem Each of the following classes includes a computable struc-
ture of Scott rank w{'X. Moreover, the structure can be taken to be strongly
computably approximable.

1. undirected graphs,

2. fields of any desired characteristic,
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3. linear orderings.

We conclude that computable structures of rank w{¥ are not so rare as
they once seemed. However, there are classes, in particular, Abelian p-groups,
with computable structures of arbitrarily large computable rank, and of rank
w8 + 1, but none of rank w$'X (see Barwise [2]).

In proving the Main Theorem, we use some special computable embeddings.
The notion of computable embedding, inspired by that of Borel embedding, was
introduced in [3]. There are known embeddings of trees in undirected graphs
(described in [13] and elsewhere). Friedman and Stanley [5] found embeddings
of graphs in fields of arbitrary characteristic, and of graphs in linear orderings.
These embeddings all turn out to be computable. These embeddings (after
modification, in one case) can be shown to preserve Scott rank, to the extent
that for a computable input structure, either the corresponding output structure
has the same rank, or else both have computable rank.

Starting with a computable tree of rank w{'¥ | and applying a rank-preserving
computable embedding of trees in undirected graphs, we get a computable graph
of rank w{'X. Similarly, starting with a computable graph of rank w{'*, and
applying a rank-preserving computable embedding of undirected graphs in fields,
or linear orderings, we get a field, or linear ordering of rank w{’*. Moreover, if
the input structure is strongly computably approximable, then so is the output
structure.

Abstracting from the sample embeddings, we obtain some fairly general con-
ditions sufficient for rank preservation. The particular notion of computable
embedding is not important. Roughly, our conditions say that the orbits in the
input structure correspond, in a hyperarithmetical way, to orbits in the output
structure. Moreover, there is not much more to the output structure. Certain
elements of the output structure correspond to orbits in the input structure, and
the orbits of arbitrary tuples in the output structure are definable by formulas
of bounded complexity over these elements.

In the remainder of the present section, we give a little background on Scott
rank and computable structures. In Section 2, we begin with familiar examples
of computable structures having computable Scott ranks and Scott rank w{'* 4-1.
We then summarize the results from [13], [12], and [4] leading to computable
trees of Scott rank w{¥. In Section 3, we describe the computable embeddings
that we shall use, and we show that they have the rank-preservation property.
In Section 4, we use the embeddings from Section 3 to prove the Main Theorem.
We also discuss Abelian p-groups and some related classes with no computable
structure of rank w¢'X.

1.1 Scott rank

Scott rank is a measure of model-theoretic complexity. The notion comes from
the Scott Isomorphism Theorem (see [19], or [10]).



Theorem 1.1 (Scott Isomorphism Theorem). For each countable structure
A (for a countable language L) there is an Ly, ., sentence whose countable models
are just the isomorphic copies of A.

In the proof of Theorem 1.1, Scott assigned countable ordinals to tuples in
A, and to A itself. There are several different definitions of Scott rank in use.
We begin with a family of equivalence relations.

Definition 1. Let @, b be tuples in A.
1. We say that a =° b if @ and b satisfy the same quantifier-free formulas,

2. For a >0, we say that a =* b if for all § < «, for each ¢, there exists d,
and for each d, there exists ¢, such that a,¢ =" b,d.

Definition 2.

1. The Scott rank of a tuple @ in A is the least 3 such that for all b, the
relation @ =" b implies (A, @) = (A, D).

2. The Scott rank of A, SR(A), is the least ordinal « greater than the ranks
of all tuples in A.

Example: If A is an ordering of type w, then SR(A) = 2. We have a =" b
iff @ and b are ordered in the same way. We have @ =! b iff the corresponding
intervals (before the first element and between successive elements) have the
same size, and this is enough to assure isomorphism. From this, it follows that
the tuples have Scott rank 1, so the ordering itself has Scott rank 2.

1.2 Background from computable structure theory

For basic background from computability (arithmetical, hyperarithmetical, $1,
and II} sets and relations) see [18]. Here we give a little background from
computable structure theory. For more, see [1]. We are interested in computable
structures. We adopt the following conventions.

1. Languages are computable, and each structure has for its universe a subset
of w.

2. We identify a structure A with its atomic diagram D(A).

3. We identify sentences with their Godel numbers.

By these conventions, a structure A is computable (or arithmetical) if D(A),
thought of as a subset of w, is computable (or arithmetical).

Computable infinitary formulas are useful in describing computable struc-
tures. Roughly speaking, these are infinitary formulas in which the disjunctions
and conjunctions are over c.e. sets. They are essentially the same as the for-
mulas in the least admissible fragment of L,,,,,. For a more precise description



of computable infinitary formulas, see [1]. We classify computable infinitary
formulas as computable ¥, or computable I1,, for various computable ordinals
a. We then have a nice match with the hyperarithmetical hierarchy.

Proposition 1.2. In a computable structure, a relation defined by a computable
Yo (or computable 1, ) formula is X% (or TI9).

To illustrate the expressive power of computable infinitary formulas, we
note that there is a natural computable II5 sentence characterizing the class of
Archimedean ordered fields. Similarly, there is a computable I, sentence char-
acterizing the class of Abelian p-groups. For each computable ordinal « there is
a computable Il formula saying (of an element of an Abelian p-group), that
the height is at least w - a.

This expressive power is not compatible with the ordinary Compactness
Theorem. However, there is a version of Compactness for computable infinitary
formulas.

Theorem 1.3 (Barwise-Kreisel Compactness). Let I' be a 1] set of com-
putable infinitary sentences. If every A} subset of T' has a model, then T has a
model.

Barwise-Kreisel Compactness can be used to produce computable structures.

Corollary 1.4. Let T' be a 11} set of computable infinitary sentences. If every
Al subset has a computable model, then T has a computable model.

The next two corollaries give further evidence of the expressive power of
computable infinitary formulas.

Corollary 1.5. If A, B are computable structures satisfying the same com-
putable infinitary sentences, then A = B.

Corollary 1.6. Suppose @, b are tuples satisfying the same computable infini-
tary formulas in a computable structure A. Then there is an automorphism of
A taking @ to b.

The Barwise-Kreisel Compactness Theorem and the three corollaries are all
well known, and may be found in [1]. One point in the proof of the Barwise-
Kreisel Compactness Theorem is expanded in [6].

2 Scott ranks for computable structures

Corollary 1.6 yields a bound on the Scott ranks for computable structures [16].
Proposition 2.1. If A is a computable structure, then SR(A) < w{E 4+ 1.

Different definitions of Scott rank all agree on which computable structures
have computable rank, although they disagree on the precise value assigned.
In what follows, we ignore the value of the rank, if it is computable. The



definition in [2] does not distinguish between rank w{® and rank w{'® 4 1. The
definitions that do distinguish between these ranks, as ours does, agree on which
computable structures have which rank. The following result gives conditions
under which a computable structure has computable rank, or has one of the two
non-computable values.

Proposition 2.2 (folklore). For a computable structure A,

1. SR(A) < WK if there is some computable ordinal 3 such that the orbits
of all tuples are defined by computable Iz formulas.

2. SR(A) = w§K if the orbits of all tuples are defined by computable infini-
tary formulas, but there is no computable bound on the complexity of these
formulas.

3. SR(A) = w¢E +1 if there is some tuple whose orbit is not defined by any
computable infinitary formula.

We shall give a variant of Proposition 2.2, in which the bounds on complexity
of the defining formulas for the orbits are replaced by bounds on the complexity
of the orbits themselves. We need the following result of Soskov [20], which is
re-worked in [7].

Theorem 2.3 (Soskov). Suppose A is a hyperarithmetical structure, and let
R be a relation on A. If R is invariant under automorphisms, and hyperarith-
metical, then it is definable in A by a computable infinitary formula.

Theorem 2.3 implies that if an invariant relation R is hyperarithmetical in
one hyperarithmetical copy of a given structure A, then in all hyperarithmeti-
cal copies of A, the image of R is hyperarithmetical. Here is the variant of
Proposition 2.2.

Proposition 2.4. For a computable structure A,

1. SR(A) < WK if there is a computable ordinal 3 such that all orbits are
9.
B

2. SR(A) = WK if all orbits are hyperarithmetical, but there is no com-
putable ordinal B such that all ordinals are A%.

3. SR(A) = wfE + 1 if some orbit is not hyperarithmetical.

Proof. By Proposition 1.2, if an orbit is defined by a computable infinitary Il
formula, then it is H%. By Theorem 2.3, if the orbit is hyperarithmetical, then
it is definable by a computable infinitary formula. From this, we immediately
get 3, and we also get 2. For 1, we consider the orbit equivalence relation.
This is the relation that holds between a pair of tuples iff they are in the same
orbit. Let A* be the variant of A with added elements representing the tuples
from A. We include disjoint unary predicates U, representing n-tuples from



A. We identify U; with the universe of A4, and put on this set the relations
of A. For n > 2, we have projection functions p}, for 1 < ¢ < n, mapping
each element of U,, to the i*" element of the corresponding tuple in U;. Clearly,
A* is hyperarithmetical, and the orbit equivalence relation is represented by an
invariant relation E D |J(U,, x Uy,). By Theorem 2.3, F is definable in A* by a

n
computable infinitary formula.

Claim: There is a fixed « such that for all tuples @ in A, the orbit of @ is
defined by the conjunction of all computable II,, formulas true of @ in A.

Proof of Claim: Suppose not. Let I'(z,y) be a II} set of computable infinitary
formulas saying that - Fxy, but z, y are in the same U,, and for each computable
infinitary formula ¢ in variables uq, ..., uy, if z,y € U,, then ¢ is satisfied by
the tuple represented by z iff it is satisfied by the tuple represented by y. If
there is no « as in the claim, then every hyperarithmetical subset of I is satisfied
by some pair in A*. Therefore, the whole of T" is satisfied, a contradiction.

Using the claim, we get a bound on the complexity of formulas defining the
orbits in A. Therefore, A has computable Scott rank.
O

A Scott sentence for A is a sentence whose countable models are just the
isomorphic copies of A (as in the Scott Isomorphism Theorem). Low Scott rank
is associated with a simple Scott sentence. Nadel [16], [17] showed the following.

Theorem 2.5 (Nadel). For a computable structure A, SR(A) is computable
iff A has a computable infinitary Scott sentence.

2.1 Some examples

We turn to examples of computable structures illustrating the different possible
Scott ranks. There are familiar examples of computable structures of com-
putable rank.

Proposition 2.6. For the following classes of structures, all computable mem-
bers have computable Scott rank, and each class includes computable members
of arbitrarily large computable rank.

1. well orderings,
2. superatomic Boolean algebras,
3. reduced Abelian p-groups.

There are some well-known examples of computable structures of Scott rank
w§E + 1. Harrison [8] showed that there is a computable ordering of type
wE(1 + 7). This ordering, the Harrison ordering, gives rise to some other
computable structures with similar properties. The Harrison Boolean algebra



is the interval algebra of the Harrison ordering. The Harrison Abelian p-group
has length w{'¥ with all infinite Ulm invariants, and with a divisible part of
infinite dimension.

Proposition 2.7. The Harrison ordering, Harrison Boolean algebra, and Har-
rison Abelian p-groups all have Scott rank w¢E 4 1.

Proof. For the Harrison ordering, the rank is witnessed by any element a out-
side the initial copy of w{'®. Similarly, in the Harrison Boolean algebra, the
rank is witnessed by any non-superatomic element, and in the Harrison Abelian
p-group, the rank is witnessed by any divisible element.

O

The Harrison ordering has some further interesting features. First, the com-
putable infinitary sentences true in the Harrison ordering are all true in orderings
of type wfE so the conjunction of these sentences is not a Scott sentence. Sec-
ond, although there are many automorphisms, there is at least one computable
copy in which there is no non-trivial hyperarithmetical automorphism.

For computable structures of Scott rank w{'¥ it is not so easy to think of
examples. There is an arithmetical example in [13].

Theorem 2.8 (Makkai). There is an arithmetical structure A of rank w{'E.

For Makkai’s example, in contrast to the Harrison ordering, the set of com-
putable infinitary sentences true in the structure A is Xy categorical, so the
conjunction of these sentences is a Scott sentence for 4. In [12], Makkai’s result
is refined as follows.

Theorem 2.9. There is a computable structure of Scott rank w{'.

In [12], there are two different proofs of Theorem 2.9. The first takes
Makkai’s example and, without examining it, codes it into a computable struc-
ture in a way that preserves the rank. The second is a re-working of Makkai’s
construction, which incorporates a suggestion of Shelah, given at the end of
Makkai’s paper, together with a suggestion of Sacks.

The structure is a “group tree” A(7), derived from a tree 7. Morozov [15]
used the same construction. He showed that if 7 is a computable tree having
a path but no hyperarithmetical path, then A(7) is a computable structure
with many automorphisms but no non-trivial hyperarithmetical automorphism.
Above we mentioned that the Harrison ordering has this feature. To obtain a
structure of the form A(7) as in Theorem 2.9, we need a tree 7 with special
properties. We use some definitions to state these properties.

Let 7 be a subtree of w<“. We have a top node (). Below, we define tree
rank for o € T, and then for 7 itself. We use the notation rk(o), rk(7T).

Definition 3.

1. rk(o) =0 if o is terminal,



2. for a> 0, rk(c) = « if all successors of o have ordinal rank, and « is the
first ordinal greater than these ordinals,

3. rk(o) = oo if o does not have ordinal rank.
We let rk(T) = rk(0).

Fact. rk(o) = oo iff o extends to a path.

For a tree 7, we let 7,, be the set of elements at level n in the tree—
T, =T Nuw".

Definition 4. The tree T is thin provided that for all n, the set of ordinal ranks
of elements of T,, has order type at most w - n.

Thinness is used in the following way.

Fact: If 7 is a computable thin tree, then for each n, there is some computable
ay, such that for all o € Ty, if rk(o) > ay, then rk(o) = oco.

The following result is from [12].

Theorem 2.10.

1. There exists a computable thin tree T with a path but no hyperarithmetical
path.

2. If T is a computable thin tree with a path but no hyperarithmetical path,
then A(T) is a computable structure of Scott rank w'¥.

In [4], there is a construction of a computable tree of Scott rank w{'*. The
tree satisfies the conditions from [12], together with the following homogeneity

property.

Definition 5. A tree 7 is rank-homogeneous provided that for all n,

1. for all o € T, and all computable o, if there exists T € T,11 such
that rk(t) = a < rk(o), then o has infinitely many successors o' with
rk(c’) = a.

2. for all 0 € Ty, if rk(o) = oo, then o has infinitely many successors o’
with rk(c’) = 0.

Fact. If 7 and 7’ are rank-homogeneous trees, and for all n there is an element
in T, of rank o € Ord U {oo} if and only if there is an element in 7}, of rank
o, then T = 7.

In [4], the tree of Scott rank w{'¥ is obtained as follows.

Theorem 2.11.



1. There is a computable, thin, rank-homogeneous tree T such thatrk(T) = oo
but T has no hyperarithmetical path.

2. If T is a computable, thin, rank-homogeneous tree such that rk(7T) = oo
but T has no hyperarithmetical path, then SR(T) = w{'¥.

Like the earlier group-trees, the trees in [4] have the feature that the com-
putable infinitary theory is Ny categorical. Unlike the group-trees, these trees
have many non-trivial hyperarithmetical automorphisms. It is possible to pro-
duce a tree as above, with the further feature of strong computable approxima-
bility [4].

Definition 6. A structure A is strongly computably approximable if for any
Y1 set S, there is a uniformly computable sequence (Cp)new such thatn € S iff
Cn = A. The structures C,, for n ¢ S are called approximating structures.

For example, it is well-known that the Harrison ordering is strongly com-
putably approximable by computable well orderings. The following result is
in [4].

Theorem 2.12. There is a computable tree T, of Scott rank WX, such that
T is strongly computably approzimable. Moreover, the approzimating structures
are trees of computable Scott rank.

The trees in Theorem 2.12 are transformed, using rank-preserving com-
putable embeddings, into the structures in our Main Theorem.

3 Rank-preserving computable embeddings

We use a notion of computable embedding from [3]. Let K and K’ be classes
of structures. We suppose that each structure has universe a subset of w. Each
class consists of structures for a fixed computable language. Moreover, the class
is closed under isomorphism, modulo the restriction on the universes. Let ® be
a c.e. set @ of pairs (a, ), where « is a finite set appropriate to be a subset
of the atomic diagram of a structure in K, and ¢ is a sentence appropriate to
be in the atomic diagram of a structure in K’. For each A € K, let ®(A) be
the set of ¢ such that for some o C D(A), (a, p) € . Suppose for all 4 € K,
the set ®(A) is the atomic diagram of some B € K'. We identify the structure
with its atomic diagram. Now, ® is a computable embedding of K in K’ if for
all A, A" € K, we have A= A" iff ®(A) = ®(A).

Remark: If ¢ is a computable embedding of K in K’, and A € K is a com-
putable structure, then ®(A) has a computable copy, with index computable
from that of A.

The following result is proved in [11].



Theorem 3.1. If ® is a computable embedding of K in K', then for any com-
putable infinitary formula ¢, we can find a computable infinitary formula p*
such that for all A in K, ®(A) E ¢ iff A = ¢*. Moreover, ¢* has the same

complezity as @; i.e., if @ is computable ¥, then so is ™.
Using Theorem 3.1, we get the following.

Corollary 3.2. Let ® be a computable embedding of K in K', where K is az-
1omatized by a computable infinitary sentence. For a hyperarithmetical structure
A€ K, if SR(P(A)) is computable, then SR(A) is also computable.

Proof. Suppose SR(®(A)) is computable. By Theorem 2.5, ®(A) has a com-
putable infinitary Scott sentence ¢. Let ¢* be as guaranteed by Theorem 3.1.
If v is a computable infinitary sentence axiomatizing K, then ¢ & ¢* is a Scott
sentence for A. Then, again by Theorem 2.5, SR(A) is computable.

O

To prove the Main Theorem, we describe a computable embedding of trees in
undirected graphs, one of undirected graphs in fields of the desired characteristic,
and one of undirected graphs in linear orderings. We show that each of these
embeddings preserves ranks as follows.

Definition. Let ® be a computable embedding of K into K’'. We say that ®
has the rank-preservation property provided that for all computable A € K, and
B = ®(A), either SR(A), SR(B) are both computable, or else they are equal.

Corollary 3.2 says that for a computable embedding ® from K into K’ and
a computable structure A € K, if SR(A) > w{X| then SR(®(A)) > w{E. For
rank preservation, we need more. In particular, we must show that if all tuples
in A have computable Scott rank, then the same is true of the tuples in ®(A),
and if there is a computable bound on the Scott ranks of the tuples in A, then
there is also a computable bound on the Scott ranks of the tuples in ®(A).

3.1 Embedding trees in undirected graphs

There are several well-known methods for coding a tree in an undirected graph
so that given a tree, we effectively obtain a graph in which a copy of the tree
is definable by existential formulas (see, for example, Marker [14]). Here we
think of tree elements not as elements of w<“ but as numbers. For convenience,
we consider the top node of the tree to be a successor of itself. In the graph,
we represent a tree element a by a point r(a) with an edge connecting it to a
triangle graph. To indicate in the graph that a’ is a successor of a in the tree,
we add a point ¢(a, a’), connected by an edge to a square, and we connect r(a)
and r(a’) to g(a,a’) by chains of length 2, 3, respectively. We make all of these
elements distinct.

In [3], it is shown that this idea yields a computable embedding. We start
with a large computable graph G including for each n € w a representative r(n)
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(with triangle attached), allowing for the possibility that n might be in 7, and
also including for each pair (m,n) € w?, a point s(m,n) (with attached square),
allowing for the possibility that n might be a successor of m in 7. For a given
tree 7, ®(7) is the subgraph of G representing just the elements n that are
actually in 7 and the pairs (m,n) that are actually in the successor relation in
7. Formally, ® is the set of pairs (o, @), where « is the diagram of a finite tree
T, and ¢ is in the diagram of ®(7). Note that there are finitary existential
formulas u(x) and s(x,y) such that for any tree 7, u and s define in ®(7) the
universe and successor relation of a copy of 7.

For a computable tree 7, if B = ®(7) and A is the copy of 7 defined in B
by the formulas u(z) and s(z,y), then A and B satisfy the hypotheses of the
following proposition.

Proposition 3.3. Let B be a hyperarithmetical structure, and let A be another
structure such that

1. A is definable in B by computable infinitary formulas, and in case the lan-
guage of A is infinite, there is a bound on the complezity of these formulas,

2. all automorphisms of A extend to automorphisms of B,

3. for each tuple b in B, the orbit of b under automorphisms of B that fix
A pointwise is definable by a computable infinitary formula (@, ), and
there is a bound on the complezity of these formulas.

Then either SR(A) and SR(B) are both computable, or else they are equal.

Proof. Let b be a tuple in B. Let (@, ) define the orbit of b under automor-
phisms of B that fix the elements of A. Then b is in the orbit of b in B iff there
exists @’ such that @ is in the orbit of @ in A and B = (@,b). Therefore, if
the orbit of @ in A is hyperarithmetical, so is the orbit of b in B. Moreover, if
the orbits in A4 have bounded complexity, so do the orbits in B. From this, it
is clear that if SR(A) is computable, so is SR(B). If SR(A) = w{'K + 1, then
there is some tuple @ whose orbit is not defined by any computable infinitary
formula. By Soskov’s Theorem, the orbit is not hyperarithmetical. The orbit
of @ in B is the same, so SR(B) = w{X + 1. Finally, suppose SR(A) = w{K.
The argument above shows that the orbits in B are all hyperarithmetical, since
those in A are. There is no bound on the complexity, since the orbits in A are

among the orbits in B.
O

Corollary 3.4. There is a computable embedding ® of trees into graphs such
that ® has the rank preservation property.

In [9], there is a notion of embedding with some conditions in common with
ours. There is a copy A of the input structure definable in the output structure
B, and every automorphism of A extends to an automorphism of B—exactly
our conditions 1 and 2. There are further conditions in [9] that seem unrelated
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to rank preservation. From the proof above, we see that Conditions 1 and 2
imply SR(A) < SR(B). The following example shows that without Condition
3, we may have SR(B) = w{K 4 1, while SR(A) < w{X.

Example. Let K be the class of linear orderings, and let K’ be the class of
structures B = (UUV,U,V, <y, <y), where U and V are disjoint sets, (U, <g)
is an arbitrary linear ordering, and (V, <y ) is a Harrison ordering. For any
ordering A, let ®(A) be the structure B = (U U V,U,V, <y, <y), where A is
isomorphic to (U, <y) under the isomorphism taking n to 2n, and (V, <y) is
a fixed Harrison ordering with universe equal to the set of odd numbers. This
is a computable embedding of K in K’, and we have Conditions 1 and 2, but
SR(B) = w{E 4 1, for all computable orderings .A.

3.2 Embedding undirected graphs in fields

We obtain a computable embedding ® of undirected graphs into fields of any
desired characteristic by modifying a construction of Friedman and Stanley [5].
We describe embedding in the case where the characteristic # 2. Let F be a
computable algebraically closed field with a computable sequence (b, )ne. of al-
gebraically independent elements. We let ®(G) be the subfield of F generated by
the algebraic closures of the elements by, for n € G, and the elements \/c; + ¢;,
where ¢ and j are connected by an edge in G and c¢; is inter-algebraic with b;.
(For characteristic 2, the construction is similar except that we would use cube
roots instead of square roots.) Formally, ® is the set of pairs («, ), where « is
the diagram of a finite graph G, and ¢ is in the diagram of the corresponding
field. It is not difficult to see that this set is c.e.

In the Friedman and Stanley embedding, the only added square roots were
\/bi + b;, where there is an edge connecting ¢ and j. The proof that the embed-
ding preserves isomorphism is the same for the Friedman and Stanley embedding
and the variant described above. We need the fact that for all d in ®(G), if the
algebraic closure of d is present in ®(G), then d is interalgebraic with b; for some
i € G. We also need the fact that for i,j € G, not connected by an edge, there
is no square root for b; + b; in ®(G).

We must show that our computable embedding has the rank-preservation
property. Let G be a computable graph. If B = ®(G), and A is the copy of G
with universe consisting of the algebraic closures of the special basis elements
b;, for i € G and edge relation defined in terms of existence of square roots (or
cube roots). It is not difficult to see that A and B satisfy the conditions for the
following.

Proposition 3.5. Let B be a hyperarithmetical structure. Suppose A is a de-
finable quotient in B; i.e., there exist a structure A* (for the language of A) and
a congruence relation = such that A* and = are definable in B by computable
infinitary formulas of bounded complexity, and A = A*/=. For simplicity, we
assume that the language of A is relational. For a choice function ¢ : A — A*,
where c(a/=) € a/=, we let A, be the substructure of A* such that A =, A..
Suppose the following conditions are satisfied.
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1. For any automorphism f of A and any choice function c, the automor-
phism of A. given by co foc™! extends to an automorphism of B.

2. For any tuple b in B, the orbit of b under automorphisms of B that fix D
pointwise is defined by a computable infinitary formula, ¢(d,T), of bounded
complezity, where for any choice function c, the parameters d may be
chosen to be in A..

Then either A and B have the same Scott rank, or else both have computable
Scott rank.

Proof. There is a hyperarithmetical choice function ¢. We have a hyperarith-
metical copy A, of A such that A 2. A.. Suppose @, @ are tuples in A.. If
@ and @ are in the same orbit in A, then by 1, they are in the same orbit in
B. Conversely, if @ and @’ are in the same orbit in B, the automorphism f of B
taking @ to @’ restricts to an automorphism of A* taking the equivalence class
of a; to that of a;. We get an induced automorphism f. of A, taking @ to @’. It
follows that if SR(B) is computable, or at most w{'¥ then the same is true of
SR(A).

Now, let b be a tuple in B. Take ¢(d,Z) as in 2, defining the orbit of b over
D, where the parameters d are in A,.

Clgirg: 7 is in the orbit of B iff there exists d in the orbit of d in A, such that
»(d,b) holds in B.

Proof of Claim: First, suppose b is in the orbit of b. If f is an automorphism
of B taking b to 5/, then, as above, f restricts to an automorphism of A*, and
we get an automorphism f, of A, taking ¢(d;) to ¢(f(d;)). While f(d) may not
be in A,, d = f.(d) is in A.. By 1, there is an automorphism of B extending
fe, and we have @(8'75'). Now, suppose QD(E/,B/) holds in B, where d is in the
orbit of d in A.. By 1, an automorphism of A, mapping d to d extends to an
automorphism f of B. Then f maps b toa tuple b satisfying ¢(d, Z), and this
" is in the orbit of b. This completes the proof of the claim.

Using the claim, we can see that if the orbit of d in A, is hyperarithmetical,
then the orbit of b in B is also hyperarithmetical. Moreover, if the orbits of
tuples in A, have bounded complexity, then the orbits in B also have bounded
complexity. Therefore, if SR(A) is computable, or at most w{%, then so is
SR(B). Putting together what we have shown, we get the fact that either
SR(A) and SR(B) are both computable or else they are equal.

O

Corollary 3.6. There is a computable embedding ® of undirected graphs into
fields of any desired characteristic, such that ® has the rank-preservation prop-
erty.
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3.3 Embedding undirected graphs in linear orderings

Friedman and Stanley [5] gave an embedding of undirected graphs in linear
orderings. We start with the lexicographic ordering on Q<“. Let (t,)nco be
a list of the atomic types for tuples in graphs, such that the types with m
variables appear before those with m+1 variables. Let (Qq)acw be a computable
partition of () into dense subsets. The sets Qg and ()1 have special roles. For
a graph G, we let ®(G) be the sub-ordering of Q<% consisting of the sequences
T0q1T19272, - - - GnTnk such that for some tuple a; ...a, in G, of atomic type t,,,
we have ¢; € Q,, for i <n, r; € Qo, 7, € Q1, and k < m.

It is clear that this gives a computable transformation. Formally, we may
take ® to be the set of pairs (a, ), where « is the diagram of finite graph G,
and ¢ is in the atomic diagram of the corresponding linear ordering. It is not
so obvious that ® is 1 — 1 on isomorphism types. The authors are grateful to
Desmond Cummins for providing a complete proof (in work related to his senior
thesis).

Lemma 3.7. The transformation ® is 1 — 1 on isomorphism types.

Proof. For b of length 2n + 2, we say that b is at level n. Note that we can
recover the level of b from the size of the maximal discrete set containing it. If
b and o' agree on the first 2m tems, then between b and ¥, all elements have
level at least m. We refer to the greatest such m as the level of agreement. If
b = roq171 ... qurank, where ¢; € Q,,, we let g(b) = ay...a,. We say that b
represents the tuple aj ...a,.

Suppose G = G'. We must show that ®(G) = ®(G’). We define a back-
and-forth family. Let F; be the set of finite partial 1 — 1 functions p from
®(G) to ®(G’) such that the domain and range are unions of maximal discrete
sets, p preserves order, level, and level of agreement, and if p(b) = ¥, and
g(b) = ay...ay, then g(b') = f(a1)... f(an). Let p be in F;. We show how
to extend p, adding a new element b to the domain (adding an element to the
range is the same).

Let b be a new element, not in dom(p). Say m is the greatest such that b
agrees with some d in dom(p) down to level m. There may be more than one
such d. We can choose b’ in the appropriate interval in the ordering, agree-
ing up to level m with d’ = p(d), such that &’ has the required g(b'). Let b =
TOqiT1 - - - Tnqnk, and let d' = r{giri ... ¢t - ... Wetaked' = r{gi7] ... @’ Gms1Tms1 - - - @utnk,s
matching d’ up to level m, and with ¢}, for m < i < n such that if ¢; € Q,;,
then ¢; € Qf(4,)- We choose 7* in Q1 (or in Qg in case m = n), so as to locate
b’ to the left or right of d’, and other elements of ran(p), to preserve order. We
extend p, mapping the maximal discrete interval of b to that of ¥’. Using the
back-and-forth family, we get an isomorphism between ®(G) and ®(G’).

Now, suppose ®(G) = ®(G’). We must show that G = G'. We define
another back-and-forth family. Let F5 be the set of finite partial 1 — 1 func-
tions p from G to G’ such that for some b in ®(G) and ¥ = f(b) in ®(G’),
g(b) = ay ...a, is the domain of p, arranged in a sequence, and g(b') = aj ...a),
is the corresponding sequence with a} = p(a;). We say how to extend p, adding
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a new element a,y; to the domain (adding an element to the range is the
same). Say b = rogi7m1...qurnk and f(b) = ryqiri ... g,k witness the fact
that p € F». Take d agreeing with b to level n (i.e., through ¢,,), with further
terms 77, Gn41,"nt1,0, where gn1 € Qq,,,. Then f(d) must agree with f(b)
to level n (through ¢/,). Moreover, f(d) has the same level as d, with further
terms 77, % ¢; 1 177,410. Say 41 € Qar, - We extend p mapping an1 to a5, 4;.
Using the back-and-forth family, we get an isomorphism between G and G'.

O

We must show that ® has the rank-preservation property.

Claim 1: There is a computable function f from tuples in G to elements of
®(G), such that @ and @ are in the same orbit in G iff f(@) and f(@’) are in the
same orbit in ®(G).

Proof of Claim 1: For each tuple @ = ay,...,a, in G, we let f(@) be the element
q1714272, - - - @0, where g; is the first element that we find in Q,, (we may
take the one with least Gédel number), for ¢ < n, r; is the first element that we
find in Qp, and r, is the first element that we find in Q;. Then @ and @ are
in the same orbit in G iff their f-images are in the same orbit in ®(G). This is
clear from the proof above that ® is 1 — 1 on isomorphism types.

Claim 2: There is a definable set X C ®(G) with a computable function g from
X to tuples in G, such that for b,0’ € X, b and b’ are in the same orbit in ®(G)
iff g(b) and g(b') are in the same orbit in G.

Proof of Claim 2: We let X consist of the sequences in ®(G) ending in 0. These
are the left limit points (i.e, the limits approached from the left). Suppose
be X, say b= qirigers,...q,rn0, where ¢; € Q,,, for i < n, r; € Qop, and
rn € Q1. For b,b' € X, b and b’ are in the same orbit in ®(G) iff g(b) and g(b')
are in the same orbit in G. Again, this is clear from the proof above that ® is
1 — 1 on isomorphism types.

Claim 3: For each tuple b in ®(G), there is a tuple d in X, and a computable
infinitary formula ¢(@,7) such that ®(G) = ¢(d,b), and b is in the orbit of
b iff there exists d in X such that each d; in d is in the same orbit as the
corresponding d} in d, and (G) E @(8/,5/).

Proof of Claim 3: Let b = by,...,b, be a tuple in ®(G). For each b;, we let d;
be the first element of the maximal discrete set containing b;. From the size
of the maximal discrete set, we can recover the length of the tuple g(d;). If d;
agrees with d; on the first 2m terms, so that g(d;) and g(d;) agree on the first
m terms, then the interval between d; and d; consists of elements representing
extensions of the same tuple in G of length m. Then the pair (b;,b;) satisfies
a formula a,,(z,y) saying that for all z in the interval between z and y, the
maximal discrete set containing z has size corresponding to the atomic type of
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a tuple of length at least m. Conversely, if (b;, b;) satisfies the formula a,,(x, ),
where b; and by lie on different maximal discrete sets and each represents a tuple
from G of length at least m, then the tuples agree on the first m terms.

Suppose A is a computable graph, and let B = ®(A). Let X, f, and g be as
described above. Then A and B satisfy the hypotheses of the following result.

Theorem 3.8. Let A and B be hyperarithmetical structures.

1. Suppose there is a hyperarithmetical map f from tuples in A to tuples in
B such that @ and @ are in the same orbit in A iff f(a) and f(b) are in
the same orbit in B. If SR(B) is computable, then so is SR(A), and if
SR(B) < w{E | then SR(A) < Wik,

2. Suppose g is a hyperarithmetical map from a set X of tuples in B, invariant
under automorphism, to tuples in A, such that for d, d e X, d and d are
in the same orbit in B iff g(d) and g(ﬁl) are in the same orbit in A.
Suppose further that for each tuple b in B, there is a finite collection of
tuples di,...,d, in X, and for some 3 < « there is a computable 3

formula @ which is true of di, ..., dy,,b, such that for all b in B, b and v

are in the same orbit iff there exist 3,1, .. ,E/n in X such that d; and E; are

in the same orbit, and o 1s satisfied by 3/1, . ,En,gl in B. Then if SR(A)
is computable, or at most w$'K so0 is SR(B).

Proof. For 1, suppose f is AY. If the orbits in B are all A%, then so are the
orbits in A. If the orbits in B are all hyperarithmetical, but not necessarily
of bounded complexity, then the orbits in A are also all hyperarithmetical.
Therefore, if SR(B) is computable, or at most w{'X, then the same is true of
SR(A).

For 2, suppose g is AY. If the orbits in A are all A?, or all hyperarithmetical,
then the same is true of the orbits of tuples in X. Take a tuple b in B, and
let dy,d, and ¢ be as in 2. Then the orbit of b is A, or hyperarithmetical,
depending on the complexity of the orbits of certain tuples in X. Therefore, if
SR(A) is computable, or at most w{'¥ the same is true of SR(B).

O

Corollary 3.9. There is a computable embedding ® of graphs into linear or-
derings such that ® has the rank-preservation property.

Remarks: Part 2 of Theorem 3.8 implies Part 1, with the roles of A and B
reversed. If (A, B) satisfies 1 and 2, or (A, B) and (B,.A) both satisfy 2, then
either A and B both have computable Scott rank or else the ranks are the same.
We can also show that this implies our earlier “general” results: Proposition 3.3
and Proposition 3.5.

Proposition 3.3. Suppose A is definable in B and every automorphism of A
extends to an automorphism of A. Suppose for all b in B, there is a formula
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©(¢,b), of bounded complexity, defining the orbit of B over .A. Then either A
and B both have computable Scott rank or else the Scott ranks are the same.

Proof of Proposition 3.3 from Theorem 3.8: Let f be the identity function on
tuples from A. If @ and @ are in the same orbit in A, then they are in the
same orbit in B. The converse is obvious. Applying 1 above, we conclude that if
SR(B) is computable, or at most w{'X, then SR(A) is computable, or at most
w§E. Let g also be the identity function on tuples from A. Let b be a tuple in
B, and let ¢(¢,Z) define the orbit of B over A, as in the hypothesis. Then b is
in the same orbit as b iff there exists ¢ € A, in the orbit of ¢, such that (¢ ,5/)
holds. Applying 2 above, we conclude that if SR(A) is computable, or at most
w{E then SR(A) is computable, or at most w{¥.

Proposition 3.5. Let B be a hyperarithmetical structure, and let A = A*/=,
where = is a congruence relation on A* = (D, (R;)ier), and A* and = are
definable in B by computable infinitary formulas of bounded complexity. Further
suppose that for any choice function ¢ choosing one element from each a € A, we
have A 2, A.. Suppose in addition that the following conditions are satisfied.

1. For any automorphism f of A and any choice function ¢, the automorphism
given by co foc™! of A. extends to an automorphism of B.

2. For any tuple b in B, the orbit of b under automorphisms of B that fix
D pointwise is defined by a computable infinitary formula, ¢(d,Z), of
bounded complexity, where the parameters d may be chosen to be in
ran(c) for any choice function c.

Then either A and B have the same Scott rank, or else both have computable
Scott rank.

Proof of Proposition 3.5 using Theorem 3.8: Let ¢ be a hyperarithmetical choice
function. We obtain a hyperarithmetical copy of A with universe equal to
ran(c). We identify this with A. Let f(@) = @, for @ in A, and for d in D,
let g(d) = @, where c(d;) = a;. For any b in B, we have a tuple @ in A and a
formula (@, ) defining the orbit of b over A. Then b is in the orbit of b iff
there exists d in the orbit of @ such that ¢(d, 5,) holds.

Take @,a in A. If @ and @’ are in the same orbit in A, then by 1 above, they
are in the same orbit in B. Conversely, if they are in the same orbit in B, then
because A is a definable quotient, they are in the same orbit in A. Therefore,
if SR(B) is computable, or at most w{'X, SR(A) is also. Next, take a tuple d

of elements representing different equivalence classes in D. Say g(d) = @ and
g(al) — @. If d and d are in the same orbit in B, then @ and @ are in the
same orbit in A, since A is a definable quotient structure. If @ and @ are in
the same orbit in A, then by 1 and 2 above, d and d are in the same orbit in
B. We have d in the same orbit as d iff g(d) is in the same orbit as g(al). If
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SR(A) is computable, or w{'¥ then the orbits of tuples from D have bounded
complexity, or are all hyperarithmetical.

Now, take b in B, and let (@, ) be as in 2 above, defining the orbit of b
under automorphisms of B that fix D. Then b is in the orbit of b iff there exists
d in the orbit of @ such that ¢(d, 5/) holds. The complexity of the orbit of b is
not far from the complexity of that of @ (as a tuple in D). Therefore, if SR(.A)
is computable, or w{'% | then SR(B) is also.

4 Conclusion

We are ready to prove the result stated in the introduction.

Theorem 4.1 (Main Theorem). FEach of the following classes contains a
computable structure of Scott rank w$' . Moreover, there is one which is strongly
computably approximable.

1. undirected graphs,
2. fields of any characteristic,
8. linear orderings.

Proof. For 1, let T be a computable tree of Scott rank w{'¥  and let ® be a
rank-preserving computable embedding of trees in undirected graphs. We get
a computable undirected graph of Scott rank w{’® by taking ®(7) and then
passing to a computable copy G.

We show that if 7 is strongly computably approximable, then so is G. Let
S be a X} set. Take a uniformly computable sequence of trees (7, )ne. stuch
that if n € S, then 7,, 2 7, and otherwise, 7,, has computable rank. Applying
® to the sequence (7, )new, and then applying a uniform effective procedure to
pass to computable copies, we get a uniformly computable sequence of graphs
(Gn)new such that if n € S, then G,, 2 G, and if n ¢ S, then G,, has computable
rank. Therefore, G is strongly computably approximable.

For 2 and 3, let G be a computable undirected graph of Scott rank w{'¥ and
let @ be a rank-preserving computable embedding of undirected graphs in fields
of the desired characteristic, or in linear orderings. In the same way as above,
we get a computable field, or linear ordering, of Scott rank w{'*. Moreover, if

G is strongly computably approximable, then so is the field, or linear ordering.
O

We have used computable embeddings to transfer results on trees to further
classes of structures. Our results are not sensitive to the precise definition of
computable embedding. What we need is a function ® from K to K’ such that

1. for AA in K, A= A iff d(A) = d(A),
2. if A € K is computable, then ®(A) has a computable copy B, with index
computable from that for A,
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3. if A € K is computable, then either SR(A) and SR(®(A)) are both
computable, or SR(A) = SR(®(A)).

Suppose ® satisfies these three properties. If K contains a computable struc-
ture A of Scott rank w{'X then K’ contains a computable structure B with this
same rank. Moreover, if A is strongly computably approximable, then so is B.

We have shown that there are computable structures of Scott rank w{'¥ in
some familiar classes. There are classes with computable members of arbitrarily
large computable rank, but with no computable member of Scott rank w{¥.

Proposition 4.2 (essentially, Barwise). If A is a computable Abelian p-
group, then SR(A) # w{E.

Proof. If A has computable length, then the Scott rank is computable. The
only non-computable length possible for a computable group is w{%. If A has
length w{'X then it cannot be reduced. The divisible elements have Scott rank
w{E so A has Scott rank w{'* + 1.

O

The last result gives two further classes, not so nicely axiomatized as Abelian
p-groups, but similar in other ways.

Proposition 4.3.

1. If A is a computable model of the computable infinitary theory of well
orderings, then SR(A) # w{'K.

2. If A is a computable model of the computable infinitary theory of super-
atomic Boolean algebras, then SR(A) # w{E.

Proof. For 1, suppose A is a computable model of the computable infinitary
theory of well orderings, and SR(A) is not computable. The theory has sen-
tences saying that if there is an element satisfying ¢(x), then there is a first
such element. Suppose that for some computable ordinal 8, every element is
least to satisfy some computable IIg formula. Then each element b is defined by
the conjunction of the computable IIg formulas true of b, and a formula saying
that it is first to satisfy all of these formulas. This formula is computable I1g ;.
Then each tuple b is defined by a computable Il5,; formula. Since SR(A) is
not computable, this is impossible. For each 3, there exists b not first to satisfy
any computable IIg formula. Let I'(z) be a II} set of formulas saying that
is not first to satisfy any computable infinitary formula. Every Aj subset is
satisfied in A. Therefore, the whole set is satisfied by some b. We show that b
has rank w{'¥. Say the orbit of b is defined by a computable infinitary formula
©(z). Now, b is not least to satisfy ¢(x), and the least is not in the same orbit.

For 2, suppose A is a model of the computable infinitary theory of super-
atomic Boolean algebras, and SR(A) is not computable. We say that b is
minimal satisfying ¢(x) if b satisfies p(x) and there does not exist a < b such
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that both a and b— a satisfy ¢(x). The theory has sentences saying that if there
is an element satisfying ¢(z), then there is a minimal such element. To see this,
recall that in a countable superatomic Boolean algebra, each element is a finite
join of a-atoms, for some countable ordinal a.. Take the least o and the least n
for this « such that some join of n a-atoms satisfies ¢ (). Then this is minimal.
Suppose there is some computable § such that each element of A is minimal
satisfying some computable IIg formula. Then for any tuple b in A, the orbit
of b is defined by giving the computable Il5 formulas satisfied by the atoms
of the finite subalgebra generated by b. Since SR(A) is not computable, this
is impossible. For each computable ordinal 3, there exists b such that b is
not minimal satisfying any computable II5 formula. Let I'(z) say that for all
computable infinitary formulas ¢(x), b is not minimal satisfying ¢(z). Every
Al subset is satisfied in .A. Therefore, the whole set is satisfied by some b. We
show that b has rank w{'®. Say the orbit of b is defined by (x). Now, b is not
minimal satisfying ¢(z), and if a is minimal satisfying ¢(x), then a is not in the

orbit of b.
O

For each of the theories above, we have given a I} set of axioms, included in
the theory, such that no computable model of the axioms has Scott rank wlc K.
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