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ALGEBRAIC STRUCTURE AND COMPUTABLE STRUCTURE

Abstract

by

Wesley Crain Calvert

The problem often arises, given some class of objects, to classify its members up

to isomorphism. The goal of classification theory is to determine whether there is

a satisfactory classification, and, if so, to give it. For instance, vector spaces over a

fixed field are classified by the dimension. We will consider computable structures,

i.e. structures with computable atomic diagram.

We write Ae for the computable structure with index e. If K is a class of

structures, we write

I(K) = {e|Ae ∈ K}

and define the isomorphism problem for K to be

E(K) = {(a, b)|a, b ∈ I(K) and Aa ' Ab}.

For some classes (graphs, linear orders, Abelian p-groups, etc.), it is known that

the isomorphism problem is m-complete Σ1
1. This thesis describes the addition of

new items to this list, and gives the precise complexity for many simpler classes.

Theorem.

1. If K is the set of computable members of either of the following, then E(K)

is m-complete Σ1
1:



Wesley Crain Calvert

(a) Fields of any fixed characteristic

(b) Real closed ordered fields

2. If K is the set of computable members of either of the following, then E(K)

is m-complete Π0
3:

(a) The class of models of a first-order strongly minimal theory which is not

ℵ0-categorical but which has effective elimination of quantifiers and a

computable model.

(b) Archimedean real closed ordered fields

3. Let α be a computable limit ordinal, and let α̂ = sup
ω·γ<α

(2γ + 3). If Kα is

the class of reduced Abelian p-groups of length at most α then E(Kα) is Π0
α̂

complete.

4. The isomorphism problem for computable torsion-free Abelian groups is not

hyperarithmetical.

We will also describe related collaborative work in which the author is involved.

This includes a different notion of classification, as well as preliminary results on

the following: the complexity of the index sets of particular structures, a calculation

of the complexity of the set of indices for structures with Scott rank α, where α is

either ωCK
1 or ωCK

1 + 1, and the construction of a structure of Scott rank ωCK
1 with

a strong approximability property.
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CHAPTER 1

INTRODUCTION

Computable structure theory, a branch of mathematical logic, seeks to describe

relationships between algebraic structure and algorithmic properties. We say that

a set S is computabe if there is some algorithm which will decide, in a finite amount

of time, for a given n, whether n ∈ S. A structure (e.g. group, vector space) is said

to be computable if the set of basic arithmetical facts (technically called the atomic

diagram; in a vector space, it is the set of true linear equations and inequations) is

computable.

Working with computable structures gives a uniform baseline for using algo-

rithmic properties to “measure” algebraic information. That is, we often find that

rich algebraic structure is associated with highly undecidable problems. A book

describing computable structure theory from this viewpoint is [5].

In the present chapter, some broad motivation will be given for the work in this

thesis, and some notation will be fixed. In Chapters 2 and 3, particular application of

these concepts will be made to various classes of Abelian groups and fields. Chapter

4 will analyze finite structures from the perspective of computable structure theory,

and develop a general method of comparison of classes of structures with broader

application. Chapter 5 will describe work on structures of high Scott rank, a subject

that bears importantly on questions of classification.
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1.1 Basic Techniques for Computable Structures

We can identify a computable structure with a natural number in the following

way: there is an algorithm witnessing that the structure is computable, and each

algorithm is associated with a natural number, so we identify the structure with the

number of its algorithm, writing Ae for the structure with χD(A) = ϕe. Of course,

it is possible that e1 6= e2 but Ae1 ' Ae2 (or even Ae1 = Ae2).

We will also make extensive use of computable infinitary formulas. Since nothing

will depend on the choice of ordinal notations, we will in all cases assume that we

are working below some (large) computable ordinal and fix some particular set of

notations for ordinals below it.

Definition 1.1.1. We define the set of computable Σα and Πα formulas inductively

on α.

1. The Σ0 and Π0 formulas coincide, and are the finitary quantifier-free formulas.

2. For α > 0, a computable Σα formula is a disjunction of a c.e. set of formulas

ϕi, where ϕi is of the form ∃xψi, where ψi is Πβi
for some βi < α, and where

for any γ < α there is some i such that βi ≥ γ.

3. For α > 0, a computable Πα formula is a conjunction of a c.e. set of formulas

ϕi, where ϕi is of the form ∀xψi, where ψi is Σβi
for some βi < α, and where

for any γ < α there is some i such that βi ≥ γ.

1.2 Classification of Computable Structures

In many areas of mathematics the problem arises, given some class of objects,

to classify them up to isomorphism. In some cases, we expect that there is some

reasonable solution, while in others there seems unlikely to be any satisfactory clas-

sification. The goal of classification theory is to determine whether there is a satis-
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factory classification, and, if so, to give it. For instance, vector spaces over a fixed

field are classified up to isomorphism by a single cardinal, the dimension.

Approaches to classification in model theory [66] and set theory [25, 38] have

given important progress on these issues. Approaches which focus on computable

structures sometimes reveal finer structure. Also, they can show special conse-

quences of the hypothesis that our models be computable.

One way to think about classification of computable structures is through index

sets. We can identify a class of computable structures with the set

I(K) = {e|Ae ∈ K}

and the equivalence relation of isomorphism becomes the set

E(K) = {(a, b)|a, b ∈ I(K) and Aa ' Ab}

called the isomorphism problem for K.

If I(K) is hyperarithmetical, which, in practice, is usually a mild assumption,

then E(K) is, at worst, Σ1
1. That is, it may be described by some statement involving

a single existential quantifier ranging over functions and perhaps some quantifiers

ranging over numbers. For instance, E(K) may be described by stating that there

is a function from Aa to Ab which is bijective and respects all of the structure. If

E(K) has a simpler description — perhaps one involving only number quantifiers —

we take this to be a classification. Goncharov and Knight showed that this notion is

closely related to other promising notions of classification for computable structures

[31]. We may focus on a class of structures, differing in isomorphism type, or we

may focus on a single isomorphism type.

For some classes (graphs, linear orders, Boolean algebras, Abelian p-groups, etc.)

that are non-classifiable from other points of view, it is known from folklore that

the isomorphism problem is m-complete Σ1
1. In Chapter 3 of the present work,
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more items will be added to this list, and at various points the m-degree of the

isomorphism problem will be computed for other classes of structures.

One further issue will be relevant: context. Sometimes describing that the struc-

ture in question is, for instance, a vector space, is sufficiently difficult to swamp the

complexity of a description that distinguishes it from other vector spaces. It is this

second description that interests us, since in practice one typically knows what type

of structure one will encounter (a vector space, a graph, a group, etc.).

Definition 1.2.1. Suppose A ⊆ B. Let Γ be some complexity class (e.g. Π0
3), and

let S ⊆ ω. We define complexity within B:

1. A is Γ within B if and only if there is some R ∈ Γ such that A = R ∩B.

2. S ≤m A within B if there is a computable f : ω → B such that for all n,

n ∈ S ⇐⇒ f(n) ∈ A.

3. A is m-complete Γ within B if A is Γ within B and for any S ∈ Γ we have

S ≤m A within B.

The last part of the definition says that A is Γ complete within B if it is Γ

within B and there is a function witnessing that it is Γ complete which only calls

for questions about things in B. In fact, the questions are only about members of a

c.e. subset of B. We will sometimes write “within K” for “within I(K)” or “within

I(K)× I(K).”

4



CHAPTER 2

ALGEBRAIC AND ALGORITHMIC PROPERTIES OF ABELIAN GROUPS

Abelian groups are well-travelled terrain in logic. They seem to have a good

mix of being sufficiently determined by well-understood information (roughly, order

and divisibility of elements) and yet admitting enough variation to be interesting.

The case of torsion groups, particularly Abelian p-groups, is especially noteworthy

in this respect.

In this chapter, we will calculate the degree of the isomorphism problem for

various classes of Abelian p-groups and the degrees of the index sets of many such

groups. Finally, we will see the little that is known about the isomorphism problem

for torsion-free Abelian groups.

2.1 Notation and Terminology for Abelian p-Groups

Let p be an arbitrary prime number. Abelian p-groups are Abelian groups in

which each element has some power of p for its order. We will consider only count-

able Abelian p-groups. These groups are of particular interest because of their

classification up to isomorphism by Ulm. For a classical discussion of this theorem

and a more detailed discussion of this class of groups, consult Kaplansky’s book

[39]. Generally, notation here will be similar to Kaplansky’s.

It is often helpful to follow S. Feferman [22] in representing these groups by trees.

Consider a tree T . The Abelian p-group G(T ) is the group generated by the nodes
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in T (among which the root is 0), subject to the relations stating that the group is

Abelian and that px is the predecessor of x in the tree. Reduced Abelian p-groups,

from this perspective, are represented by trees with no infinite paths.

The idea of Ulm’s theorem is that it generalizes the notion that to determine a

finitely generated torsion Abelian group it is only necessary to determine how many

cyclic components of each order are included in a direct sum decomposition. Let

G be a countable Abelian p-group. We will produce an ordinal sequence (usually

transfinite) of cardinals uβ(G) (each at most countable), which is constant after

some ordinal (called the “length” of G). If H is also a countable Abelian p-group

and for all β we have uβ(G) = uβ(H), then H ' G (this is still subject to another

condition we have yet to define).

First, set G0 = G. Now we inductively define Gβ+1 = pGβ = {px|x ∈ Gβ},

where px denotes the sum of x with itself p times. We also define, for limit β, the

subgroup Gβ =
⋂

γ<β

Gγ. Further, let P (G) denote the subgroup of elements x for

which px = 0, and let Pβ(G) = P ∩ Gβ. Now the quotient Pβ(G)/Pβ+1(G) is a Zp

vector space, and we call its dimension uβ(G). Where no confusion is likely, we will

omit the argument G and simply write Pβ, and so forth.

For any countable Abelian p-group G, there will be some least ordinal λ(G) such

that Gλ(G) = Gλ(G)+1. This is the length of G. If Gλ(G) = {0}, then we say that G is

reduced. Equivalently, G is reduced if and only if it has no divisible subgroup. The

height of an element x is the unique β such that x ∈ Gβ, but x /∈ Gβ+1, provided

that such a β exists. It is conventional to write h(0) = ∞, where ∞ is greater

than any ordinal. Similarly, if our group contains a divisible element x, we write

h(x) = ∞. In the course of this paper, we will only consider reduced groups. When

G is a direct sum of cyclic groups, un(G) is exactly equal to the number of direct

summands of order pn+1. We can now state Ulm’s theorem, but we will not prove

6



it here.

Theorem 2.1.1 (Ulm). Let G and H be countable reduced countable Abelian

p-groups. Then G ' H if and only if for every countable ordinal β we have

uβ(G) = uβ(H).

It is interesting to note that this theorem is not “recursively true.” Lin showed

that if two computable groups satisfying the hypotheses of this theorem have iden-

tical Ulm invariants, they may not be computably isomorphic [46]. In reverse math-

ematics, there is a theorem stating that (depending heavily on the particular state-

ment of the theorem), Ulm’s theorem is equivalent over a weak base system to a

formal system called ATR0, corresponding roughly to the existence of all countable

ordinals [24, 67]. Related work from a constructivist perspective may be found in a

paper by Richman [62].

A calculation of the complexity of the isomorphism problem for special classes of

computable reduced Abelian p-groups is essentially a computation of the complexity

of checking the equality of Ulm invariants. Given some computable ordinal α, we

will consider the class of reduced Abelian p-groups of length at most α.

2.2 The Isomorphism Problem for Ableian p-Groups of Bounded Ulm Length

In view of Ulm’s theorem, and in view of previous work by Barker [9], Nadel [56],

and others on the expressibility of Ulm information in Lω1ω, it seems reasonable to

try to calculate the complexity of the isomorphism problem for Abelian p-groups.

Getting upper bounds on the complexity is not difficult. The completeness results for

lengths less than ω2 will follow from a theorem of N. Khisamiev, which characterizes

which Abelian p-groups of small Ulm length have computable copies. For greater

lengths, completeness proofs will use the Ash Metatheorem. The results of this

section will appear in [13].

7



2.2.1 Bounds on Isomorphism Problems

For any computable ordinal α, it is somewhat straightforward to write a com-

putable infinitary sentence stating that G is a reduced Abelian p-group of length at

most α and that G and H have the same Ulm invariants up to α. In particular,

Barker [9] verified the following.

Lemma 2.2.1. Let G be a computable Abelian p-group.

1. Gω·α is Π0
2α.

2. Gω·α+m is Σ0
2α+1.

3. Pω·α is Π0
2α.

4. Pω·α+m is Σ0
2α+1.

Proof. It is easy to see that 3 and 4 follow from 1 and 2 respectively. Toward 1

and 2, note the following:

x ∈ Gm ⇐⇒ ∃y(pmy = x)

x ∈ Gω ⇐⇒
∧

m∈ω

∧
∃y(pmy = x)

x ∈ Gω·α+m ⇐⇒ ∃y[pmy = x ∧Gω·α(y)]

x ∈ Gω·α+ω ⇐⇒
∧

m∈ω

∧
∃y[pmy = x ∧Gω·α(y)]

x ∈ Gω·α ⇐⇒
∧
γ<α

∧
Gω·γ(x) for limit α

Work by Lin [47], when viewed from our perspective, shows that for any m ∈ ω,

there is a group G in which Gm is Σ0
1 complete. Given this lemma, we can place

bounds on the complexity of I(K) and E(K).

8



Lemma 2.2.2. If Kα is the class of reduced Abelian p-groups of length at most α,

and β > 0 is a computable ordinal, then I(Kω·β+m) is Π0
2β+1.

Proof. The class Kω·m+β may be characterized by the axioms of Abelian p-groups

(which are Π0
2), together with an axiom saying

∀x[x ∈ Gω·β+m → x = 0]

Since the previous lemma guarantees that this sentence is Π2β+1, we know that

I(Kω·β+m) is also Π0
2β+1.

Lemma 2.2.3. If α > 0 is a computable ordinal and Kα is as in the previous lemma,

we use α̂ to denote sup
ω·γ<α

(2γ + 3). Then E(Kα) is Π0
α̂ within Kα.

Proof. Note that the relation “there are at least n elements of height β which are

Zp-independent over Gβ+1” is defined in the following way. To say that x1, . . . , xn

are Zp-independent over Gβ+1, we write the computable Π2β+1 formula

Dn,β(x1, . . . , xn) =
∧

b1,...bn∈Zp

~b6=0

(
n∑

i=1

bixi /∈ Gβ+1)

Now to write “there are at least n independent elements of height β and order p,”

we use the sentence

Bn,β = ∃x1, . . . , xn[(
n∧

i=1

Gβ(xi)) ∧ (
n∧

i=1

pxi = 0)) ∧Dn,β(x)]

which is a computable Σ2β+2 sentence. Now we can define isomorphism by

∧
n∈ω
β<α

∧
Aa |= Bn,β ⇔ Ab |= Bn,β

We write each β < α as β = ω · γ + m, where m ∈ ω. If α̂ is as defined in the

statement of the lemma, then this can be expressed by a computable Πα̂ sentence.

9



2.2.2 Completeness for Length ω ·m

Proposition 2.2.4. If Kω is the class of computable Abelian p-groups of length at

most ω, then E(Kω) is Π0
3 complete within Kω.

Proof. We first observe that the set is Π0
3 within K, by applying the previous

lemma. Now let S be an arbitrary Π0
3 set. We can represent S as the set defined by

∀e∃<∞y R(n, e, y)

where R is computable and ∃<∞ is read “there exist at most finitely many.” Consider

the Abelian p-group Gω of length ω and with Ulm sequence uα = ω for all α < ω.

We will build a uniformly computable sequence (Hn)n∈ω of reduced Abelian p -

groups of height at most ω such that Hn ' Gω if and only if n ∈ S. Let Gω,∞

denote the direct sum of countably many copies of the smallest divisible Abelian

p-group Z(p∞), and note that Gω,∞ has a computable copy, as a direct sum of copies

of a subgroup of Q/Z. We will denote the element where x occurs in the ith place

with zeros elsewhere by (x)i. For instance, set-wise, Gω,∞ is the collection of all

sequences of proper fractions whose denominators are powers of p, and the element

(1
p
)2 denotes the element (0, 1

p
, 0, 0, . . . ).

List the atomic sentences by (φe)e∈ω, the pairs of elements in Gω,∞ by ξe, and

set D−1 = C−1 = Ye,−1 = Xe,−1 = X̃e,−1 = Te,−1 = ∅. We will build groups to meet

the following requirements:

Pe : There are infinitely many independent elements x ∈ Hn of order p

and height exactly e if and only if there are at most finitely many y

such that R(n, e, y).

Qe : If ξe = (a, b) and a, b ∈ Hn, then a+ b ∈ Hn.

Ze : If all parameters occurring in φe are in Hn, then exactly one of

φe ∈ D or ¬φe ∈ D.

10



Roughly speaking, Ds will be the diagram of Hn, and Cs will be its domain. For

each e, the set Ye,s will keep track of the y already seen, Xe,s the x created of height

at least e, and X̃e,s the x which are given greater height, as in Pe. The set Te,s will

keep track of the heights greater than e already used to put elements from Xe in

X̃e, so that we do not accidentally make infinitely many elements of height e+ 1.

We say that Pe requires attention at stage s if there is some y < s such that

y /∈ Ye,s−1 and R(n, e, y) and there is also some x ∈ Xe,s−1 \ X̃e,s−1, or if for all y < s

we have either y ∈ Ye,s−1 or ¬R(n, e, y). We say that Qe requires attention at stage

s if ξe = (a, b) and a, b ∈ Cs−1 but a+ b /∈ Cs−1. We say that Ze requires attention

at stage s if all parameters that occur in φe are in Cs−1 and Ds−1 does not include

either φe or ¬φe.

At stage s, to satisfy Pe, we will act by first looking for some y < s such that

y /∈ Ye,s−1 and R(n, e, y). If none is found, the action will be to enumerate a new

independent x of height at least e. To do this, find the first k such that (1
p
)k does

not occur in Cs−1 or in any element of Ds−1. Let

Cs = Cs−1 ∪
{(

1

pj

)
k

|j = 1, . . . , (e− 1)

}
and set Xe,s = Xe,s−1 ∪ {(1

p
)k}, X̃e,s = X̃e,s−1, Te,s = Te,s−1, and Ye,s = Ye,s−1. If

such a y is found, on the other hand, the action will be to give all existing element

of Xe,s−1 height greater than e. To do this, collect

K =

{
k|
(

1

p

)
k

∈ Xe,s−1 \ X̃e,s−1

}
and the least positive r /∈ Te,s−1. Note that K is finite. Set

Cs = Cs−1 ∪
⋃
k∈K

{(
1

pj

)
k

|j = (e, . . . , e+ r + 1)

}
and set Te,s = Te,s−1 ∪ {r}, X̃e,s = X̃e,s−1 ∪ {(1

p
)k|k ∈ K}, Xe,s = Xe,s−1, and

Ye,s = Ye,s−1 ∪ {y}.
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To satisfy Qe at stage s we will look to see whether the elements of ξe = (a, b) are

in Cs−1. If they are both there, set Cs = Cs−1 ∪ {a+ b}. Otherwise, set Cs = Cs−1.

To satisfy Ze, we will act at stage s by first looking for the parameters in φe in

Cs−1. If all of them are there and Gω,∞ |= φe, then set Ds = Ds−1 ∪ {φe}. If all

of them are there and Gω,∞ |= ¬φe, then set Ds = Ds−1 ∪ {¬φe}. If some of the

parameters are not in Cs−1, we set Ds = Ds−1.

Now if n ∈ S, for each e we have Qe to guarantee that ue(H
n) will be infinite, so

Hn ' Gω. If n /∈ S, there is some e such that Qe guarantees that ue(H
n) is finite,

so Hn 6' Gω.

Since this result is perfectly uniform, we can use it for induction. What we

actually have established is the following:

Proposition 2.2.5. If S is a set which is Π0
3 relative to X, then there is a uniformly

X-computable sequence of reduced Abelian p-groups (Hn)n∈ω, each of length at most

ω, such that Hn ' Gω if and only if n ∈ S.

There is a result of N. Khisamiev [41], which allows us to transfer these

X-computable groups down to the computable level. Although we only use the

weaker corollary here, the result is stated in its full strength because it will be

needed in a later section.

Theorem 2.2.6 (N. Khisamiev [41]). For a reduced Abelian p-group A of height

ω ·M , where M ∈ ω, the following are equivalent:

1. A has an X-computable copy.

2. For each k < N , the relation

Rk
A = {(r, t)|uωk+r(A) ≥ t}}

is Σ0
2k+2(X), and there is a ∆0

2k+1(X) function fk
A(r, s) such that for any fixed

12



r, the function fk
A(r, s) is nondecreasing and lim

s
f(r, s) = r∗ ≥ r exists, with

uωk+r∗(A) 6= 0.

Moreover, we can pass effectively from Σ0
2k+2(X) indices for the relations Rk

A

and ∆0
2k+1(X) indices for the functions fk

A to an X-computable index for an X-

computable copy of A, and conversely.

Corollary 2.2.7 (N. Khisamiev [41]). If G is a X ′′-computable reduced Abelian

p-group, then there is an X-computable reduced Abelian p-group H such that Hω ' G

and un(H) = ω for all n ∈ ω. Moreover, from an index for G, we can effectively

compute an index for H.

Of course, the theorem would allow many other choices for un(H), beyond what

we need here. We can now combine Proposition 2.2.5 and Corollary 2.2.7 to obtain

the following completeness result.

Proposition 2.2.8. If Kω·m is the class of computable reduced Abelian p-groups of

length at most ω ·m, for some m > 0, then E(Kω·m) is m-complete Π0
2m+1 within

K.

Proof. Let S be an arbitrary Π0
2m+1 set. Since S is Π0

3 in ∅(2m−1), we have a

uniformly ∅(2m+1)-computable sequence of reduced Abelian p-groups (Hn)n∈ω, each

of length at most ω, such that Hn ' Gω if and only if n ∈ S. Now we can step

each Hn down to a lower level using Khisamiev’s result, so that we have a uniformly

∅(2n−3) = ∅(2(n−1)−1)-computable sequence (H2,n)n∈ω of reduced Abelian p-groups,

each of height ω ·2 which again have the property that H2,n has a constantly infinite

Ulm sequence if and only if n ∈ S. By induction, we define (H i,n)n∈ω, and when we

get to (Hm,n)n∈ω, it will be a uniformly computable sequence of groups of length at

most ω ·m such that Hm,n has constantly infinite Ulm sequence if and only if n ∈ S.
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2.2.3 Completeness for Higher Bounds on Length

Giving completeness results for higher levels requires more elaborate machinery.

We will prove a more general result using an α-system, in the sense of Ash. These

systems are explained in detail, along with several other variants, in the book of

Ash and Knight [5]. The “Metatheorem” for α-systems was originally proved in a

paper by Ash [2]. The version presented here was stated in Ash’s later paper [3].

Roughly speaking, an α-system describes all possible priority constructions of a

given kind, and the Metatheorem states that given an “instruction function” which

is ∆0
α, the system will produce a c.e. set (in our case, the diagram of a group) which

incorporates the information given in the instruction function. More formally, we

make the following definition:

Definition 2.2.9 (Ash). Let α be a computable ordinal. An α-system is a structure

(L,U, P, ˆ̀, E, (≤β)β<α)

where L and U are c.e. sets, E is a partial computable “enumeration” function on

L, P is a c.e. “alternating tree” on L and U (that is, a set of strings closed under

nonempty initial segments, and with letters alternating between L and U) in which

all members start with ˆ̀ ∈ L, and ≤β are uniformly c.e. binary relations on L,

where the following properties are satisfied:

1. ≤β is reflexive and transitive for all β < α

2. a ≤γ b⇒ a ≤β b for all β < γ < α

3. If a ≤0 b, then E(a) ⊆ E(b)

4. If σu ∈ P , where σ ends in `0, and

`0 ≤β0 `
1 ≤β1 · · · ≤βk−1

`k

14



where β0 > β1 > · · · > βk, then there exists some `∗ such that σu`∗ ∈ P and

for all i ≤ k, we have `i ≤βi
`∗.

In the systems we will use here, E will eventually enumerate the diagram of the

structure we are building. If we have such a system, we say that an instruction

function for P is a function q from the set of sequences in P of odd length (i.e.

those with a last term in L) to U , so that for any σ in the domain of q, σq(σ) ∈ P .

The following theorem, due to Ash [3], guarantees that if we have such a function,

there is a string which represents “carrying out” the instructions while enumerating

a c.e. set. We call an infinite string π = ˆ̀u1`1u2`2 . . . a “run” of (P, q) if it is a path

through P with the property that for any initial segment σu we have u = q(σ). The

Metatheorem also guarantees that there is a run with the property that
⋃
i∈ω

E(`i) is

computably enumerable.

Proposition 2.2.10 (Ash Metatheorem). If we have an α-system

(L,U, P, ˆ̀, E, (≤β)β<α)

and if q is a ∆0
α instruction function for P , then there is a run π : ω → (L ∪ U) of

(P, q) such that
⋃
i∈ω

E(π(2i)) is c.e. Further, from computable and c.e. indices for

the components of the system and a ∆0
α index for q, we can effectively determine a

c.e. index for
⋃
i∈ω

E(π(2i)).

What this means is that if we can set up an appropriate system, then given

some highly undecidable requirements, we can build a computable group to satisfy

them. The difficulty (aside from digesting the Metatheorem itself) mainly consists

of defining the right system. Afterwards, it is no trouble to write out the high-level

requirements we want to meet. Using such a system, we will prove the following

generalization of Proposition 2.2.8.
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Theorem 2.2.11. Let α > 0 be a computable limit ordinal, and let

α̂ = sup
ω·γ<α

(2γ + 3)

as in Proposition 2.2.3. If Kα is the class of reduced Abelian p-groups of length at

most α then E(Kα) is Π0
α̂ complete within Kα.

Proof. Let (αi)i∈ω\{0} be a computable sequence of computable ordinals, cofinal

in α (for instance, if α = ω · ω, then αi = ω · i would do, or if α = ω · (β + 1),

we could use αi = ω · β + i; in any case, since α is computable, there is such a

sequence). Consider the family of groups (Ĝi)i∈ω, each of length α where Ĝ0 has

uniformly infinite Ulm sequence and

uβ(Ĝi) =

 ω if β < αi or if β is even

0 otherwise

Since the Ulm sequences of these groups are uniformly computable, there is a uni-

formly computable sequence (Gi)i∈ω such that Gi ' Ĝi for all i, and such that in

each of these groups, for any β, the predicate “x has height β” is computable. The

proof of this, which is due to Oates, is a modification of an argument of L. Rogers

[64], and may be found in Barker’s paper [9].

For any set S ∈ Π0
α̂, we will construct a sequence of groups (Hn)n∈ω such that if

n ∈ S then Hn ' G0, and otherwise, Hn ' Gi for some i 6= 0. To do this, we will

define an α̂-system. Let L be the set of pairs (j, p), where j ∈ ω and p is a finite

injective partial function from ω to Gj. Let U be the set {0, 1}. Use np to denote

|dom(p)|. By E(j, p), we will mean the first np atomic sentences or negations of

atomic sentences with parameters from the image of p which are true in Gj. Let

ˆ̀ = (0, ∅), and P be the set of strings of the form ˆ̀u1`1u2`2 . . . which satisfy the

following properties:

1. ui ∈ U and `i ∈ L
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2. If ui = 1 then ui+1 = 1

3. If `i = (ji, pi), then both the domain and range of pi contain at least the first

i members of ω

4. If `i = (j, p) and ui = 1, then j 6= 0. Otherwise, j = 0. Further, if ui−1 = 1

and `i−1 = (ji−1, q), then j = ji−1.

For the ≤β we will modify the standard back-and-forth relations on Abelian

p-groups. In general, the standard back-and-forth relations on a class K are char-

acterized as relations on pairs (A, a) where A ∈ K and a is a finite tuple of A.

Definition 2.2.12. If a ⊆ A and b ⊆ B are finite tuples of equal length, then we

define the standard back-and-forth relations ≤β as follows:

1. (A, a) ≤1 (B, b) if and only if for all finitary Σ0
1 formulas true of b in B are

true of a in A.

2. (A, a) ≤β (B, b) if and only if for any finite d ⊂ B and any γ with 1 ≤ γ < β

there is some c ⊂ A of equal length such that (B, b, d) ≤γ (A, a, c).

This definition extends naturally to tuples of different length as follows: we say

that (A, a) ≤β (B, b) if and only if a is no longer than b and that for the initial

segment b
′ ⊂ b of length equal to that of a, we have (A, a) ≤β (B, b′). Barker [9]

gave a useful characterization of these relations in the case of Abelian p-groups A

and B, where A = B.

Proposition 2.2.13 (Barker [9]). If ≤β are the standard back-and-forth relations

on reduced Abelian p-groups, and if a and b are finite subsets of equal length in an

Abelian p-group with the height of elements given by h respectively and with equal

cardinality, with a function f mapping elements of b̄ to corresponding elements of

ā, then the following hold:
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1. a ≤2·δ b if and only if the two generate isomorphic subgroups and for every

b ∈ b and a = f(b) we have

h(a) = h(b) < ω · δ or h(b), h(a) ≥ ω · δ

2. a ≤2·δ+1 b if and only if the two generate isomorphic subgroups and for every

b ∈ b and a = f(b) we have

(a) In the case that Pω·δ+k is infinite for every k ∈ ω,

h(a) = h(b) < ω · δ

or

h(b) ≥ ω · δ and h(a) ≥ min{h(b), ω · δ + ω}

(b) In the case that Pω·δ+k is infinite and Pω·δ+k+1 is finite,

h(a) = h(b) < ω · δ

or

ω · δ ≤ h(b) ≤ h(a) ≤ ω · δ + k

or

h(a) = h(b) > ω · δ + k

(c) In the case that Pω·δ is finite,

h(x) = h(x)

Since in all groups with which we are concerned, Pω·δ+k will be infinite for all

δ < α, we will have no need for the more complicated cases. Also, it is helpful to

deal with groups which satisfy the stronger condition that they have infinite Ulm

invariants at each limit level. For the proof of the present theorem, we do not

actually need the standard back and forth relations, but only relations which satisfy

the hypotheses of the Ash Metatheorem, including the back and forth property. In

exchange, however, we need a system that considers tuples from different groups.
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Definition 2.2.14. Let A,B be countable reduced Abelian p-groups of length at most

α such that for any limit ordinal ν < α we have uν(A) = uν(B) = ω. Let the height

of an element in its respective group be given by h. Let a, b be finite sequences of

equal length from A and B, respectively. Then define (≤δ)δ<ω1 by the following:

1. (A, a) ≤2·δ (B, b) if and only if

(a) The function matching elements of a to corresponding elements of b ex-

tends to an isomorphism f : 〈b〉 → 〈a〉,

(b) for every b ∈ b and a = f(b) we have

h(a) = h(b) < ω · δ or h(b), h(a) ≥ ω · δ

and

(c) for all β < ω · δ we have uβ(A) = uβ(B).

2. (A, a) ≤2·δ+1 (B, b) if and only if

(a) The function matching respective elements in a and b extends to an iso-

morphism f : 〈b〉 → 〈a〉,

(b) for every b ∈ b and a = f(b) we have

h(a) = h(b) < ω · δ

or

h(b) ≥ ω · δ and h(a) ≥ min{h(b), ω · δ + ω}

(c) for all β < ω · δ we have uβ(A) = uβ(B).

(d) for all β ∈ [ω · δ, ω · δ + ω) we have uβ(A) ≥ uβ(B).

In order to verify that we have an α̂-system, the following lemma — which,

when combined with the preservation of atomic formulas, is called the back and

forth property — will be important.
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Lemma 2.2.15. Suppose (A, a) ≤β (B, b). Then for any η < β and for any fi-

nite sequence d ⊆ B there exists a sequence c ⊆ A of equal length such that

(B, b, d) ≤η (A, a, c).

Proof. Suppose that the conditions stated for≤2·δ hold. Now suppose δ = γ + 1.

It suffices to show that for all finite sequences d ⊆ B there exists a sequence c ⊆ A

of equal length such that (B, b, d) ≤2·δ+1 (A, a, c). We will extend f to d one element

at a time. Let d ∈ d, and suppose that d /∈ 〈b〉 (since if it were in that subgroup, we

could simply map it to the corresponding element of 〈c〉. Further suppose, without

loss of generality, that pd ∈ 〈b〉 and that h(d) ≥ h(d + s) for any s ∈ 〈b〉. This

last condition is often stated “d is proper with respect to 〈b〉.” These assumptions

are reasonable, since if we need to extend f to an element farther afield, we can go

one element at a time and work down to it. From this point, we essentially follow

Kaplansky’s proof of Ulm’s theorem [39] to find the appropriate match for d. Use z

to denote f(pd). It now suffices to find some c of height h(d) which is proper with

respect to 〈a〉 and such that pc = z.

First suppose that h(z) = h(d) + 1. Now both z and pd must be nonzero. For

c we may choose any element of (A)h(d) with pc = z. The height of z tells us that

there must exist such an element. We first check that h(c) ≤ h(d), which is easy,

since if h(c) > h(d), we would have

h(z) = h(pc) ≥ h(c) + 1  h(d) + 1

Finally, it is necessary to show that c is proper with respect to 〈a〉. Suppose that

c ∈ 〈a〉. Then c = f(y) for some y ∈ 〈b〉. Then pd = py and d − y /∈ 〈b〉 to avoid

d ∈ 〈b〉. Further, h(d− y) = h(d), since h(y) = h(d) and d is proper with respect to

〈b〉. However,

h(p(x− y)) = h(0) = ∞  h(d) + 1
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contradicting the maximality of h(px). Thus c /∈ 〈a〉. Now suppose we have

h(c + t) ≥ h(d) + 1 for some r ∈ 〈a〉 with r = f(s). Since c + r 6= 0 (to

avoid the case that c = −r ∈ 〈a〉), we know that h(p(w + r)) ≥ h(d) + 2, so

that h(p(d + s)) ≥ h(d) + 2. Since h(r) ≥ h(d), we also have h(s) ≥ h(d), so

h(d+ s) = h(d), contradicting the maximality of h(pd).

Suppose that h(z) > h(d) + 1. Now there is some v ∈ (B)h(d)+1 such that

pd = pv. Then the element d− v is in Ph(d)(B), has height h(d), and is thus proper

with respect to 〈b〉.

Claim 2.2.16 (Lemma 13 of [39]). Let the function

r : (〈b〉h(d) ∩ p−1(B)h(d+2)) → Ph(d)(B)

be defined as follows: For any x ∈ (〈b〉h(d) ∩ p−1(B)h(d)+2) there exists some

y ∈ (B)h(d)+1 such that py = px. Define Y by Y : x 7→ x − y and let Ŷ be the

composition of this map with the projection onto Ph(d)(B)/Ph(d)+1(B). If

F : (〈b〉h(d) ∩ p−1(B)h(d)+2)/〈b〉h(d)+1 −→ Ph(d)(B)/Ph(d)+1(B)

is the map induced by Ŷ on the quotient, then the following are equivalent:

1. The range of F is not all of Ph(d)(B)/Ph(d)+1(B).

2. There exists in Ph(d)(B) an element of height h(d) which is proper with respect

to 〈b〉.

Proof. To show that Condition 2 implies Condition 1, suppose w ∈ Ph(d) has

height h(d) and is proper with respect to 〈b〉. Then the coset of w is not in the

range of F . Otherwise, w = x− y + q for some x ∈ 〈b〉, some y ∈ (B)h(d), and some

q ∈ Ph(d)+1(B). But then h(w − x) > h(d), so w was not proper.

To show the other implication, suppose that w is an element of Ph(d)(B) repre-

senting a coset not in the range of F . Then h(w) = h(d). Further, w is proper, since
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if it were not, and if h(s−w) > h(d) witnessed this, we could write s−w = pζ with

ζ ∈ (B)h(d). But then ps = pζ since pw = 0. But then F will map s to the coset of

v, giving a contradiction.

Now since d − v is such an element as is described in the second condition of

the claim, we know that the range of F is not all of Ph(d)(B)/Ph(d)+1(B). Since the

vector spaces are finite (and thus finite dimensional), we know that the dimension

of (〈b〉h(d)∩p−1(B)h(d)+2)/〈b〉h(d)+1 is less that uh(d)(B). However, since f was height

preserving, it maps

(〈b〉h(d) ∩ p−1(B)h(d)+2)/〈b〉h(d)+1

↓ onto

(〈a〉h(d) ∩ p−1(A)h(d)+2)/〈a〉h(d)+1

Thus the dimension of (〈a〉h(d) ∩ p−1(A)h(d)+2)/〈a〉h(d)+1 is less than uh(d)(B).

In the case that h(d) < ω · δ + ω, we now know that the dimension of

(〈a〉h(d) ∩ p−1 (A)h(d)+2)/〈a〉h(d)+1 is less than uh(d)(A), so there is an element

c1 in A such that pc1 = 0, h(pc1) = h(d), and which is proper with respect to 〈a〉.

Since h(z) > h(d) + 1, we may write z = pc2 where c2 ∈ (B)h(d)+1. Now we write

c = c1 + c2 and note that pc = z, that h(c) = h(d), and finally that c is proper with

respect to 〈a〉.

If h(d) ≥ ω · δ + ω, we need considerably less. In particular, it suffices to find

some c such that pc = z, such that c is proper with respect to 〈a〉, and such that

h(c) = ω · δ + ω. This can be achieved by replacing h(d) with ω · δ + ω in the

preceding argument, and noting that since ω · δ is a limit, uω·δ = ω. This completes

the proof for the case (A, a) ≤2·δ (B, b) with δ a successor.

If δ is a limit ordinal, it suffices to consider some odd successor ordinal

2 · η + 1 < 2 · δ
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and to show that for any d ∈ B there is some c ∈ A such that

(B, b, d) ≤2·η+1 (A, a, c).

Then the proof is exactly as in the successor case.

In the case that we start with (A, a) ≤2·δ+1 (B, b) , we need to show that for any

d ∈ B there is some c ∈ A such that (B, b, d) ≤2·δ (A, a, c). Now we can follow the

proof exactly as in the even successor case, except that we replace ω · δ + ω with

ω · δ.

We now adapt the relations ≤β on pairs (A, ā), (B, b̄) to relations on L.

Definition 2.2.17. We say that (j1, p1) ≤β (j2, p2) if and only if

(Gj1 , ran(p1)) ≤β (Gj2 , ran(p2))

We need to verify that (L,U, P, ˆ̀, E, (≤β)β<α̂) is an α̂-system. For the necessary

effectiveness, notice that we need only consider ≤β on members of L, so only the

groups Gi are considered. Conditions 1 – 3 are clear, as is the fact that (≤β)β<α̂ is

uniformly c.e. It remains to verify the following:

Lemma 2.2.18. If σu ∈ P where σ ends in `0 and

`0 ≤β0 `
1 ≤β1 · · · ≤βk−1

`k

where β0 > β1 > · · · > βk, then there exists some `∗ such that σu`∗ ∈ P and for all

i ≤ k, we have `i ≤βi
`∗.

Proof. We write `i = (ji, pi). By Lemma 2.2.15, given `k−1 ≤βk−1
`k we can

produce an ˜̀k−1 = (j̃k−1, p̃k−1) such that p̃ extends pk−1 (mapping into the same

structure) and `k ≤βk
˜̀k−1. Similarly, for each i, produce ˜̀i such that `i+1 ≤βi+1

˜̀i.

It will then be the case that for all i, `i ≤βi
˜̀0. If u = 0 or if 1 occurs somewhere

in σ, let `∗ = (j̃0, p
∗), where p∗ extends p̃0 and its domain and range each contain
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the first n constants, where 2n + 1 is the length of σ. Now σu`∗ ∈ P and for all i,

`i ≤β0 `
∗.

If, on the other hand, u = 1 and 1 does not occur in σ, then we may be sure

that j̃0 = 0. In this case, find some j∗ > 0 such that αj∗ > β0. Note that since for

each β < αj∗ we have uβ(Gj∗) = uβ(G0), it follows that

(Gj∗ , ∅) ≤β0+1 (G0, ∅).

Thus, by Lemma 2.2.15, we have some sequence ran(p∗) ⊆ Gj∗ of length k such

that (G0, ran(p̃)) ≤β0 (Gj∗ , ran(p∗)), where 2k + 1 is the length of σ. We define p∗

to be the function taking each of an initial sequence of the natural numbers to the

corresponding element of that sequence. Then clearly σu`∗ ∈ P , and for any i, we

have `i ≤β0 (G0, ran(p̃)) ≤β0 (Gj∗ , ran(p∗))

Now let S be an arbitrary Π0
α̂ set. There is a ∆0

α̂ function g(n, s) : ω2 → 2 such

that for all n, we have n ∈ S if and only if ∀s[g(n, s) = 0], and such that for all

n, s ∈ ω, if g(n, s) = 1 then g(n, s+ 1) = 1. We define a ∆0
α̂ instruction function qn

as follows. If σ ∈ P and σ is of length m, then we define qn(σ) = g(n,m).

Now we certainly can find computable and c.e. indices for all the components of

the α̂-system (these indices do not vary with n), and uniformly in n we can find a

∆0
α̂ index for each qn, so the Ash Metatheorem gives us (uniformly in n), a run πn of

(P, qn) and the index for the c.e. set
⋃
i∈ω

E(πn(2i)). Let Hn denote the group whose

diagram this is. Note that if n ∈ S, then qn(m) = 0 for all m, and so Hn ' G0.

Otherwise there is some m̂ such that for all m > m̂, we have qn(m) = 1, and so

Hn ' Gi for some i 6= 0.

2.3 Index Sets for Abelian p-Groups of Small Ulm Length

In all cases in the previous section, the completeness side of the result followed

from the fact that the group with uniformly infinite Ulm invariant (up to the spec-
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ified length) had an index set which was complete at the required level. We would

like to know how exceptional this one structure is. For instance, might the group

G with the same length but with uα(G) = 1 for all α < λ(G) have a simpler index

set? The present section will document preliminary work toward this question and

other related questions, which will appear in joint work of the present author with

Harizanov, Knight, and S. Miller in [16].

In making these calculations for arbitrary Abelian p-groups of specified length,

we give up many of the favorable conditions that made possible our use of the Ash

Metatheorem, and have to fall back on the Khisamiev characterization. This limits

most of our knowledge so far to the groups of length less than ω2.

Proposition 2.3.1. Let K be the class of reduced Abelian p-groups of length ωm,

and let A ∈ K. Then I(A) is m-complete Π0
2m+1 within K.

Actually, the case m = 1 was proved first in joint work of the present author

with Cenzer, Harizanov, and Morozov, which is also still at a preliminary stage and

will appear in [14].

Theorem 2.3.2. Let K be the class of reduced Abelian p-groups of length ωM +N

for some M,N ∈ ω. Let A ∈ K.

1. If for all n we have uωM+n(A) <∞, then I(A) is m-complete Π0
2M+1 within K.

2. If there is a unique n̂ < N such that uωM+n̂(A) = ∞ and for all n′ < n̂ we

have uωM+n′(A) = 0, then I(A) is m-complete Π0
2M+2 within K.

3. If there is a unique n̂ < N such that uωM+n̂(A) = ∞ and for some n′ < n̂ we

have 0 < uωM+n′(A) <∞, then I(A) is m-complete d-Σ0
2M+2 within K.

4. If there exist n′ < n̂ < N such that uωM+n′(A) = uωM+n̂(A) = ∞ then I(A)

is m-complete Π0
2M+3 within K.
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The previous two results suffice for all Abelian p-groups of length less than ω2.

Some limited information is available on groups of greater length.

Theorem 2.3.3. Let K be the class of reduced Abelian p-groups. Let A be a member

of K with length greater than ωm. Then I(A) is not Σ0
2m+2

2.4 The Isomorphism Problem for Torsion-Free Abelian Groups

The class of torsion-free Abelian groups has been important to the study of clas-

sification problems in descriptive set theory. Friedman and Stanley proved that the

isomorphism relation on finite rank countable torsion-free Abelian groups is Borel

(and thus not Borel complete) [25]. They also conjectured that isomorphism for ar-

bitrary countable torsion-free Abelian groups was Borel complete. This conjecture

has so far resisted proof, although partial results showing that it is not Borel have

been achieved by Hjorth [37].

2.4.1 Finite Rank

In general, even finite rank torsion-free Abelian groups can have quite compli-

cated structure. A group is of rank at least n if and only if there are at least n

Z-linearly independent elements (so in particular there are groups of finite rank

that are not finitely generated; for example, the additive group of rationals has rank

1). Friedman and Stanley showed that the restriction of the isomorphism relation to

the set of countable torsion-free Abelian groups of finite rank is not Borel complete

[25]. There is a well-known classification for the case of rank 1, but none for any

larger rank. Thomas has recently shown that the isomorphism relation on torsion-

free Abelian groups of rank n is strictly simpler than on those of rank n+ 1 (in the

sense of the ordering ≤B; see Definition 4.2.1) [70]. As the Friedman-Stanley result

suggests, though, these groups are not altogether intractable. It is helpful to note

the following “normal form” result for these groups.
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Lemma 2.4.1. If G is a torsion-free Abelian group of rank n < ω, then G ≤ Qn.

Proof. There is an embedding of G into GZ∗ = {[ 1
a
g]|a ∈ Z∗, g ∈ G}, where

the brackets denote classes of the natural equivalence relation. This group has the

structure of a (necessarily free) Q-module, given by m
n
g = [ 1

n
mg]. It is easy to show

that GZ∗ has rank at most n.

There is a known classification, due to Baer [6], of countable rank 1 torsion-free

Abelian groups. The account here will generally follow that in the book by Fuchs

[27]. Given such a group G, for any prime p, we define a function hp : G → N by

setting hp(a) equal to the largest natural number k such that there is some b ∈ G

with pkb = a. If no such k exists, we say hp(a) = ∞. Now define the characteristic

of a to be the sequence χG(a) = (hp1(a), hp2(a), . . . ), where (pi)i∈ω is a list of all

prime numbers. Where no confusion about the group involved is likely, we will write

χ(a).

In some torsion-free Abelian groups (think of (Q,+)), it is the case that all

nonzero elements have the same characteristic. In these groups, we would need to

look no further for invariants. However, in some others (for example, (Z,+)) the

characteristics of the various elements are essentially the same, but not identical.

We say that two characteristics are equivalent if they are equal except in a finite

number of places and in all places where they differ, both are finite. An equivalence

class of characteristics under this relation is called a type. If χG(a) belongs to a type

t, then we say that tG(a) = t, and that a is of type t. A group G in which any

two non-zero elements have the same type t is said to be homogeneous, and we say

that t(G) = t is the type of G. In particular, we note that any torsion-free Abelian

group of rank 1 is homogeneous.

Proposition 2.4.2 (Baer [6]). If G and H are torsion-free Abelian groups of rank

1, then G ' H if and only if t(G) = t(H).
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Proof. Suppose g ∈ G and h ∈ H are both nonzero. Write χ(g) = (m1,m2,m3, . . . )

and χ(h) = (n1, n2, n3, . . . ). Now since, as we have observed, G and H are homoge-

neous, if they are of the same type, then these two sequences differ at only finitely

many places (say i1, . . . , it), and both sequences are finite at all of these places.

Now there is some g̃ ∈ G such that piipi2 · · · pit g̃ = g, and there is some h̃ ∈ H such

that piipi2 · · · pith̃ = h. Clearly χ(g̃) = χ(h̃). Thus, for any rational q, there is some

x ∈ G with qg̃ = x if and only if there is some y ∈ H with qh̃ = y. Since such x

and y are necessarily unique (because the groups are torsion-free), and since every

member of G is a rational multiple of g̃ (respectively with H and h̃), we obtain a

bijection which is an isomorphism.

A structure A is said to be computably categorical if for any two computable

copies A1 ' A2 ' A, there is a computable function witnessing A1 ' A2. It is well

known that if G is a computable finite rank torsion-free Abelian group, then G is

computably categorical (see, for instance, [21], [49], [58], [28]). To see this, note that

if we have computable finite rank torsion-free Abelian groups G and H, a finite set

g spanning G, and h : G → H an isomorphism, then we can pass effectively from

computable indices for (G, g) and (H, h(g)) to an index for that same isomorphism

as a computable function.

It is clear that if K is a class of computably categorical structures, then E(K)

must be at worst Σ0
3 complete within K, since we can express “Aa and Ab are

isomorphic” as “there exists an index for a computable function which is total,

bijective, and respects the group operation,” which is clearly a Σ0
3 condition. Thus,

we have a bound on the complexity of the isomorphism problem for finite rank

torsion-free Abelian groups. This bound is sharp.

Theorem 2.4.3. If K is the class of torsion-free Abelian groups of any fixed finite

rank r, then E(K) is Σ0
3 complete within K.
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Proof. We have already shown that E(K) is Σ0
3 within K. We can reduce the

completeness to a problem on computably enumerable sets. I am grateful to C.

Jockusch for suggesting the proof of the following lemma.

Lemma 2.4.4. If S is a Σ0
3 set, then there exist sequences (An)n∈ω and (Bn)n∈ω,

uniformly computably enumerable, such that An4Bn is finite if and only if n ∈ S.

Proof. It is well known that the set Cof = {e|We is cofinite} is Σ0
3 complete (see,

for instance, [68]). We could take An = ω and Bn = Wn for all n. Then An4Bn is

finite just in case ω \Bn = Wn is finite, which happens exactly when n ∈ Cof .

Now from a computably enumerable set A we will pass effectively to G(A), a

computable torsion-free Abelian group of rank 1, in such a way that G(A) ' G(B)

if and only if A4B is finite. This will be done by making the characteristic of 1

in G(A) (understood as a subgroup of Q) equal to the characteristic function of A.

If we can do this, then χG(A)(1) will differ from χG(B)(1) only in places indexed by

members of A4B, and in every place they are both finite.

Given an index for a computably enumerable set A, we can enumerate the set

C(A) = { 1
pe
|e ∈ A}, and thus we can also enumerate the subgroup of the ratio-

nals generated by C(A). We can pad to pass to a computable copy of this same

group, and we call the resulting group G(A). Now (G(An))n∈ω and (G(Bn))n∈ω are

uniformly computable sequences of groups such that G(An) ' G(Bn) exactly when

n ∈ S.

2.4.2 Infinite Rank

The situation for infinite rank groups is somewhat more difficult. An analogue of

Lemma 2.4.1 holds in this context, but these groups are not computably categorical.

We will follow reasoning essentially due to Hjorth [37] to show that the isomorphism

problem for this class is not hyperarithmetical, and so is properly Σ1
1. However,
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there are many properly Σ1
1 m-degrees which are not Σ1

1 complete (the study of

these degrees dates back at least to [23]; see [29] for more recent work), so it is not

yet clear that the isomorphism problem for this class is Σ1
1 complete.

The argument of Hjorth coded hereditarily countable sets (ranked in a natural

way, so as to correspond to the various classes Πα) into a certain kind of labeled

graph, and then coded these graphs into the groups. Hjorth’s method of encoding

was almost exactly what is given here. The principal differences are in the sub-

stitution of the trees from Lemma 2.4.6 for hereditarily countable sets, and in a

new proof of injectivity for the encoding, to replace Hjorth’s more difficult proof. In

place of hereditarily countable sets, we will use trees. It is not clear yet that all trees

can be encoded in these groups. However, a certain class of trees can be encoded.

We will first make the following definition:

Definition 2.4.5. Let x be a node in a tree. We define the rank of x, denoted Rk(x)

as follows:

1. We say that Rk(x) = 0 if and only if x is terminal.

2. We say that Rk(x) = β > 0 if and only if β is the supremum of the ranks of

all successors of x.

The important features of these trees is that each of them is well-founded and

has computable rank function (i.e. a computable function assigning to each node

x the computable ordinal Rk(x)), that each Eα, Aα, and Lα, as well as the Tn’s

approximating them, has rank α, and the trees Eα (respectively, Aα or Lα
∞) have

index sets which are m-complete Σ0
α (respectively, Π0

α) within the class of trees

produced.

Proposition 2.4.6. For any computable successor ordinal α, there exist computable

trees Eα, Aα, and for any computable limit ordinal α, there exist computable trees

Lα
∞, and a sequence of trees (Lα

k )k∈ω such that if S is a Π0
α set,
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1. If α is a successor ordinal, there is a uniformly computable sequence of trees

with computable rank function (Tn)n∈ω such that for all n,

Tn '
{
Aα if n ∈ S
Eα otherwise

2. If α is a limit ordinal, there is a uniformly computable sequence of trees (Tn)n∈ω

with computable rank function such that for all n,

Tn '
{
Lα
∞ if n ∈ S
Lα

k for some k otherwise

The proof given here is due to Hirschfeldt and White [35], although the result

was certainly known before them. For instance, the result was known to Ash [4] and

to Goncharov, and probably many others. The proof by Hirschfeldt and White is

used here because the trees produced are easy to work with. In this proof, we work

below some (large) computable ordinal, and identify computable ordinals with their

notations.

Proof. We will first describe the trees Aα, Eα, Lα
∞, and Lα

n, and then indicate

how to construct Tn to reflect some α, some n, and some Π0
α predicate. First, take

A1 to be the tree consisting of a root with a single successor, and E1 to be a root

with infinitely many successors. We can define the rest of the trees inductively. For

α = β + 2, we will define Aα to be a root node with infinitely many copies of Eα+1

attached, and Eα+2 to be a root node with infinitely many copies of each of Eα+1

and Aα+1 attached.

For a limit ordinal α, let (γn)n∈ω be a fundamental sequence for α consisting

only of successor ordinals. Since we will define Aλ+1 and Eλ+1 only in terms of trees

for lower ordinals, there is no danger of circularity. We define Lα
∞ to be a root with

a copy of Aγn attached for each n. The tree Lα
k will be the tree consisting of a root

with a copy of Aγn attached for each n ≤ k and a copy of Eγn for each n > k.
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Finally, we define the trees for α = λ + 1 where λ is a limit ordinal. The tree

Aα consists of a root with infinitely many copies of Lλ
n attached for each n ∈ ω.

The tree Eα is a root with infinitely many copies of Lλ
n for each n ∈ ω and infinitely

many copies of Lλ
∞ attached.

We will now show that there are sequences (Tn)n∈ω as claimed. We will proceed

by induction on α. For α = 1, suppose S ∈ Π0
α is defined by ∀xR(x, n). Then the

tree Tn,0 will consist of a root labeled with 1, with one successor labeled with 0. At

later stages, Tn,s will consist of Tn,s−1 with one successor with label 0 to the root

added for each stage t < s such that ∃x < tR(x, n). Define T̃n =
⋃
s∈ω

Tn,s, and as

usual apply padding to get a structure Tn with a computable universe. If n ∈ S, it

is clear that we will never add a second successor to the root, and if n /∈ S, we will

have seen the counterexample by some stage ŝ and will add more new successors in

each stage thereafter.

For α = β + 2, say that S is defined by ∀xR(x, n) where R is a Σ0
β+1 predi-

cate. Now its complement, R(x, n) is a Π0
β+1 predicate, so by induction, there is a

uniformly computable sequence of trees

Uβ+1,x,n '

 Aβ+1 if R(x, n)

Eβ+1 otherwise

Note that the notation of β + 1 is merely for bookkeeping and does not effect the

isomorphism type of the tree. Now the tree Tn will consist of a root node with

infinitely many copies of Eβ+1 attached, as well as infinitely many copies of Uβ+1,x,n

for each x ∈ ω. Now if n ∈ S, then for no x will R(x, n) hold, so Tn consists of a

root with infinitely many successors, each isomorphic to Eβ+1. If n /∈ S, then for

some x̂ we have R(x, n), so all of the copies of Uβ+1,x,n will be isomorphic to Aβ+1,

so Tn ' Eα

For α a limit ordinal, say that S is defined as a computably enumerable con-
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junction of all Rk(n) where Rk is a Π0
γk

predicate. Recall that γk was a successor

ordinal for all k. We define the predicate

C(m,n) =
∨

k≤m

Rk(n)

and since this is a Π0
γm

predicate, we have, by induction, a sequence of trees

Uγm,m,n '

 Aγm if C(m,n)

Eγm otherwise

So we define Tn to be the tree consisting of a root node with a single copy of Uγm,m,n

attached for each m ∈ ω. Then if n ∈ S, then all of the Rk(n) hold, so all of the

C(m,n) hold, and so Tn is isomorphic to Lα
∞. Otherwise, for some m̂, we have

Rm̂(n) fails, so for all m > m̂ the predicate C(m,n) also fails, so Tn ' Lα
m̂−1.

Finally, we consider α = λ + 1 for some limit ordinal λ. Say S is defined by

∀xR(x, n) where R(x, n) is Σ0
λ. Again we use R to denote the complement. By

induction, there is a uniformly computable sequence of trees

Uλ,x,n '

 Lλ
∞ if R(x, n)

Lλ
k for some k otherwise

Now we let Tn be a tree consisting of a root labeled α+1 with infinitely many copies

of Lλ
m attached for each m ∈ ω, as well as infinitely many copies of Uλ,x,n for each

x ∈ ω. Again, the isomorphism type of Tn is as claimed.

With this result in hand, we can proceed to prove something about the complex-

ity of the isomorphism problem for computable infinite rank torsion-free Abelian

groups. Now for each computable ordinal α, and for each Π0
α set S, there is a

uniformly computable sequence of trees (Tn)n∈ω with uniformly computable rank

functions, which witness that Eα, Aα, and Lα
∞ have the appropriate index set com-

plexity.
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Proposition 2.4.7. If K is the class of computable infinite rank torsion-free Abelian

groups, then there is no computable ordinal α such that E(K) is Π0
α within K.

Proof. For each of the trees T we have just constructed, we will produce a

corresponding computable group G(T ). This construction of G(T ) is entirely due

to Hjorth. Fix a computable ordinal α, and fix computable sequences of primes,

all distinct, {pβ}0≤β≤α, {q̂γ,β}γ<β≤α, and {p̂γ,β}γ<β≤α. Let S be a Π0
α set, and fix

(Tn)n∈ω with their rank functions as in Proposition 2.4.6.

Given a computable tree T , we will now form the labeled graph (VT , ET , fT ).

We will suppress the dependence on T in the notation unless confusion is likely.

Let V consist of all finite sequences 〈A1, . . . , Am〉 such that Ai is a node in T and

rk(Ai) < rk(Ai+1). These are the vertices of the graph. Define the edge set, En,

to consist of all unordered pairs {〈A1, . . . , Am〉, 〈A1, . . . , Am, Am+1〉} where both

members of the pair are in V . Now we will color both the vertices and the edges of

the graph with primes. Define the function f so that

f(〈A1, . . . , Am〉) = pβ where rk(Am) = β

and so that

f({〈A1, . . . , Am〉, 〈A1, . . . , Am, Am+1〉}) =



q̂γ,β if rk(Am) = β,

rk(Am+1) = γ,

and Am+1 is a

successor of Am

p̂γ,β if rk(Am) = β,

rk(Am+1) = γ,

and Am+1 is not a

successor of Am

From this graph, we can now produce a group, G(T ). Consider first the set of all
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finite formal sums
∑

v∈V 0

qvv where V 0 ⊆ V and qv ∈ Q. This is clearly a torsion-free

Abelian group of infinite rank, with the obvious addition. We define G(T ) to be the

subgroup consisting of all elements of the form

∑
v∈V 0

kvv

f(v)lv
+

∑
{v,w}∈E0

n{v,w}(v + w)

f({v, w})m{v,w}

where V 0 ⊂ V and E0 ⊂ E are both finite, kv, n{v,w} ∈ Z, and lv,m{v,w} ∈ N.

Roughly, the member of the group which consists of 1v where v is a vertex of

the graph will represent that vertex, (v + w) will represent the edge {v, w}, and

we can calculate f by measuring the powers of various primes by which elements

are divisible. This is the reason for including both p̂ and q̂ in the definition of the

graph, so that we can identify when there is an edge, even if it does not represent a

successor.

Since all of these constructions are computable from an index for the tree with

its rank function, we can produce a uniformly computable sequence of groups

Gn = G(Tn). We will now show that if α is a successor ordinal, Gn ' G(Aα) if

and only if n ∈ S, and if α is a limit ordinal, Gn ' G(L∞α ) if and only if n ∈ S. For

this purpose, it suffices to establish the following lemma.

Lemma 2.4.8. Let T 1 and T 2 be trees. Then T 1 ' T 2 if and only if G(T 1) ' G(T 2).

Proof. Clearly an isomorphism of trees amounts to a renaming of the nodes of

the tree, and thus to a renaming of the elements of vertices of the graph, and induces

an isomorphism of labeled graphs. This in turn induces an isomorphism of groups.

The converse, as usual, is more difficult. We will prove it by constructing (not

necessarily effectively) a reasonably canonical function π which will recover the tree

from the group. In the definition that follows, we will define the term “β-good”

just as Hjorth did, to refer roughly to elements in the group which will play the role
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of nodes in the reconstructed tree, and the function π, which will reconstruct the

original tree.

Definition 2.4.9. We define the notion of β-good and the function

π : {x ∈ G(T )|x is β-good for some β} → Labeled Trees

by induction on β.

1. An element g ∈ G(T ) is said to be 0-good if and only if it is divisible by all

powers of p0. For any 0-good g, we define π(g) to be the labeled tree consisting

of one node with a marker rg.

2. An element g is said to be β-good for β > 0 if and only if g is divisible by

all powers of pβ and for any γ < β and for any γ-good element h, there is

h′ ∈ G(T ) such that π(h) ' π(h′) (as unlabeled trees) and one of the following

holds:

(a) (g + h′) is divisible by all powers of q̂γ,β

(b) (g + h′) is divisible by all powers of p̂γ,β

For any β-good g, we define π(g) to be a tree consisting of a node labeled with

rg having, for each γ < β and each γ-good element h with (h+ g) divisible by

all powers of q̂γ,β, a successor which is the root (labeled rh) of the tree π(h).

By this we mean that the entire tree π(h) is included, with its root attached at

the right place.

The remainder of the section will prove that from the isomorphism type of G(T )

we can recover the tree T . This part of the argument will be different from Hjorth’s.

The following statement is the correct form of the correspondence between tree nodes

and β-good elements which makes the definition worthwhile.
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Lemma 2.4.10. An element g ∈ G(T ) is β-good if and only if there is

v = 〈A1, . . . , Am〉 ∈ V ⊆ G(T )

and s ∈ Q such that g = sv and such that rk(Am) = β.

Proof. For β = 0, this follows clearly from the definitions of the group and

of β-good. Suppose that the lemma is established for γ < β. Suppose there are

s and v as stated. Then clearly, by the definition of the group, g is divisible by

all powers of pβ. Also, if γ < β and h is γ-good, then there are s1, v1 such that

s1 ∈ Q and v1 = 〈B1, . . . , Bm1〉 such that h = s1v1 and rk(Bm1) = γ. Now clearly

v0 = 〈A1, . . . Am, Bm1〉 is a member of V , since γ < β. Note that π(v0) = π(v1).

Also, sv+ sv0 is divisible by all powers of q̂γ,β or p̂γ,β according to whether Bm+1 is

a successor of Am. Thus, g is β-good.

Conversely, suppose g is β-good. Then g is divisible by all powers of pβ. But by

the definition of the group, the only such elements are the rational multiples of the

vertices ending in nodes of rank β.

Thus, given a group isomorphic to G(T ), we can recover something like the nodes

of the tree purely from the group structure. Now an easy corollary allows us to find

the element on which π will tell us the whole tree T .

Corollary 2.4.11. Suppose all elements of T , including the root, are of rank at

most α. Let x and y be α-good elements of G(T ). Then there is a rational number

s such that x = sy.

Proof. Apply the lemma to x and y to get x = s1v1 and y = s2v2. There is only

one vertex ending in a node of rank α — namely the root — so we have v1 = v2.

We will now prove that the function π does what was claimed.

Lemma 2.4.12. Let x ∈ G(T ) be β-good, with x = sv = s〈A1, . . . , Am〉, as in

Lemma 2.4.10. Then π(x) is isomorphic to the substructure of T consisting only of

nodes which extend Am.
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Proof. We proceed by induction on β. For β = 0, the result is obvious. Suppose

that the lemma is established for γ < β. Let {Bi}i∈I be the successors of Am in

T , with rk(Bi) = γi < β, and define wi = 〈A1, . . . , Am, B
i〉. Now clearly v + wi

is divisible by all powers of q̂γi,β, and so is sv + swi. By the inductive assumption,

π(swi) is isomorphic to the substructure consisting only of nodes which extend Bi,

so π(x) contains an isomorphic copy of the tree below Am in T .

To finish, it suffices to show that if rh is a successor of rx in π(x), then h = swi

for some i. From the definition of π, we see that h is γ-good for some γ < β. We

apply Lemma 2.4.10 to see h = s1z for s1 ∈ Q and z ∈ V . Since (h+ x) is divisible

by all powers of q̂γ,β, we know that {v, z} ∈ E and that if z =< C1, . . . , Cm1 > then

m1 = m+ 1, that for all i ≤ m we have Ci = Ai, and that Cm1 is a successor of Am

in T . Let Cm1 = Bî. Then h = s1wi, as desired.

Now it is clear that taking β = α in this lemma, we have established Lemma 2.4.8.

Since we can complete this construction for any computable ordinal α, to show

that E(K) is not Π0
α in K, it suffices to show that for some α1 > α we can compute

any Π0
α1

set from E(K).

If the Friedman–Stanley conjecture is true, it seems likely that if K is the class

of torsion-free Abelian groups of infinite rank, then E(K) is m-complete Σ1
1. If this

completeness statement is true, then there must be a torsion-free Abelian group of

non-computable Scott rank. Since for each computable ordinal α there is a com-

putable Lω1ω sentence which is true exactly of torsion-free Abelian groups of Scott

rank at least α, we may conclude from Proposition 2.4.7, by Barwise compactness,

that there is such a group with non-computable Scott rank. This fact may be thus

be taken as evidence in favor of the Friedman-Stanley conjecture.
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CHAPTER 3

ALGEBRAIC AND ALGORITHMIC PROPERTIES OF FIELDS

Some of the first work in computable model theory centered on computable

fields. Notable advances were the work of Frölich and Sheperdson [26], Rabin [60]

and Metakides and Nerode [52]. In more recent years, much of the work in com-

putable structure theory has been devoted to developing general theory, and the

easier examples with which to do this have tended to be graphs, linear orderings,

Boolean algebras, vector spaces, and Abelian groups.

Today, model theory proper — as opposed to computable model theory — studies

various classes of fields as some of its most productive examples (see, for instance,

[34]), largely due to important applications of model theory to algebraic geometry

and number theory. At the same time, algebraic geometers have taken an increasing

interest in algorithmic aspects of the subject (see, for instance, [19]). Some recent

work in the computable model theory of rings and fields — centered mainly on the

existence of algorithms for ideal membership, splitting, and similar properties — is

surveyed in a paper of Stoltenberg-Hansen and Tucker [69].

In this chapter, we will apply some of the techniques of the previous section to

certain classes of fields. We will demonstrate the existence of fields of arbitrary Tur-

ing degree, and of fields with no Turing degree. We will show that the isomorphism

problem for arbitrary fields of any fixed characteristic, and for real closed fields, is

Σ1
1 complete. We will also calculate the complexity of the isomorphism problem for
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Archimedean real closed fields or the models of each of a certain class of strongly

minimal theories, and the corresponding index sets.

The results of Section 3.1 are a part of a joint paper of the present author with

Harizanov and Shlapentokh [17]. Those of Sections 3.3, and 3.5 are reported in [12].

3.1 Degrees of Fields

The isomorphism type of a field has something to say about what sorts of algo-

rithmic structure it will admit. That is, the isomorphism type of a fieldA determines

a set of Turing degrees DI(A) in which A has copies.

One straightforward way in which to associate computability-theoretic informa-

tion with algebraic information is to find a Turing degree that corresponds in some

natural way to the isomorphism type of a given structure. A first attempt at this,

suggested by Jochusch and explored by Richter [63], was to say that the degree of

A is the least Turing degree in which A has some copy. However, Richter showed

that not every structure has a degree in this sense.

Theorem 3.1.1 (Richter [63]). For any Turing degree d, there is an Abelian

torsion group of degree d. Moreover, there is an Abelian torsion group with no

degree.

A second approach, also suggested by Jockusch, is the so-called jump degree of

a structure. For the αth jump degree of a structure A, we take the least element

among the αth jumps of degrees of copies of A. Again, it is not certain that a given

structure will have αth jump degree.

Theorem 3.1.2 (Oates [59]). For any α ≤ ω, there is an Abelian p-group Gα such

that Gα has αth jump degree, but does not have βth jump degree for any β < α.

As we have seen, then, there are certain deficiencies to associating a particular

degree to a structure. It is often more informative to associate a set of degrees
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with a structure. For a fixed countable structure A, we write DI(A) for the set

of Turing degrees d such that A has a copy of degree d. Knight showed that in

all cases except the well-understood “trivial” case, this set must be closed upwards

[42]. Richter’s results stated above indicate that for some A, the set DI(A) does

not have a least element. A general survey of properties of DI(A) may be found in

a paper by Knight [43]. In the present paper, examples will be given of particular

kinds of structures A in which DI(A) has prescribed properties.

After proving the results of this section, the present author became aware of other

work by Harizanov and Shlapentokh which proves the same results, in addition to

some others. The united project will be reported in [17].

Theorem 3.1.3. Let S ⊆ ω. Then there exists a field AS such that DI(AS) is

exactly the set of degrees that compute enumerations of S.

Proof. The proof will generally follow the method of Richter [63]. Let Cn desig-

nate the nth cyclotomic polynomial, and let ζn be a computable sequence such that

ζn is a primitive pnth root of unity, where pn is the nth prime. Let A be the field

Q({ζn|n ∈ S}). Clearly, any copy of AS computes an enumeration of S by simply

looking to see which of the relevant roots appears.

Lemma 3.1.4. Let U ⊆ ω, such that S is c.e. in U . Then there is F ' AS such

that F ≤T U .

Proof. Let A∗ be a computable prime algebraically closed field of characteristic

0. The set {ζn|n ∈ S} is a U -c.e. subset of A∗, and so is the least subfield of

A∗ containing this set. We can use padding to produce a computable copy of this

structure.

Lemma 3.1.5. The field AS is not trivial.
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Proof. The result is obvious, but a proof is included here for completeness. Let

U be a finite subset of AS. If it is empty, take f : ω → ω to be the permutation

which exchanges 1AS
and 0AS

and fixes all other elements. Otherwise, consider some

x ∈ U . Now U can contain only finitely many of x, x + x, x + x + x, . . . , so let x̃

be the first such element which is not contained in U . Let f be the permutation of

ω which exchanges x̃ + x and x̃ and fixes all other elements. In either case, f is a

permutation fixing all elements of U which is not an automorphism of AS.

Corollary 3.1.6. For any set S ⊆ ω, there is a field A!
S such that

DI(A!
S) = {d|S ≤T d}.

Proof. Let A!
S = AS⊕S̄. The result follows.

3.2 The Isomorphism Problem for Computable Fields

Intuition and experience tell us that the class of computable fields is quite com-

plicated, perhaps so much that no classification could ever capture it. Previous work

by Kudinov focused on existence of a computable “Friedberg enumeration”.

Definition 3.2.1. A Friedberg enumeration of K up to isomorphism is a list of

numbers, each of which is an index for a member of K, such that each isomorphism

type from K occurs exactly once in the list. The enumeration is said to be computable

(or hyperarithmetical), when this list is.

Goncharov and Knight had asked whether there was a computable Friedberg

enumeration up to isomorphism of computable fields of fixed characteristic. Kudinov

announced the following result:

Theorem 3.2.2 (Kudinov). There is no computable Friedberg enumeration of the

computable fields of characteristic 0.
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Knowing the complexity of the isomorphism problem for a class can tell us about

the existence of Friedberg enumerations. The following is in [31]:

Proposition 3.2.3 (Goncharov-Knight). If I(K) is hyperarithmetical and there

is a hyperarithmetical Friedberg enumeration of computable members of K up to

isomorphism, then E(K) is hyperarithmetical.

The idea of the proof is that if E(K) is Σ1
1 (which it must always be) and there

is a hyperarithmetical Friedberg enumeration of K up to isomorphism, then E(K)

is also Π1
1.

We can prove the following:

Theorem 3.2.4. When K is the class of computable fields of some fixed character-

istic, E(K) is m-complete Σ1
1 within K.

Then we have the following strengthening of Kudinov’s result:

Corollary 3.2.5. For any p, prime or zero, there is no hyperarithmetical Friedberg

enumeration up to isomorphism of computable fields of characteristic p.

The proof of Theorem 3.2.4 is by encoding graphs in fields. Friedman and Stanley

[25] gave a method for doing this in a way which is well-defined and one-to-one on

isomorphism types. What is needed beyond this is to show that if we start with a

computable graph, we get a computable field. It is well known that the isomorphism

problem for undirected graphs is Σ1
1 complete (see [54], [57], or [61] for a proof.

Actually, Theorem 3.3.1 implies the characteristic 0 case of Theorem 3.2.4. This

proof is certainly simpler. However, the proof in this section — including some

points not fully described here — covers positive characteristic and stresses the

relationship with Borel complexity. Also, it offers an opportunity to simplify, at

least for characteristic 0, the difficult argument of the Friedman–Stanley paper.
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3.2.1 Borel Completeness for Fields: The Friedman-Stanley Embedding

In 1989, Friedman and Stanley [25] showed that the class of countable fields of

characteristic 0 is Borel complete, the maximal level of complexity in their sense.

They proved this by constructing a Borel embedding from graphs into fields (a

Borel embedding is a Borel measurable function which is well-defined and injective

on isomorphism types).

Friedman and Stanley assume that they are given a graph whose connectedness

relation is R. From this they construct a field. We will use F to indicate the

algebraic closure of F , and (S) for the smallest field containing S.

Consider {ei}i∈ω, algebraically independent over Q. Let F0 be the composite of

all of the (Q(ei)), and define the extension

L(R) = F0({
√
ei + ej|iRj})

To deal with positive characteristic, we could replace Q with Fp and the square root

with some qth root where q is relatively prime to p, both in this construction and

throughout the following argument. This function L : Graphs → Fields is both a

Borel measurable function under the usual product topology [36], and well-defined

on isomorphism classes. The difficulty is in showing that

Proposition 3.2.6. L is injective on isomorphism classes.

Proof. In particular, it is difficult to show that
√
em + en cannot be expressed as

a rational function of the various ei and
√
ej + ek where {j, k} 6= {m,n}. I will give

here only the argument for characteristic 0, and will refer the reader to Shapiro’s

paper [65] for the more general argument. The main difficulties appear when we

consider only the composite of (Q(ei)) and (Q(ej)) (where i 6= j), and ask whether it

contains
√
ei + ej. I am grateful to W. Dwyer for the proof of the following lemma.

A different proof is given in the paper by Friedman and Stanley [25], and there are
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others still by Abhyankar [1] and Shapiro [65]. In any case, proving the following

lemma in positive characteristic is quite difficult.

Lemma 3.2.7.
√
ei + ej /∈ (Q(ei) ∪Q(ej)), where i 6= j.

Proof. A polynomial p of degree n in (Q(ei)) gives a branched n-sheeted covering

where the fiber over any point a in (Q(ei)) is the set of roots of p = a, and branch

points represent the multiple roots (a Riemann surface). A continuous function to

find the roots of the polynomial may be defined on this covering with branch points

deleted, but not in any neighborhood including the branch points themselves. We

first consider the possibility

√
ei + ej =

n∑
k=1

akbk

where ak is algebraic over Q(ei), and bk is algebraic over Q(ej). That is,
n∑

k=1

akbk

gives one of the square roots.

Now for simplicity we can say that there is a single polynomial pi(Z) over Q(ei)

of which all the ak are roots, and similarly one pj over Q(ej) of which all the bk are

roots. We can view the composite field (Q(ei) ∪ Q(ej)) as Q(ei) × Q(ej). Since pi

and pj will each have only finitely many multiple roots and at most finitely many

points at which the coefficients are not defined, we can define continuous functions

giving ak and bk on the relevant covering spaces of

Q(ei) \ {these finitely many “bad points” of pi, say bt}

and

Q(et) \ {finitely many “bad points” of pj, say ft}

Thus the expression
n∑

k=1

akbk can be continuously defined on the relevant covering

space of Q(ei) \ {bt}×Q(ej) \ {ft}). We can view this as a plane with finitely many
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vertical and horizontal lines deleted. Since the multiple roots of Z2 = ei+ej lie along

the antidiagonal ei + ej = 0, there is clearly a neighborhood in which we can define
n∑

k=1

akbk as a continuous function, but which contains points of the antidiagonal,

so we cannot define
√
ei + ej as a continuous function. Thus the two cannot be

equal. To make the difference more transparent, we could say that anywhere on this

neighborhood we stay on the same branch of the right-hand side, but move from

one branch to another on the left-hand side.

In the more general case that

√
ei + ej =

n∑
k=1

akbk

n∑
k=1

ckdk

we could simply write

(
√
ei + ej)(

n∑
k=1

ckdk) =
n∑

k=1

akbk

and again the right-hand side can be defined continuously where the left-hand side

cannot.

There does not seem to be a way to modify this proof to cover the positive

characteristic case. There is no apparent topology to replace the metric topology

on the affine space, which we used here in declaring functions continuous or not.

Also, while we could talk about the number of values of the “root function” and the

right-hand-side “function,” there are points in the proof at which it is not obvious

that values will not collapse.

If we simply add more ei, then more dimensions are added to the picture, but

nothing really changes, since the diagonal for
√
ei + ej is still in the same plane,

and we can still find a neighborhood containing some point of it which contains no

point of any line parallel to an axis. The next real problem comes up when we allow

some square roots to be added. To simplify the task of visualization, and also to
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simplify the notation necessary, we will restrict the geometrical argument to a space

whose F0-dimension is the least possible to account for all ei used in the expression.

This allows us to refer to codimension, allowing an economical way to describe the

higher-dimensional generalizations of the fact that lines intersect in points, planes

intersect in lines, and so forth.

Lemma 3.2.8. Let F0 be as above. Then√
ei + ej /∈ F0(

√
ej + ek)

where i, j, and k are distinct.

Proof. Suppose not. First we will suppose again the simpler case where√
ei + ej =

n∑
s=1

ms∏
t=1

ast

where each ast is algebraic over a single eq or is fst
√
ej + ek for some fst ∈ F0.

Since there are only a finite number of such eq involved in the expression, let us

collect, as before, polynomials pq, one to account for all ast algebraic over a single

eq. The multiple roots of pq may be collected, as before, as {bqγ}. Those used in

the composition of fst may be collected as {dstγ}. The multiple roots corresponding

to
√
ei + ej still form the diagonal (now a hyperplane, i.e. an algebraic surface of

codimension 1) ei+ej = 0. Let x̂ be a point of ei+ej = 0, and let N be a ball around

it of positive radius. Use Mδ to denote the (finitely many) hyperplanes Xq = bqγ,

et = dstγ, and ej + ek = 0. Now M c
δ (the complement of Mδ) is open, so N ∩ (

⋂
δ

Mδ)

is a neighborhood containing a point of ei + ej = 0 and no point of any Mδ. Thus,

there is a neighborhood in which we stay on a single branch of the right-hand side

of the supposed equation, but cross a branch point of the left hand side.

Just as before, the extension to the more general case,

√
ei + ej =

n∑
s=1

ms∏
t=1

ast

n∑
s=1

ms∏
t=1

bst
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is quite easy. We clear the denominator and still have regions which are entirely

fine for the right side of the equation but that the left finds unmanageable.

Alternately, we could consider a homomorphism

F0(
√
ej + ek) → F0(

√
ej + ek)

which sends ek 7→ 0 but which is the identity on Q∪{e`}` 6=k. If the lemma failed, this

homomorphism would show that
√
ei + ej ∈ F0, contrary to the previous lemma. A

similar alternate proof is possible for the following lemma.

Similarly, one can establish

Lemma 3.2.9. Let F0 be as above. Then
√
ei + ej /∈ F0({

√
em + en|{m,n} 6= {i, j}}).

Proof. Suppose that the lemma fails. Then we suppose

√
ei + ej =

n∑
s=1

ms∏
t=1

ast

where each ast is algebraic over a single eq or is fst

√
en + em for some fst ∈ F0

and some {m,n} 6= {i, j}. Acting just as before, we denote by pq the polynomial

accounting for all ast which are roots of some polynomial over eq. The left-hand

side of the equation still gives us multiple roots along the hyperplane ei + ej = 0,

the roots of the pq still form hyperplanes parallel to the axes, just as before. The

only difference from the previous case is that there are more hyperplanes of diagonal

type (em + en = 0), but there is still a neighborhood in which the right side of the

equation works, and the left does not. By this point, the usual extension to the

more general form of a member of

F0({
√
em + en|{m,n} 6= {i, j}})

is obvious.

We will need an additional fact. If two fields of this kind are isomorphic, the

isomorphism will move ei to something interalgebraic with some ej, since they are
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the elements whose algebraic closure is included. The change of ei to ej is clearly

tolerable, since it merely corresponds to a permutation of the names of the vertices

of a graph. However, we need to verify that the isomorphism does not foul up

information on the connectedness relation.

Lemma 3.2.10. Let A ∼ B if and only if Q(A) = Q(B). If e ∼ ei and c ∼ ej then
√
e+ c /∈ (Q(ei) ∪Q(ej)).

Proof. The proof of this lemma is trivial. If
√
e+ c ∈ (Q(ei) ∪Q(ej)), then it is

also in the (exactly equal) set (Q(e)∪Q(c)), in contradiction to the previous lemma.

Lemma 3.2.11. If ci ∼ ei for all i, then

√
ci + cj /∈ F0({

√
em + en|{m,n} 6= {i, j}})

Proof. This proof is an almost equally obvious extension of earlier results. Let

F1 denote the composite field of all the Q(ci). The field

F0({
√
em + en|{m,n} 6= {i, j}})

is equal to the field

F1({
√
em + en|{m,n} 6= {i, j}})

We should note that each ei is the root of some polynomial over ci. Now suppose

√
ci + cj =

n∑
s=1

ms∏
t=1

ast

where each ast is algebraic over a single ci or is fst

√
em + en for some fst ∈ F1

and some {m,n} 6= {i, j}. Let pq again denote the polynomial accounting for all

ast algebraic over cq. The left-hand side still gives the same diagonal hyperplane

ci + cj = 0. On the right-hand side, we have a finite union of hyperplanes parallel to
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the axes (the multiple roots of pq), and also some more exotic hypersurfaces. These

hypersurfaces are those of the form em + en = 0. However, these are not equal to

ci + cj = 0, so for each such hypersurface P (of only finitely many) there is some

neighborhood containing a point of ci + cj = 0 but no point of P . Thus, we can

still find the necessary neighborhood in which the right-hand side of the equation is

continuous and the left-hand side is not. The more general element works as always.

We can now prove Proposition 3.2.6. Suppose that R and S are two graphs,

and that L(R) ' L(S). Now by this isomorphism, each ei ∈ L(R) is mapped

to some ci ∼ ej ∈ L(S). Certainly if nRm then
√
en + em ∈ L(R) and thus

√
cn + cm ∈ L(S). By the last lemma, if cn ∼ ep and cM ∼ eq, the last

statement implies that
√
ep + eq ∈ L(S), so by the previous lemma pSq (since

√
ep + eq /∈ F0({

√
em + en|{m,n} 6= {i, j}}) (that is, ep + eq only had a square root

if we put one in to account for a connection of p and q in S). Similarly, we can argue

that if nSm, then the corresponding elements are connected in R. Thus R ' S.

3.2.2 Computable Construction of the Friedman-Stanley Embedding

It will turn out that a similar embedding produces computable fields from com-

putable graphs, amounting to a reduction E(Graphs) ≤1 E(Fields). This will com-

plete the proof. The only real modification necessary is to guarantee that if we start

with a computable graph, we end up with a computable field.

We should note that since the class of fields of given characteristic has
∏0

2 axioms

(stating that it is a commutative ring, plus the condition that for any element there

exists a multiplicative inverse), I(K) is
∏0

2. Given a computable directed graph

with connectedness relation R, consider {ei}i∈ω, algebraically independent over Q.

Let G0 be a computable field isomorphic to the composite of all of the Q(ei), and
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let M(R) be the extension G0({
√
ei + ej|iRj}). It remains to verify

Proposition 3.2.12. Given a graph R we get a field F (G) computable relative to

G.

Proof. Consider the language of fields, plus countably many constants ei, with

the theory of algebraically closed fields of characteristic 0 and the sentences stating

that the ei are algebraically independent. This theory is complete and decidable

(since the theory of algebraically closed fields alone proves quantifier elimination),

and so it has a computable model. Call this computable model G.

Once we have G, there is a c.e. G∗
0 ⊆ G which contains exactly those members of

G which are algebraic over a single ei. Further, there is a c.e. R∗ ⊆ G consisting of

exactly {√ei + ej|iRj}. With these two sets, we can enumerate the elements of the

smallest subfield containing G∗
0 ∪ R∗, and we will call this F ∗ ⊆ G. Note that F ∗

has c.e. universe. Let idx(R) be the index of the function with which we enumerate

D(F ∗), and note that we can find it effectively in a uniform way from an index for

D(R). Now by padding, we can replace the c.e. field F ∗ by a field whose universe is

computable. It is also clear that an index for the function with which we enumerate

this field is effectively obtained from idx(R) in a uniform way. This completes the

proof both of the proposition and of Theorem 3.2.4 in the case of characteristic zero.

3.3 The Isomorphism Problem for Computable Real Closed Fields

Arbitrary fields, then, are quite complicated. On the other hand, many natural

classes of fields are more tangible, and might give better hope of classification.

K. Manders suggested the example of real closed fields, whose model theory is

reasonably well-behaved, but which is unstable. Recall that a real closed ordered

field is an ordered field satisfying the additional condition that each odd-degree
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polynomial has a root. When we add positive infinite elements we have a great deal

of freedom in the structure of the field.

Theorem 3.3.1. If K is the class of real closed ordered fields, then E(K) is Σ1
1

complete within K.

Proof. We will say that a � b exactly when a ≤ bn for some n ∈ ω. We say

that a ≈ b (a is comparable to b) if a � b and b � a. Notice that the ∼-classes of

positive elements form intervals. We will write a ≺ b if a � b but it is not the case

that b � a. The proof will depend on realizing an arbitrary computable linear order

as the order type of the comparability classes of infinite elements.

Lemma 3.3.2. Given a computable linear order L, there is a computable structure

R(L)∗ = (R̄,+, ·, 0, 1,≤, {ei}i∈L), an expansion of a real closed field, in which ei � ej

if and only if i ≤ j. Moreover, an index for R(L)∗ is computable from an index for

L.

Consider the language of ordered fields, plus infinitely many constants ei, with

the theory of real closed fields, and the sentences for each i stating that ei is greater

than any polynomial in {ej|j <L i}, and that all are greater than polynomials in 1.

This is a complete, decidable theory, and thus has a computable model G. There is

a c.e. subset R̃ ⊆ G containing exactly the elements algebraic over {ei}i∈ω. From an

index for L, we can effectively find an index i(L) for the function enumerating R̃.

Again we can pad to find an isomorphic structure R(L)∗ with computable universe,

as claimed. Let R(L) denote the reduct of R(L)∗ to the language of ordered fields.

We have encoded arbitrary linear orders into real closed fields, and all that

remains is to make sure that this operation is well-defined and injective on isomor-

phism types. The well-definedness is clear, since an isomorphism of linear orders

would just amount to a permutation of the labels for the ej. It is also clear that if
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h is an isomorphism h : R(L1) → R(L2), then for a, b ∈ R(L1), a � b if and only if

h(a) � h(b), but it requires some verification to see that for a in the comparability

class of some ei, h(a) must be in the comparability class of some ej. Once this is

shown, h will induce an isomorphism of orders h̃, where if h maps the class of ei to

that of ej, then h̃ : i 7→ j. I am grateful to L. van den Dries for suggesting the proof

of the following lemma.

Lemma 3.3.3. Let F be R(L) for some linear order L. Let C be a positive infinite

comparability class of elements of F . Then C is the comparability class of one of

the ei.

Proof. Suppose we have a real closed field K, and we add a single positive infinite

element x > K. Let K((eQ)) denote the set of formal series f =
∑
q∈Q

aqe
q, where

aq ∈ K and aq = 0 except for q in some well-ordered set. There is an isomorphism

rcl(K(x)) ' K((eQ)) mapping x 7→ e−1. Now suppose that y ∈ K((eQ)), and

y =
∑
q∈Q

bqe
q. Further, suppose that for all x ∈ K, we have y > x (that is, y is

an infinite element over K). Let q̂ be the least such that bq̂ 6= 0. We know that

q̂ < 0, since if q̂ ≥ 0, then y ≤ b0 + 1, but b0 + 1 ∈ K, giving a contradiction. Now

eq̂−1 > y; that is, (e−1)1−q̂ > y, so y ≈ t−1. Thus, rcl(K(x)) has exactly one more

comparability class than K.

Given this, the lemma is relatively easy. Using the previous paragraph as

an induction step, it is easy to show that for L a finite linear order, the lemma

holds. Further, since any element in R(L) is algebraic over finitely many ei,

R(L) =
⋃
I

rcl(R({ei}i∈I)) where I is a finite subset of L. This completes the proof

of both the lemma and the theorem.

Corollary 3.3.4. If K is the class of countable real closed ordered fields and K ′ is

a class of countable structures, then K ′ ≤B K (see Definition 4.2.1)
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It is also worthwhile to note that Theorem 3.3.1 implies the characteristic 0 case

of Theorem 3.2.4.

3.4 The Isomorphism Problem and Index Sets for Computable Models of Certain
Strongly Minimal Theories

In a recent paper of Goncharov, Harizanov, Laskowski, Lempp, and McCoy [30],

it was shown that in a certain sense it is impossible to code complicated sets into

countable models of certain uncountably categorical theories. The authors were

interested in coding the information into an individual model, and proved that this

was impossible for trivial strongly minimal theories (specifically, any model has a ∅′′-

decidable copy). The current section asks a similar question, but in a much different

sense. Inspired by the results of the previous section, we will demonstrate a sense

in which complicated information cannot be encoded in the class of computable

models.

Much depends on the work of Baldwin and Lachlan [8], Morley [53], and Marsh

[51]. Morley showed that any theory categorical in a single uncountable cardinal

was categorical in all uncountable cardinals. Baldwin and Lachlan showed that

such a theory must have either one or ℵ0 countable models, and Harrington [32] and

Khisamiev [40], working independently, showed that if the theory is decidable, then

all of its models have decidable copies.

Here we focus on the simplest such theories, the strongly minimal ones. A theory

is said to be strongly minimal if every subset of the model which is definable (with

parameters) is either finite or co-finite. We will seek to show that such theories not

only have tight control over their countable models, but also over the computable

ones. Marker’s book [50] is a helpful reference for much of the needed model-

theoretic background.

The isomorphism problem result of this section is a more general statement of
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analogous theorems for vector spaces and algebraically closed fields proved in [12].

The index set results are generalized from analogous results for vector spaces in joint

work of the present author with Harizanov, Knight, and S. Miller [16].

If we have an indexed set {ai}i∈ω and R ⊆ ω, then we will write āR for {ai|i ∈ R}.

We will also write P (S) for the algebraic closure of the set S.

Theorem 3.4.1. Let T be a strongly minimal theory with effective elimination of

quantifiers and some computable model, where acl(∅) is infinite. Suppose K is the

class of computable models of T . Then E(K) is m-complete Π0
3 within I(K).

Proof. It suffices that we can define the relation “dim(Ai) = dim(Aj)” by a Π0
3

statement. In what follows, when we have a sequence v1, . . . , vn, we will write v̂i

for the sequence with vi omitted, and if φ is a formula, we will understand φ(v̂i, z)

to mean φ(v1, . . . , vi−1, z, vi+1, . . . , vn). If M is a model of T , we can write that

b1, . . . , bn are independent members of M as the formula

n∧
i=1

∧
ψ(v, x)

m ∈ ω

∧([
∃x1, . . . , xm∀y

[
ψ(b̂i, y) →

m∨
j=1

xj = y

]]
→ ¬ψ(b̂i, bi)

)
.

We will call this conjunction In(b1, . . . , bn). Note that because of the effective quan-

tifier elimination, this is equivalent to a computable Π1 sentence.

Now to write that a model has dimension at least n, we would write the sentence

Dn = ∃x1, . . . , xnI(x1, . . . , xn)

which is Σ0
2. To define the isomorphism relation within K, we need only write∧

n∈ω

∧
Aa |= Dn ⇐⇒ Ab |= Dn

This condition is clearly Π0
3, and its restriction to the set of ordered pairs of indices

for models of T is clearly E(K), since it says that ϕ(a,Aa) and ϕ(a,Ab) have the

same dimension.
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Toward completeness, note that cof = {e|We is cofinite} is m-complete Σ0
3. We

will produce a uniformly computable sequence of models (An)n∈ω such that An has

dimension equal to |W n|. When this is accomplished, we will have reduced the

complement of cof to the index set of the infinite dimensional model of T . Let B be

a copy of ω on which we will build the structure An, and let f−1 = D−1 = ∅. We will

build An by giving a function mapping B to some substructure of A∗, an infinite-

dimensional model with distinguished computable basis {ai|i ∈ ω}. In particular,

An will be isomorphic via f to the substructure of A∗ with basis {ai|i /∈ Wn}.

We begin by defining our estimates for S = ω − Wn. Let S0 = ∅. At stage

s, if Ss−1 ⊆ ω − Wn,s−1, then we find the furst element x outside Wn,s and let

Ss = Ss−1 ∪ {x}. On the other hand, if Ss−1 * ω −Wn,s−1, then we find the least

r ∈ Ss ∩Wn,s and set Ss = Ss−1 ∩ {q|q < r}. Now to build An, we will proceed as

follows.

At each stage s where Ss−1 * Ss, we will have to collapse to a smaller model.

There are some elements in ran(fs−1) which should not be in ran(f). Let t be the

last stage less than s such that St ⊆ Ss. Now fs−1 maps some elements d̄ of B into

P (āSt)s, and some other elements c1, . . . , cj to P (āSs)s−P (āSt)s. Let δs(d̄, c1, . . . , cj)

be the conjunction of all elements of Ds−1. Now P (āSs−1) |= ∃x̄ δs(d̄, x̄), and so we

also have P (āSs) |= ∃x̄ δs(d̄, x̄). We run the enumeration until we see the witnesses

c̃1, . . . , c̃j such that P (āSs) |= δs(d̄, c̃1, . . . , c̃j). We now define fs so that fs ⊇ ft, so

that fs(ci) = c̃i, and so that dom(fs) includes the first s elements of B and ran(fs)

includes the first s elements of P (āSs).

Otherwise, no such collapse is necessary. We simply extend fs−1 to fs so that

dom(fs) includes the first s elements of B and ran(fs) includes the first s elements

of P (āSs).

In any case, we also extend Ds−1 to Ds by finding the first atomic sentence λ
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such that neither λ nor ¬λ is in Ds−1 but all constants used in λ are in dom(fs),

computing its truth value via fs, and recording the result in Ds.

A true stage is a stage s such that Ss ⊆ ω −Wn.

Lemma 3.4.2. There are infinitely many true stages.

Proof. Consider some non-true stage s. Suppose that r∗ is the least element of

Ss which is not in ω−Wn. There is some least stage t ≥ s at which r∗ ∈ Wn,t. Now

t+ 1 will be a true stage.

Let An be the structure with atomic diagram
⋃
s∈ω

Ds, and universe B. Let T be

the set of all true stages, and let f =
⋃

s∈T

fs. Now An is isomorphic to a substructure

of A∗ via f .

This has actually proved a first index set result.

Corollary 3.4.3. Let T be a strongly minimal theory with effective elimination of

quantifiers and a computable model, where acl(∅) is infinite, and let M be its infinite

dimensional computable model. Then if K is the class of computable models of T ,

then I(M) is m-complete Π0
3 within K.

We can also compute the complexities of the index sets for the other computable

models of T .

Theorem 3.4.4. Let T be a strongly minimal theory with effective elimination of

quantifiers and a computable prime model, where acl(∅) is infinite, and let M0 be

the prime model of T . If Kf is the class of computable finite-dimensional models of

T , then I(M0) is m-complete Π0
2 within Kf .

Proof. The complexity may be bounded using the methods of Theorem 3.4.1. In

particular, the copies of M0 are those models of T that satisfy the sentence

∀x1, x2 ¬I2(x1, x2).
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Toward completeness, let M0 ≺ M1 where M1 has dimension 1. Consider

an arbitrary Π0
2 set S = {n|∃∞x R(n, x)}. We will build a uniformly computable

sequence of structures (An)n∈ω such that

An '

 M0 if n ∈ S

M1 otherwise

We write n ∈ Ss if R(n, s) holds. In particular, n ∈ S if and only if there are

infinitely many stages s such that n ∈ Ss. We begin, as before, with B = ω, and

with f−1 = D−1 = ∅.

At stage s we will adjust the function f to conform to our changing beliefs about

whether n ∈ S. If we have n /∈ Ss, then we extend fs−1 so that dom(fs) includes

the first s elements of B and ran(fs) includes the first s elements of M1.

On the other hand, if we have n ∈ Ss, then we want to collapse the dimension

of the model we are building. Let t be the latest stage before s such that either

t = 0 or n /∈ St. Now fs−1 maps some elements d̄ of B into P (∅)s, and some other

elements c1, . . . , cj to P (a0)s − P (∅)s. Let δs(d̄, c1, . . . , cj) be the conjunction of all

elements of Ds−1. Now M1 |= ∃x̄ δs(d̄, x̄), and so we also have M0 |= ∃x̄ δs(d̄, x̄).

Let c̃1, . . . , c̃j be such that M0 |= δs(d̄, c̃1, . . . , c̃j). We can now adjust the map f so

that

fs(x) =

 c̃i if x = ci

ft(x) otherwise

so that fs extends ft.

In any case, we also find the first atomic sentence λ such that neither λ nor its

negation is in Ds−1, but all constants appearing in λ are in dom(fs). We compute

its truth value via fs, and add the result to Ds−1 to form Ds.

A true stage s is one in which if n ∈ S then n ∈ Ss and if n /∈ S then for any

t ≥ s we have n /∈ St. Note that if s ≤ s′ are true stages, then fs ⊆ fs′ . We define
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T to be the set of all true stages, and f =
⋃

s∈T

fs, and let An be the structure with

universe B whose atomic diagram is given by
⋃
s∈ω

Ds.

Now if n ∈ S, we will infinitely often see n ∈ Ss, so that An 'f M0. On the

other hand, if n /∈ S, then after some stage fs will always be copying M1 and

f : An 'M1.

Theorem 3.4.5. Let T be a strongly minimal theory with effective elimination of

quantifiers and a computable model, where acl(∅) is infinite, and let M be a com-

putable model of T which has finite dimension m > 0. If Kf is the class of finite

dimensional models of T , then I(M) is m-complete d-Σ0
2 within Kf .

Proof. Let Mm−1 ≺ Mm ≺ Mm+1, where Mk has dimension k. Again, the

bound comes from the methods of Theorem 3.4.1. The copies of M are those

models of T which satisfy the sentence Dm ∧ ¬Dm+1.

Toward completeness, let S = S1 − S2, where Si = ∃<∞x Ri(n, x) are arbitrary

Σ0
2 sets. We will construct a uniformly computable sequence of models (An)n∈ω so

that

An '


Mm if n ∈ S

Mm−1 if n /∈ S1

Mm+1 if n ∈ S1 ∩ S2

We begin, as usual, with B = ω and with f−1 = D−1 = ∅. We also set q−1 = m− 1.

We say that n ∈ Si,s if and only if we have ¬Ri(n, s). In particular, n ∈ Si if

and only if for sufficiently large s we have n ∈ Si,s.

At stage s, we will first define the target dimension ds. We set

ds =


m if n ∈ S1,s − S2,s

m− 1 if n /∈ S1,s

m+ 1 if n ∈ S1,s ∩ S2,s

.
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If ds−1 > ds, then we will collapse the dimension back to ds. Let t be the last

stage before s such that dt = ds and such that for all z between t and s, we have

dz ≥ dt. Now fs−1 maps some elements d̄ of B into P (ā{i|i<ds−1})s, and some other

elements c1, . . . , cj to P (ā{i|i<m+1})s − P (ā{i|i<ds−1})s. Let δs(d̄, c1, . . . , cj) be the

conjunction of all elements of Ds−1. Now Mm+1 |= ∃x̄ δs(d̄, x̄), and so we also have

Mds |= ∃x̄ δs(d̄, x̄). Let c̃1, . . . , c̃j be such that Mm−1 |= δs(d̄, c̃1, . . . , c̃j). We can

now adjust the map f so that

fs(x) =

 c̃i if x = ci

ft(x) otherwise

and so that dom(fs) contains the first s elements of B and ran(fs) contains the first s

elements of Mds . Thus, we will have fs ⊇ ft. Also, we find the first atomic sentence

λ such that neither λ nor its negation is in Ds−1, but all constants appearing in λ

are in dom(fs). We compute its truth value via fs, and add the result to Ds−1 to

form Ds.

We say that a stage s is a true stage if and only if for all t > s we will never

have dt < ds.

Lemma 3.4.6. There are infinitely many true stages.

Proof. Suppose n ∈ S1 ∩ S2. Then there is some t0 such that for t > t0 we will

have n ∈ S1,t ∩ S2,t, so that dt = m+ 1. Consequently, every t > t0 is a true stage.

If n /∈ S1, then for infinitely many s we will have n /∈ S1,s, so that for all such s

we will have ds = m− 1. Since dt ≥ m− 1 for all t, these s are true stages.

Finally, if n ∈ S, then there is some t1 such that for t > t1 we have n ∈ S1,t, but

there are infinitely many s such that n /∈ S2,s. Take t such that n /∈ S2,t but t > t1.

Now dt = m, and for s > t we will always have either ds = m or ds = m+1, so that

t is a true stage.
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Let An be the structure with universe B and with atomic diagram
⋃
s∈ω

Ds. It is

isomorphic to a substructure of Mm+1 via f =
⋃

s∈T

fs, where T is the set of all true

stages. It is clear that dim(An) will be what was claimed.

3.5 The Isomorphism Problem for Computable Archimedean Real Closed Fields

Since the proof of Theorem 3.3.1 used the non-Archimedean elements in a central

way, it is worthwhile to consider what happens when this possibility is removed. In

fact, things become much simpler.

Theorem 3.5.1. If K is the class of Archimedean real closed fields, then E(K) is

Π0
3 complete within K.

Proof. The class of real closed fields can be axiomatized by a computable in-

finitary Π2 sentence, as can the class of Archimedean real closed fields (by adding

the sentence that for each element x, some finite multiple of 1 is greater than x).

Archimedean real closed fields are classified simply by the cuts that are filled, so the

statement

∀x ∃x̂
∧
q∈Q

∧
[(Aa |= q ≤ x⇔ Ab |= q ≤ x̂)]∧

∀z ∃ẑ
∧
q∈Q

∧
[(Ab |= q ≤ z ⇔ Aa |= q ≤ ẑ)]

defines the relation Aa ' Ab, showing that it is, at worst, Π0
3.

Lemma 3.5.2. There exists a uniformly computable sequence (ai)i∈ω of real numbers

which are algebraically independent.

Proof. Lindemann’s theorem states (in one form) that if λ1, λ2, . . . , λk are al-

gebraic numbers linearly independent over the rationals, then eλ1 , . . . , eλk are alge-

braically independent [7]. Further, it is well known that the set {
√

2,
√

3,
√

5, . . . }
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is linearly independent (a proof may be found in [11]). Alternately, we could bypass

this technology and simply build the sequence by a priority argument.

Now consider the language (+, ·, 0, 1, (ai)i∈ω), and the theory consisting of the

axioms of real closed fields and the further axioms q < ai and q > ai. This is a

complete decidable theory, and so has a computable model A∗. The set of elements

of A∗ algebraic over the set of ai is c.e. and by padding we can find a computable

structure M = (M,+, ·, 0, 1,≤, (ai)i∈ω) where M is the real closure of (ai)i∈ω.

Toward the completeness part of the theorem, we will produce a uniformly

computable sequence (An)n∈ω such that An ' A∗ if and only if n /∈ cof . Let

D−1 = T−1 = f0 = ∅, and let B be an infinite computable set. If C ⊆ ω, then we

write RCFC for the theory of real closed fields with constants for {ai|i < |C|}, and

PC the computable prime model of RCFC within A∗.

We begin by defining our estimates for S = ω − Wn. Let S0 = ∅. At stage

s, if Ss−1 ⊆ ω − Wn,s−1, then we find the furst element x outside Wn,s and let

Ss = Ss−1 ∪ {x}. On the other hand, if Ss−1 * ω −Wn,s−1, then we find the least

r ∈ Ss ∩Wn,s and set Ss = Ss−1 ∩ {q|q < r}. Now to build An, we will proceed as

follows.

At each stage s where Ss−1 ⊆ Ss, extend fs−1 to fs so that its domain includes

the first s members of B and so that its range includes the first s members of PSs .

At each stage s where Ss−1 * Ss, we will have to collapse to a smaller model.

There are some elements in ran(fs−1) which should not be in ran(f). Let t be the

last stage less than s such that St ⊆ Ss. Now fs−1 maps some elements d̄ of B into

PSt,s, and some other elements c1, . . . , cj to PSs,s − PSt,s. Let δs(d̄, c1, . . . , cj) be the

conjunction of all elements of Ds−1. Now PSs |= ∃x̄ δs(d̄, x̄), and so we also have

PSt |= ∃x̄ δs(d̄, x̄). We run the enumeration until we see the witnesses c̃1, . . . , c̃j such

that PSt |= δs(d̄, c̃1, . . . , c̃j). We now define fs so that fs ⊇ ft, so that fs(ci) = c̃i,
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and so that dom(fs) includes the first s elements of B and ran(fs) includes the first

s elements of PSs .

Otherwise no such collpapse is necessary. We then simply extend fs−1 to fs

so that dom(fs) includes the first s elements of B and ran(fs) includes the first s

elements of PSs .

In any case, we also extend Ds−1 to Ds as follows. We find the first atomic

sentence λ such that neither λ nor ¬λ is in Ds−1 but all constants used in λ are in

dom(fs), compute its truth value via fs, and record the result in Ds.

A true stage is a stage s such that Ss ⊆ ω −Wn.

Lemma 3.5.3. There are infinitely many true stages.

Proof. Consider some non-true stage s. Suppose that r∗ is the least element of

Ss which is not in ω−Wn. There is some least stage t ≥ s at which r∗ ∈ Wn,t. Now

t+ 1 will be a true stage.

Let An be the structure with atomic diagram
⋃
s∈ω

Ds, and universe B. Let

f =
⋃

s∈T

fs, where T is the set of all true stages. Now An is isomorphic to a

substructure of A∗ via f .

Now An is isomorphic to the substructure of A∗ which is the real closure of āW̄n
.

Thus, An has elements filling the same cuts as the first |W̄n| elements of {ai|i ∈ ω}.

Consequently, An ' A∗ if and only if Wn is co-infinite.

3.6 Index Sets for Computable Archimedean Real Closed Fields

For previous classes of fields, it seems out of reach to completely describe the

complexity of the index sets of all possible models. On the other hand, we have

an idea of the structure of Archimedean real closed fields which is sufficient to give

such a treatment.
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The proof of Theorem 3.5.1 suggests that infinite transcendence degree is an

important aspect of the index set having maximal complexity. It remains to ask

whether any Archimedean real closed field with infinite transcendence degree be-

haves similarly, or whether the result is only true in some special fields that have

sequences like those guaranteed in Lemma 3.5.2. The results of the present section

are preliminary work of the present author with Harizanov, Knight, and S. Miller

which will be more fully reported in [16]

As it turns out, given an Archimedean ordered field A of infinite transcen-

dence degree and a Π0
3 set S, we can construct a uniformly computable sequence of

Archimedean real closed fields (An)n∈ω such that An ' A if and only if n ∈ S by

treating all cuts alike — real algebraic or not. Some will necessarily get filled and

others will be filled or not according to whether n ∈ ω, but we do not need to know

which is which.

Theorem 3.6.1. Let K be the class of computable Archimedean ordered fields, and

let A be a member of K. Assume A0 is a purely transcendental extension of Q and

that A is either a finite extension of A0 or its real closure.

1. If the transcendence degree of A is 0, we have that I(A) is m-complete Π0
2

within K.

2. If the transcendence degree of A is finite but greater than 0, we have that I(A)

is m-complete d-Σ0
2 within K.

3. If the transcendence degree of A is infinite we have that I(A) is m-complete

Π0
3 within K.

Question 3.6.2. Let A be a computable Archimedean ordered field of infinite tran-

scendence degree. Is there a uniformly computable sequence of algebraically indepen-

dent elements of A?
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Question 3.6.3. Suppose that A is an Archimedean ordered field which is not real

closed and is an infinite algebraic extension of A0, where A0 is as in Theorem 3.6.1.

What is the m-degree of I(A)?
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CHAPTER 4

FINITE STRUCTURES AND COMPARISONS

So far our attention has been restricted to infinite structures, and this is not

without reason. Since it is difficult to find anything about a finite structure that is

very far from being computable, it at first appears that computability theory is too

blunt a tool for any meaningful analysis of such structures.

In the first section of this chapter, we will give evidence in favor of this obvious

prejudice. Afterwards, though, we will see a method first proposed in joint work of

the present author with Cummins, Knight, and S. Miller [15], by which meaningful

and non-trivial comparisons can be made between classes of finite structures. More-

over, the method is also interesting when applied to classes of infinite structures,

and will find important application in Chapter 5 for calculating Scott ranks.

4.1 Index Sets of Finite Structures

It is well-known that any finite structure is determined up to isomorphism by

a relatively simple first-order sentence. The next theorem could be considered an

optimality result for that sentence. On the other hand, it is an analogue of the

index set results of Section 3.4, with finite sizes corresponding to finite dimensions.

In that sense, this result relates results like those of Section 3.4 to their “lower end.”

Theorem 4.1.1 (C.–Harizanov–Knight–S. Miller [16]). Let A be a finite struc-

ture for a language L, and let K be the class of finite structures for that language.
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1. If A is empty, then I(A) is m-complete Π0
1 within K.

2. If A has size ≥ 1, then I(A) is m-complete d-c.e. within K.

4.2 Comparing Classes of Structures

While the internal complexity of a single finite structure is rather severely

bounded, the external complexity — its situation within a class of similar struc-

tures — can still be quite complex. No one would say, for instance, that the class

of finite graphs is “simple.” In an earlier chapter, allusion was made to a method

of comparing classes of structures, which originated in a paper of Friedman and

Stanley.

Definition 4.2.1 (Friedman–Stanley [25]). View the set of structures in a fixed

language and with universe ω as a topological space via the product topology. Let K1

and K2 be classes of countable structures with the subspace topology. Then we say

K1 ≤B K2 if there is a Borel measurable function Φ : K1 → K2 which is well-defined

and 1-1 on isomorphism types.

Clearly if the classes of structures involved are countable, this definition is com-

pletely useless, since any function between countable sets is Borel measurable. This

fails to account, though, for the unreasonable effectiveness of proofs that K1 ≤B K2

in proving theorems about isomorphism problems for classes of computable struc-

tures, such as Theorems 3.2.4 and 3.3.1.

In an effort to explain this, the present author, Cummins, Knight, and S. Miller

proposed a definition of a different ordering, analogous to ≤B but based on enu-

meration reducibility which does give some information about these classes. This

definition is by no means the only reasonable analogy. However, it is a definition

that fairly reflects the situation of finite structures, and about which we can prove

interesting results.
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Definition 4.2.2 (C.–Cummins–Knight–S. Miller [15]). Let K1 and K2 be

classes of structures, and let Φ be a c.e. set of pairs (α, ϕ), where α is a subset of

the atomic diagram of a finite structure for the language of K1, and ϕ is an atomic

sentence, or the negation of one, in the language of K2.

1. We say that Φ is a computable transformation from K1 to K2 if for all

A ∈ K1, the set Φ(D(A)) has the form D(B), for some B ∈ K2. We may

write Φ(A) = B (identifying the structures with their atomic diagrams).

2. We say that K1 ≤c K2 if there is a computable transformation Φ from K1 to

K2, which, when viewed as a function Φ : K1 → K2, is well-defined and 1-1

on isomorphism types.

The encoding used in the proof of Theorem 3.2.4 is an example of a computable

transformation witnessing that if UG is the class of undirected graphs and F is the

class of fields, then UG ≤c F . Cummins used an argument from Friedman and

Stanley [25] that if LO is the class of linear orders and DG is the class of directed

graphs then DG ≤B LO to show that DG ≤c LO [20]. An important general

property of computable transformations is the following proposition.

Proposition 4.2.3 (C.–Cummins–Knight–S. Miller [15]). Let K1 and K2 be

classes of structures, and let Φ be a computable transformation from K1 to K2. If

A,A′ ∈ K1, where A ⊆ A′, then Φ(A) ⊆ Φ(A′).

This apparently minor fact turns out to be very important in proving results of

the form K1 �c K2, which is the harder part of almost any comparison of classes

using ≤c. For the remainder of this section we will adopt the following operational

definition.

Definition 4.2.4. We will use the following names for some important classes of

structures.
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G = Graphs
V S = Vector Spaces
FV S = Finite-dimensional Vector Spaces
FG = Finite Graphs
CG = Cyclic graphs

4.2.1 Basic Properties of the Order ≤c

The natural classes just named are conveniently situated as landmarks through-

out the partial order of all classes of countable structures under ≤c.

Theorem 4.2.5 (C.–Cummins–Knight–S. Miller [15]). Among the classes

listed above, we have the following relations:

CG <c FG <c FV S <c V S <c G

We say that two classes K1 and K2 are c-equivalent (written K1 ≡c K2, and

often just expressed by “equivalent” if no confusion is likely) if both K1 ≤c K2 and

K2 ≤c K1. It turns out that most natural classes of structures are equivalent to one

of these classes.

Theorem 4.2.6 (C.–Cummins–Knight–S. Miller [15]). We have the following

equivalences

1. The following classes are c-equivalent:

(a) CG

(b) Finite prime fields

2. The following classes are c-equivalent:

(a) Finite graphs

(b) Finite groups

(c) Finite simple groups
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(d) Finite cyclic groups

(e) Finite linear orders

(f) Arbitrary finite structures

As might be expected, all classes of finite structures fall below FG and all classes

of countable structures fall below G. While most natural classes of structures tend

to fall into the linearly ordered segment described in Theorem 4.2.5, there are many

other equivalence classes. One important method of constructing them is based on

immunity.

Definition 4.2.7 (C.–Cummins–Knight–S. Miller [15]). Let X ⊆ ω. We say

that sets A,B ⊆ ω are X bi-immune if for any X-computable function f with

infinite range, there is some a ∈ A such that f(a) /∈ B, and there is some b ∈ B

such that f(b) /∈ A. We say that A and B are bi-immune if they are X bi-immune

for computable X.

If A and B are bi-immune, and if KA is the class of cyclic graphs of size n for

n ∈ A and KB for n ∈ B, then neither KA ≤c KB nor KB ≤c KA.

Proposition 4.2.8 (C.–Cummins–Knight–S. Miller [15]). For any set X,

there exists a family (Af )f∈2ω such that for any distinct f, g ∈ 2ω, Af and Ag

are X bi-immune.

Thus, there are continuum many classes of computable structures which are ≤c

incomparable, and which are ≤c-below the class of finite cyclic graphs. Many similar

results are possible, and the partial ordering given by ≤c is quite complicated.

Theorem 4.2.9 (Knight [44]). There are classes K1 and K2 of structures such

that K1 and K2 have neither least upper bound nor greatest upper bound. Thus, ≤c

is not a lattice.
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4.2.2 Applications to Infinite Structures

The ordering ≤c was originally developed to investigate classes of finite struc-

tures. However, it gives some important information, too, about infinite structures.

A first taste of this is a byproduct of the immunity investigations.

An important question about isomorphism problems is exactly which m-degrees

can occur as the degree of the isomorphism problem for some class of computable

structures. It is generally believed that far more degrees are possible than we have

actually seen. A major milestone, though, is producing two such degrees that are

incomparable.

Theorem 4.2.10. There are incomparable m-degrees each of which is the degree of

the isomorphism problem for some class of computable structures.

Proof. Let A and B be ∆0
4 bi-immune sets of natural numbers. Let KA be the

set of computable Q-vector spaces of dimensions from A, and let KB be defined

symmetrically. Then E(KA) and E(KB) are incomparable.

More applications that come directly from computable transformations and the

relation ≤c are being seen in work currently in progress. Much of the effectiveness

of these concepts comes from the following theorem of Knight.

Theorem 4.2.11 (Knight [44]). Let Φ witness that K1 ≤c K2. For any com-

putable infinitary sentence ϕ in the language of K2, we can find a computable infini-

tary sentence ϕ∗ in the language of K1 such that for all A ∈ K1 we have Φ(A) |= ϕ

if and only if A |= ϕ∗. Moreover, if ϕ is of class Σ0
α, then ϕ∗ may also be chosen to

be of class Σ0
α.
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CHAPTER 5

COMPUTABLE STRUCTURES AND HIGH SCOTT RANK

We have already seen examples of highly complicated structures. For instance,

the way in which a class of computable structures with Σ1
1 complete isomorphism

problem are proved to be at that level is typically that it has some member whose

index set is of the greatest possible complexity.

With the exception of the background information in Section 5.1, all of the

material in the present chapter is of a preliminary nature. This chapter is meant

to give the reader a sense of the state of a very important and promising direction

for future inquiry in the subject of this thesis, however incomplete the work on this

direction may be.

5.1 Scott Rank

Question 5.1.1. What gives a structure high index set complexity?

One measure of the internal complexity of a structure is the Scott rank. This rank

is one good candidate for an answer to the question. There are several reasonable

definitions of the Scott rank of a structure in the literature, and all are nearly

equivalent (most differ only finitely, and many agree on limit ordinals; see [5] for

more details). The following definition allows for reasonable calculations, and makes

fine distinctions at the top of the range. We first define the Scott rank of a tuple of

elements.
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Definition 5.1.2.

1. ā ∼0 b̄ if they satisfy all the same atomic formulas.

2. ā ∼α+1 b̄ if for every d there is a c such that b̄d ∼α āc.

3. ā ∼γ b̄ for limit γ if ā ∼α b̄ for all α < γ.

4. sr(ā) is the least ordinal α such that b̄ ∼α implies b̄ ' ā.

With this definition in hand, we proceed to define the Scott rank of a structure.

Definition 5.1.3. Given a structure A, we define the Scott rank of A, denoted

SR(A) to be the least ordinal greater than sr(ā) for all finite ā ⊆ A.

Nadel [55] showed that if A is a computable structure, then SR(A) ≤ ωCK
1 + 1.

A computable linear ordering of type ωCK
1 (1 + η) (Harrison showed that such an

ordering exists [33]), where η is the order type of the rationals, has Scott rank

ωCK
1 + 1, since, for instance, the orbit of the first element in a copy of ωCK

1 other

than the first, is not hyperarithmetical. If A is a computable infinite dimensional

Q-vector space, then SR(A) = 1.

It will be helpful to have on hand a few additional easy properties of Scott rank:

Theorem 5.1.4 (Classical). Let A be a computable structure.

1. We have SR(A) < ωCK
1 if and only if the structure A has a computable in-

finitary Scott sentence.

2. We have SR(A) = ωCK
1 + 1 if and only if there is some element x ∈ A such

that sr(x) = ωCK
1 .

The possibility of a relationship of Scott rank to index set complexity is expressed

in a question of Goncharov and Knight.
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Question 5.1.5 (Goncharov–Knight [31]). If I(A) is hyperarithmetical, must

SR(A) be computable?

It is not at all clear what the answer to this question will be. Much of the work

discussed in this chapter arises from attempts to build intuition and techniques in

the general vicinity of this problem, but we are not yet prepared to mount a full

frontal assault on it.

Rather, this chapter will document joint work of the present author with several

others, first on the construction of various examples of structures with Scott rank

ωCK
1 exactly, and then on the complexity of the set of indices for all structures with

non-computable Scott rank.

5.2 Examples of Structures of High Scott Rank

As has already been noted, there are many examples of computable structures

A where either SR(A) is computable or SR(A) = ωCK
1 + 1. There are no examples

in which SR(A) > ωCK
1 + 1. It is natural, then, to look at the gap:

Question 5.2.1. Is there a computable structure A where SR(A) = ωCK
1 ?

It is important to note that some other definitions of Scott rank collapse ranks

ωCK
1 and ωCK

1 + 1. Nadel’s paper [55], for instance, calculates the maximum Scott

rank (in the sense of the definition of Barwise [10]) of a computable structure to be

ωCK
1 , so that the problem is trivial. In our definition, though, the distinction exists.

It at first seemed that structures of Scott rank ωCK
1 should at least be rare and

unnatural. The earliest examples were.

Theorem 5.2.2 (Makkai [48]). There is an arithmetical structure A such that

SR(A) = ωCK
1 .

Theorem 5.2.3 (Knight–Young [45]). There is a computable structure A such

that SR(A) = ωCK
1 .
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These structures were not of any type to which we are accustomed, which pre-

sented difficulties in understanding them. To produce these structures, one would

start with a tree, define certain group structures in the level of the tree, and use the

result to produce a new structure which included neither the original tree nor any of

the group operations. The purpose of introducing the group structure is to impose

a property of “homogeneity” on the structure (this is not the usual model-theoretic

notion of homogeneity), so that tuples that appear to be automorphic actually are

automorphic.

The present author, along with Knight and Young, noticed that this homogeneity

could be imposed from the beginning, allowing an example to be given which is

simply a tree.

Definition 5.2.4 (C.–Knight–Young [18]). We say that a tree T is rank homo-

geneous if for every n ∈ ω and every x ∈ T at level n, the following are satisfied:

1. For every α < tr(x), if there is y ∈ T at level n+ 1 such that tr(y) = α, then

there is an infinite set of nodes {yi}i∈ω ⊆ T , each of which is at level n + 1,

each of which is a successor of x, and each of which has rank α.

2. If tr(x) = ∞, then x has infinitely many successors of rank ∞.

The most important thing about this class of trees is that if T is a rank homo-

geneous tree, then we can calculate the Scott ranks of elements in T . In particular,

if x̄ is a finite subset of T and for each x ∈ x̄ we have tr(x) computable, then sr(x̄)

is computable. Further, if x, y ∈ T at level n, and tr(x) = tr(y) = ∞, then x and

y are automorphic. It follows that if for each level n there is a computable ordinal

αn bounding the tree ranks of elements x at level n which have tr(x) <∞, then all

tuples in T have computable Scott rank. On the other hand, if for any computable

ordinal α there exists x ∈ T with α < tr(x) < ∞, then there is no computable
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bound on the Scott ranks of tuples, so that SR(T ) ≥ ωCK
1 . We can now summarize

the additional property we need in our tree.

Definition 5.2.5. We say that a tree T is thin if for every level n there is a

computable ordinal αn bounding the nodes at level n with ordinal rank, but for any

computable ordinal α there exists x ∈ T with α < tr(x) <∞.

What is needed, then, is a thin, rank homogeneous tree. We can do exactly that.

Theorem 5.2.6 (Knight–Young [45]). There is a computable thin tree.

Theorem 5.2.7 (C.–Knight–Young [18]). From an index for a computable tree

T we can pass effectively to an index for a computable rank homogeneous tree T̃

such that the ranks that occur at level n in T̃ are exactly the ones that occur at level

n in T .

Theorem 5.2.8 (C.–Knight–Young [18]). If T is a computable thin rank homo-

geneous tree, then SR(T ) = ωCK
1 .

Since we have a tree of Scott rank ωCK
1 , it becomes believable that there are

examples in other interesting classes of structures. Work in progress, summarized

by the following two theorems, gives such examples.

Theorem 5.2.9 (C.–Goncharov–Knight). Let K be any of the following classes.

Then there is a computable structure A ∈ K such that SR(A) = ωCK
1 .

1. Undirected graphs

2. Linear orders

3. Fields of characteristic 0

It appears, then, that structures of rank ωCK
1 are not as exotic as was once

believed. We might reasonably expect to encounter them in more classes, or in
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problems in which we did not set out to find them. On the other hand, there are

some contexts in which we can exclude the possibility of such a structure.

Theorem 5.2.10 (C.–Goncharov–Knight). Let K be any of the following

classes. Then if A is a computable member of K and SR(A) ≥ ωCK
1 , then

SR(A) = ωCK
1 + 1.

1. Abelian p-groups

2. Models of the computable infinitary theory of well-orderings

3. Models of the computable infinitary theory of superatomic Boolean algebras

5.3 Index Sets for High Scott Rank

In examples we have explored in earlier sections of this thesis, a calculation of the

complexity of the index set of a structure requires some deep understanding of the

structure itself, and in turn gives some insight on what sort of information the struc-

ture contains. It is reasonable to think that this would happen not only for struc-

tures, but also for classes of structures — for instance, the class KHR of computable

structures of noncomputable Scott rank. We will also examine I(Kα) where Kα is

the class of computable structures of Scott rank α and where α ∈ {ωCK
1 , ωCK

1 + 1}.

In this section, we will see the results of work in progress, which has an eventual

goal of resolving the following question, which is currently open.

Question 5.3.1. What are the m-degrees of the following?

1. I(KHR)

2. I(KωCK
1

)

3. I(KωCK
1 +1)
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Naive ways to write the definition Lω1ω with second order quantifiers give the

following bounds.

Proposition 5.3.2 (C.–Goncharov–Knight–Kudinov–Morozov–Puzarenko).

1. I(KHR) is Σ1
1.

2. I(KωCK
1

) has a definition of the form ∀∃(d-Σ1
1).

3. I(KωCK
1 +1) has a definition of the form ∃∀(Σ1

1 ∨ Π1
1).

Of course, for the first item, we have much more exact information, since if K is

the class of orderings isomorphic to either a computable ordinal or to ωCK
1 (1 + η),

then I(K ∩KHR) is m-complete Σ1
1 within K.

Proposition 5.3.3 (C.–Goncharov–Knight–Kudinov–Morozov–Puzarenko).

I(KHR) is m-complete Σ1
1.

Completeness in the other two cases remains open. If S is a Π1
1 set, we can

show that S ≤m I(KωCK
1 +1) within KHR using a method of “hiding” a copy of the

Harrison ordering. We will construct a uniformly computable sequence of structures

(An)n∈ω such that An is of Scott rank ωCK
1 We begin with a Harrison ordering, and

to each pair of elements we connect an infinite set. For each n, we will give each of

these sets the structure of a tree.

Lemma 5.3.4. Let S ∈ Π1
1, and let T be the computable tree of Scott rank ωCK

1

constructed in Theorems 5.2.6, 5.2.7, and 5.2.8. There is a uniformly computable

sequence of trees (Cn)n∈ω such that Cn ' T if and only if n /∈ S, and such that if

n ∈ S we have SR(Cn) < ωCK
1 .

Now if (a, b) is a pair in the ordering, the structure attached to the pair (a, b)

will be the structure Cn if a < b and T otherwise. The structure An will be the
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reduct in which the original ordering is forgotten and we retain only the structures

attached to the various pairs. In the case that n ∈ §, the structure Cn will have a

computable infinitary Scott sentence, and so we can recover the Harrison ordering,

giving some tuples Scott rank ωCK
1 and making SR(An) = ωCK

1 + 1. On the other

hand, if n /∈ S, we will have SR(An) = ωCK
1 . Lemma 5.3.4 was a major motivation

for proving Theorems 5.2.7 and 5.2.8, since it was not clear that an analogous result

would hold for previous examples of structures with Scott rank ωCK
1 .

The method just described, along with the fact that if K is the class of orderings

isomorphic to either a computable ordinal or to ωCK
1 (1 + η), then I(K ∩ KHR) is

m-complete Σ1
1 within K, are the principal methods needed to get the strongest

known completeness results. We state these results here.

Proposition 5.3.5 (C.–Goncharov–Knight–Kudinov–Morozov–Puzarenko).

We have the following bounds:

1. For any set S with a definition of the form ∃(d-Σ1
1), we have S ≤m I(KωCK

1 +1).

2. For any set S with a definition of the form ∀(Σ1
1∨Π1

1), we have S ≤m I(KωCK
1 +1).
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