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By cyclically extending recurrences, we find a hierarchy of hi-
erarchies of identities. The technique employed was developed
for finding matching polynomials of cyclically labelled paths.
The method is based on trace formulas for matrices acting on
the space of symmetric tensors. Borrowing terminology from
quantum field theory, the action of operators on this space is
called “second quantization". 1

0.1 Introduction

First we recall some matching polynomials related to paths.
Observing that the polynomials satisfy recurrence relations,
we review correspondences between matrices and recurrences,
providing the connection with our principal tools.

The main object of study is the recurrence which is the pe-
riodic extension [constant coefficients] of a given recurrence
[non-constant coefficients]. “Second quantization" appears in
the context of the Symmetric Trace Theorem for a matrix
acting on the space of symmetric tensors. If the matrix has a
fine structure, being itself the product of matrices depending
on underlying variables, we discover a family of identities in
those variables.

Here is an outline of our approach:

1. Start with a general r-term linear recurrence. Rewrite
it in terms of r-by-r matrices.

2. Run the r-term recurrence t steps. This yields a prod-
uct of t matrices. Call this the composite matrix. The
columns of the composite matrix consist of the funda-
mental solutions to the recurrence. In particular, the
last column produces the first fundamental solution.

3. Now use the composite matrix of #2 to generate a re-
currence (via the Cayley-Hamilton theorem).

1

Based on a talk given at
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4. Writing the first fundamental solution to the recurrence
of #3 in various ways yields identities.

5. The Symmetric Trace Theorem yields identities linking
the coefficients of the original r-term recurrence with the
solution to the recurrence generated by the composite
matrix.

We emphasize the essential feature being the fact that the ac-
tion on symmetric tensors is a multiplicative homomorphism.

The case of 2 × 2 matrices is presented in detail. Products
of cyclic binomials appear quite naturally and some resulting
identities are given in detail. The very simplest cases already
yield interesting identities for hypergeometric functions.

Let us review some background for the present article. Match-
ing polynomials on cyclically labelled paths is the topic of [3],
which presents complete details. Looking at path covers and
trellises yields combinatorial models for general linear recur-
rences, [4]. For material on matching and matching polyno-
mials in the combinatorial setting, see [2, 5, 6].

For representations of matrices and discussion of tensor pow-
ers, we refer to [8]. For invariant theory and the Symmetric
Trace Theorem specifically, see [7]. MacMahon’s Master The-
orem interestingly appears in mathematical physics contexts
as well, [9, 10].

Finally, for special functions in general, hypergeometric func-
tions and identities in particular, we refer to [1].

0.2 Matching polynomials

First, a path with all labels equal to x.

1 2 3 4

x x x

FIGURE 1: Matching polynomial is 1 + 3x+ x2
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For a path with n edges, the matching polynomial is known
to be

φn(x) =
∑

k

(

n+ 1 − k

k

)

xk

which we may call Reciprocal-Chebyshev 2nd kind. Note that
the total number of matchings is φn(1) = Fn+2, the (n+ 2)nd

Fibonacci number.

For the path with general labels such as

1 2 3 4

x x x

4

1 2 3

FIGURE 2: Matching polynomial is 1 + x1 + x2 + x3 + x1x3

the matching polynomial is the nc-function φn(x1, . . . , xn),
the sum of all nonconsecutive monomials in the variables
x1, x2, . . . , xn. By nonconsecutive we mean that no products
xixi+1 appear in any of the terms.

The nc-function φn satisfies this recurrence, called the nc-
recurrence,

φn = φn−1 + xnφn−2

with initial conditions φ−1 = 1, φ0 = 1. The first fundamen-

tal solution, fn, has initial conditions φ−1 = 0, φ0 = 1, while
the second fundamental solution, gn, has initial conditions
φ−1 = 1, φ0 = 0. Thus, φn = fn + gn .

Now consider the cycle with variable labels.

x1

x2

x

x

3

4

FIGURE 3: Matching polynomial is
1 + x1 + x2 + x3 + x4 + x1x3 + x2x4
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The matching polynomial is now the ncc-function τn, the
sum of all nonconsecutive, cyclic monomials in the variables
x1, x2, . . . , xn. In this case the wrap-around product xnx1 is
forbidden.

For the n-cycle with all edges labelled x, the matching poly-
nomial is known to be

τn(x) =
∑

k

(

n− k

k

)

n

n− k
xk

which we may call Reciprocal-Chebyshev 1st kind, the total
number of matchings in this case given by Ln = Fn+1 +Fn−1,
the nth Lucas number.

Now consider the multivariable path repeated cyclically. For
example,

1 2 3 4

x x x

4

x x x

5 6 7

1 2 3 1 2 3

FIGURE 4: Matching polynomial is
1 + 2x1 + 2x2 + 2x3 + x2

1 + 2x1x2 + 3x1x3

+x2
2 + 2x2x3 + x2

3 + x2
1x3 + 2x1x2x3 + x1x

2
3

The study of the multivariable cyclic path is the subject of
[3]. Here we extract the techniques used there for evaluating
the matching polynomials for cyclic multivariable paths and
look at some of the algebraic consequences.

0.3 Recurrences and matrices

0.3.1 From recurrence to matrices

This approach works for general r-term linear recurrences

ψn = an1ψn−1 + · · ·+ anrψn−r =

r
∑

j=1

anjψn−j .

We will illustrate for r = 3 to see how the matrix approach
works.
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



0 1 0
0 0 1
c1 b1 a1









ψ−2

ψ−1

ψ0



 =





ψ−1

ψ0

ψ1



 =





ψ1

ψ0

a1ψ0 + b1ψ−1 + c1ψ−2





In other words,

ψ1 = a1ψ0 + b1ψ−1 + c1ψ−2

exactly as we want for the recurrence to hold. Iterating gives




0 1 0
0 0 1
cn bn an









ψn−3

ψn−2

ψn−1



 =





ψn−2

ψn−1

ψn





with
ψn = anψn−1 + bnψn−2 + cnψn−3 .

Generally, set

ξi =





0 1 0
0 0 1
ci bi ai



 .

Running the recurrence n steps we get

X = ξnξn−1 · · · ξ1 =





ηn−2 ζn−2 θn−2

ηn−1 ζn−1 θn−1

ηn ζn θn





say. The last row of X consists of the nth term of the recur-
rence with initial values corresponding to the standard basis
vectors. The last column is comprised of the first fundamen-

tal solution to the recurrence, with the remaining columns
correspondingly named progressing to the left.

Remark 1. Reference [4] presents a combinatorial approach
to general linear recurrences using path polynomials.

0.3.1.1 nc-Recurrence

Consider
φn = φn−1 + xnφn−2 .

The nc-function φn satisfies this recurrence with initial con-
ditions φ−1 = 1, φ0 = 1.
Denoting by fn and gn the fundamental solutions to this re-
currence, we have

X = Xn =

(

gn−1 fn−1

gn fn

)

=

(

0 1
xn 1

) (

0 1
xn−1 1

)

· · ·
(

0 1
x1 1

)

.

Note that the ncc-function τn = gn−1 + fn is the trace of Xn.
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0.3.2 From matrix to recurrence

On the other hand take any 3×3 matrix X. Then the Cayley-
Hamilton theorem gives a relation

X3 = aX2 + bX + cI

with coefficients coming from the characteristic polynomial
of X, essentially the elementary symmetric functions in the
eigenvalues of X, alternatively, traces of exterior powers of X.

Thus, matrix elements, for given 3-vectors v and w,

ψn = 〈v, Xn
w〉

will satisfy the constant coefficient recurrence

ψn = aψn−1 + bψn−2 + cψn−3 .

There are three aspects to the first fundamental solution to
this recurrence:

1. The first fundamental solution is given by hn, the ho-
mogeneous symmetric functions in the eigenvalues of X.

2. One has
1

det(I − cX)
=

∞
∑

n=0

cnhn

where the denominator is effectively the reciprocal poly-
nomial to the characteristic polynomial. This is a gen-
erating function for the sequence hn.

3. The Symmetric Trace Theorem, discussed in detail be-
low, gives a way to calculate the hn directly in terms
of the matrix X as the traces on the symmetric powers
of X, i.e., the matrices induced by acting on symmetric
tensor powers of the underlying vector space.

0.3.3 Matrices with fine structure

Start with a general linear recurrence and run it to index t.
For example, in our 3 × 3 case, fix t, and let

X = ξtξt−1 · · · ξ1
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Now, X satisfies a 3-term recurrence (in general, r-term re-
currence)

X3 = aX2 + bX + c .

We wish to study the first fundamental solution to this recur-
rence. In particular, how to express it in terms of the under-
lying variables ai, bi, ci. For the composite matrix, X, we use
N for the index of the recurrence, i.e., we have

ψN = aψN−1 + bψN−2 + cψN−3 .

If we have a multiplicative homomorphism, σ, say, on matri-
ces, then we have

σ(X) = σ(ξt)σ(ξt−1) · · ·σ(ξ1)

and we can take the trace of both sides, determinants, etc.
We get identities using the entries of σ(X) on the left side
and the underlying variables in the matrices ξi on the right.

0.3.4 2-term recurrences

For the remainder of this work, we restrict to 2-term recur-
rences, where all details can be worked out smoothly.

First consider the recurrence

ψn = anψn−1 + xnψn−2

Then we have

ξi =

(

0 1
xi ai

)

noting that the case all ai = 1 recovers the nc-functions. Run-
ning this for t steps, we have

X = Xt =

(

gt−1 ft−1

gt ft

)

=

(

0 1
xt at

) (

0 1
xt−1 at−1

)

· · ·
(

0 1
x1 a1

)

.

Cayley-Hamilton says that X2 = τX − ∆I, with τ = trX,
∆ = detX.

Any sequence of matrix elements ψN = 〈u, XN
v〉, u,v ∈ R

2,
satisfies the τ -∆ recurrence

ψN = τ ψN−1 − ∆ψN−2

with the trace τ given by the complete ncc-function in the
variables xi in the case all ai = 1, and, in all cases ∆ =
(−1)tx1x2 · · ·xt.
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0.3.5 First fundamental solution of the τ-∆ recurrence

The τ -∆ recurrence corresponds to the matrix

Γ =

(

0 1
−∆ τ

)

.

We denote the first fundamental solution to the recurrence by
ΦN and it is given explicitly in terms of Chebyshev polyno-
mials of the second kind

ΦN =

⌊N/2⌋
∑

k=0

(

N − k

k

)

τN−2k(−∆)k = ∆N/2 UN

(

τ

2
√

∆

)

.

Remark 2. In the paper [3], this solution was denoted GN .

This formula may be checked by induction and derived either
from the generating function

1

det(I − cX)
=

1

det(I − cΓ)
=

∞
∑

N=0

cN ΦN

or by application of the Symmetric Trace Theorem presented
in the next section.

0.4 The Symmetric Representation, MacMahon’s

Master Theorem, and Evaluation of ΦN

Consider polynomials in the variables u1, . . . , ud. We will work
with the vector space whose basis elements are the homoge-
neous polynomials of degree N in these variables, i.e., with

{un1

1 · · ·und

d |n1 + · · · + nd = N, each nℓ ≥ 0},

This vector space has dimension

(

N + d− 1

N

)

.

The symmetric representation of a d× d matrix A = (aℓℓ′) is
the action on polynomials induced by:

un1

1 · · ·und

d → vn1

1 · · · vnd

d ,

where
vℓ =

∑

ℓ′

aℓℓ′uℓ′
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or, more compactly, v = Au. That is, define the matrix el-

ement

〈

m1, . . . , md

n1, . . . , nd

〉

A

to be the coefficient of un1

1 · · ·und

d in

vm1

1 · · · vmd

d . Then, for a fixed (m1, . . . , md), we have

vm1

1 · · · vmd

d =
∑

(n1,...,nd)

〈

m1, . . . , md

n1, . . . , nd

〉

A

un1

1 · · ·und

d . (1)

Observe that the total degree N = |n| =
∑

nℓ = |m| =
∑

mℓ, i.e., homogeneity of degree N is preserved. We use
multi-indices: m = (m1, . . . , md) and n = (n1, . . . , nd). Then,
for a fixed m, (1) becomes

vm =
∑

n

〈m

n

〉

A
un.

Successive application of B then A shows that this is a
homomorphism of the multiplicative semi-group of square
d × d matrices into the multiplicative semi-group of square
(

N+d−1
N

)

×
(

N+d−1
N

)

matrices, namely

Proposition 0.4.1. Matrix elements satisfy the homomor-
phism property

〈m

n

〉

AB
=

∑

k

〈m

k

〉

A

〈

k

n

〉

B

.

Proof. Let v = (AB)u and w = Bu. Then,

vm =
∑

n

〈m

n

〉

AB
un

=
∑

k

〈m

k

〉

A
wk

=
∑

n

∑

k

〈m

k

〉

A

〈

k

n

〉

B

un.

Definition 0.4.2. Fix the degree N =
∑

nℓ =
∑

mℓ. De-
fine trN

Sym(A), the symmetric trace of A in degree N , as the

sum of the diagonal elements
〈m

n

〉

A
, i.e.,

trN
Sym(A) =

∑

m

〈m

m

〉

A
.

Equality such as trSym(A) = trSym(B) means that the sym-
metric traces are equal in every degree N ≥ 0.
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Remark 3. The action defined here on polynomials is
equivalent to the action on symmetric tensor powers, see [8],
pp. 472–5. The matrices induced at each level N of a ma-
trix A acting on the space of symmetric tensors is the second
quantization of A.

It is straightforward to see directly (cf. the diagonal case
shown in the Corollary below) that if A is upper-triangular,
with eigenvalues λ1, . . . , λd, then trN

Sym(A) = hN (λ1, . . . , λd),
the N th homogeneous symmetric function. The homomor-
phism property, Proposition 0.4.1, shows that, as usual,
tr(AB) = tr(BA) and that similar matrices have the same
trace. Again by the homomorphism property, if two d×d ma-
trices are similar, A = MBM−1, then that relation extends
to their respective symmetric representations in every degree.
Recall that any matrix is similar to an upper-triangular one
with the same eigenvalues. Thus, (see [7], pp. 51–2)

Theorem 0.4.3. Symmetric Trace Theorem
We have

1

det(I − cA)
=

∞
∑

N=0

cN trN
Sym(A).

Proof. With λℓ denoting the eigenvalues of A,

1

det(I − cA)
=

∏

ℓ

1

1 − cλℓ

=
∞

∑

N=0

cNhN(λ1, . . . , λd)

=

∞
∑

N=0

cNtrN
Sym(A).

As a Corollary we have MacMahon’s Master Theorem, which
we express in the above terminology.

Corollary 0.4.4. MacMahon’s Master Theorem.

The diagonal matrix element
〈m

m

〉

A
is the coefficient of um =

um1

1 · · ·umd

d in the expansion of det(I − UA)−1 where U =
diag(u1, . . . , ud) is the diagonal matrix with entries u1, . . . , ud

on the diagonal.
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Proof. From Theorem 0.4.3, with c = 1, we want to calculate
the symmetric trace of UA. By the homomorphism property,

trN
Sym(UA) =

∑

m

〈m

m

〉

UA

=
∑

m

∑

k

〈m

k

〉

U

〈

k

m

〉

A

.

Now, with v = Uw and vℓ = uℓwℓ, then

vm = (u1w1)
m1 · · · (udwd)

md = umwm =
∑

k

〈m

k

〉

U
wk,

i.e.,
〈m

k

〉

U
= um1

1 · · ·umd

d δk1m1
· · · δkdmd

so that
trN

Sym(UA) =
∑

m

〈m

m

〉

A
um.

Remark 4. For interesting background and applications in-
cluding MacMahon’s Master Theorem, see [9] and [10].

Now we restrict ourselves to d = 2, and return to the τ -∆
recurrence.

Take our composite matrix

X =

(

0 1
xt at

) (

0 1
xt−1 at−1

)

· · ·
(

0 1
x1 a1

)

= ξtξt−1 · · · ξ1,

where ξi =

(

0 1
xi ai

)

for 1 ≤ i ≤ t. Let

tr(X) = τ and det(X) = ∆,

and let ΦN be the first fundamental solution to the τ -∆ re-
currence:

ψN = τ ψN−1 − ∆ψN−2. (2)

Then
∞

∑

N=0

cNΦN =
1

1 − τc+ ∆c2

=
1

det(I − cX)

=
∞

∑

N=0

cNtrN
Sym(X).
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So

ΦN = trN
Sym(X) =

∑

m

〈m

m

〉

X
=

∑

m

〈m

m

〉

ξtξt−1···ξ1
.

We need to calculate the symmetric trace of X and so iden-
tify ΦN . By the homomorphism property, we need only find
the matrix elements for each matrix ξi, multiply together and
take the trace.

For ξi =

(

0 1
xi ai

)

the mapping induced on polynomials is

v1 = u2 , v2 = xi u1 + ai u2. (3)

For any integer N ≥ 0, the expansion of vm
1 v

N−m
2 in powers

of u1 and u2 is of the form

vm
1 v

N−m
2 =

∑

n

〈m

n

〉

ξi

un
1u

N−n
2 , (4)

with the notation for the matrix elements abbreviated accord-
ingly. From (3) and (4), the binomial theorem yields

〈m

n

〉

ξi

=

(

N −m

n

)

xn
i a

N−m−n
i .

For example, when t = 3, the product X = ξ3ξ2ξ1 gives the
matrix elements, for homogeneity of degree N ,

〈m

n

〉

X
=

∑

(k2,k3)

〈

m

k3

〉

ξ3

〈

k3

k2

〉

ξ2

〈

k2

n

〉

ξ1

=
∑

(k2,k3)

(

N −m

k3

)(

N − k3

k2

)(

N − k2

n

)

xn
1x

k2

2 x
k3

3 a
N−k2−n
1 aN−k3−k2

2 aN−k3−m
3

Thus, the symmetric trace trN
Sym(X) =

∑

m

〈m

m

〉

X
is

∑

(k1,k2,k3)

(

N − k2

k1

)(

N − k3

k2

)(

N − k1

k3

)

xk1

1 x
k2

2 x
k3

3 aN−k1−k2

1 aN−k2−k3

2 aN−k3−k1

3 ,

a cyclic binomial. In general, for a product of arbitrary length,
the symmetric trace is given by the corresponding cyclic bino-
mial. Combining these observations yields the main identity:
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Theorem 0.4.5. Let X = ξtξt−1 · · · ξ1, with ξi =

0

@

0 1
xi ai

1

A for

1 ≤ i ≤ t, and let τ = tr(X) and ∆ = det(X). Let ΦN denote
the first fundamental solution to the τ -∆ recurrence.

Then we have the cyclic binomial identity

ΦN =
∑

k1,...,kt

(

N − k2

k1

)(

N − k3

k2

)

· · ·
(

N − kt

kt−1

)(

N − k1

kt

)

× xk1

1 · · ·xkt

t a
N−k1−k2

1 aN−k2−k3

2 · · ·aN−kt−k1

t

= ∆N/2UN

(

τ

2
√

∆

)

=

⌊N/2⌋
∑

k=0

(

N − k

k

)

τN−2k(−∆)k

=
∑

m,k

(

m

k

)(

N −m

m− k

)

fN−2m+k
t gk

t−1(ft−1gt)
m−k

where UN denotes the Chebyshev polynomial of the second
kind.

Remark 5. Recall ft and gt are the fundamental solutions to
the underlying 2-term recurrence.

Proof. The first equality follows from the above observations,
and the second and third from well-known properties of the
Chebyshev polynomials of the second kind. The last formu-
lation is found via the Symmetric Trace Theorem using the
expression for X in terms of the fundamental solutions of the
underlying recurrence.

Note that Φ−1 = 0 and Φ0 = 1, so Φ1 = τ using the τ -
∆ recurrence. This also follows directly from the condition
ks−1 + ks ≤ 1 for non-zero terms in the cyclic binomial sum-
mation.

Example 0.4.6. Denote the symmetric representation in de-
gree N of the matrix A by ASym(N). Consider the case where
all ai are equal to 1.
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Let N = 2 and t = 3.

We have

Φ2 =
∑

(k1,k2,k3)

(

2 − k2

k1

)(

2 − k3

k2

)(

2 − k1

k3

)

xk1

1 x
k2

2 x
k3

3

= 1 + 2x1 + 2x2 + 2x3 + x2
1 + 2x1x2 + 2x1x3 + x2

2 + 2x2x3 + x2
3 + x1x2x3.

Here N = 2 and d = 2 so
(

N+d−1
N

)

= 3, and ξi =

(

0 1
xi 1

)

for

1 ≤ i ≤ 3, so

X = ξ3ξ2ξ1 =

(

x1 x2 + 1
x1x3 + x1 x2 + x3 + 1

)

.

Now ξi
Sym(2) =





0 0 1
0 xi 1
x2

i 2xi 1



 for 1 ≤ i ≤ 3, so

XSym(2) = ξ3
Sym(2)ξ2

Sym(2)ξ1
Sym(2)

=



















x2
1 2x1x2 + 2x1 x2

2 + 2x2 + 1

x2
1x3 + x2

1
x1x2x3 + 2x1x2
+2x1x3 + 2x1

x2
2 + x2x3 + 2x2

+x3 + 1

x2
1x

2
3 + 2x2

1x3 + x2
1

2x1x2x3 + 2x1x
2
3 + 2x1x2

+4x1x3 + 2x1

x2
3 + 2x2x3 + x2

2
+2x2 + 2x3 + 1



















.

We check that Φ2 = tr(XSym(2)), as required.

0.4.1 Matching polynomials

We quote some results of [3]:

ΦN +(φt−τt)ΦN−1 is the matching polynomial for the N -fold
repeated path of length Nt.

2 ∆N/2 TN

(

τ

2
√

∆

)

is for the corresponding cycle, with TN

the Chebyshev polynomial of the first kind.

In [3], matching polynomials for cyclically repeated paths,
cycles, and trees are found.
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0.4.2 Evaluations involving Fibonacci numbers

Consider the path of length n. Write

φn(x) = φn(x, . . . , x) .
τn(x) = τn(x, . . . , x) .

Recall the Fibonacci sequence {Fm |m ≥ 1}

F1 F2 F3 F4 F5 F6 F7 F8 · · ·
1 1 2 3 5 8 13 21 · · ·

Some observations/properties:

1. There are φn(1) = Fn+2 terms in φn(x1, . . . , xn).

2. There are τn(1) = Fn−1 + Fn+1 terms in τn(x1, . . . , xn).

3. We have explicitly

φn−1(−x) =
∑

k

(

n− k

k

)

(−x)k = xn/2 Un

(

1

2
√
x

)

τn(−x) =
∑

k

(

n− k

k

)

n

n− k
(−x)k = 2xn/2 Tn

(

1

2
√
x

)

4. Let xi = −x for all i, all ai = 1. Then

τ = 2xn/2Tn(1/(2
√
x)) ,

∆ = xn .

We get for ΦN ,

∑

(

N − k2

k1

)

· · ·
(

N − k1

kn

)

(−1)|k|x|k| = xnN/2UN

(

Tn

(

1

2
√
x

))

= xnN/2UNn+n−1(1/(2
√
x))

Un−1(1/(2
√
x))

The substitution x = 1
4
sec2(α/n) gives the formula:
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∑

(

N − k2

k1

)

· · ·
(

N − k1

kn

)

(−1)|k|

4|k|
(sec2α

n
)
|k|

= (1
2
secα)nN UN

(

Tn(cos
α

n
)
)

= (1
2
secα)nN UN(cosα)

= (1
2
secα)nN sin(N + 1)α

sinα

using the principal property Tn(cos θ) = cosnθ and sim-
ilarly for UN .

5. We know that the number of matchings in the path with
m−1 edges is Fm+1. In [3] it is shown (Theorem 4.5) how
to write the fundamental solution ΦN as the ratio of two
matching polynomals. It turns out that the numerator
polynomial corresponds to the path with (N + 1)t − 2
edges, and the denominator polynomial to the path with
t− 2 edges. Specializing our expression for ΦN with all
xi = 1 and all ai = 1 we have an evaluation of the cyclic
binomial sum as

F(N+1)t

Ft

=
∑

(k1,...,kt)

(

N − k2

k1

)(

N − k3

k2

)

· · ·
(

N − k1

kt

)

.

0.5 Some identities illustrated

Looking at the identity for ΦN for various values of t yields
summation identities by matching coefficients of the resulting
expressions.

Remark 6. See [1] for information on hypergeometric iden-
tities and related material.

0.5.1 Gauss’ sum

Let t = 2. Write τ = 1 + x+ y, ∆ = xy. We have

∑

(

N − B

A

)(

N − A

B

)

xAyB =
∑

(

N − k

k

)

(−1)k(1 + x+ y)N−2k(xy)k
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Expanding the right-hand side (s = i+ j, S = A+B)

(1 + x+ y)N−2k(xy)k =
∑ (N − 2k)!

i! j! (N − 2k − s)!
xi+kyj+k

Equating coefficients, A = i+ k, B = j + k, s = A+B − 2k,
yields

(

N − B

A

)(

N −A

B

)

=
∑ (N − k)!

k!

(−1)k

(A− k)! (B − k)!

1

(N − S)!

Rewriting yields the finite Gauss summation (Chu-Vandermonde
summation)

2F1

(−A,−B
−N

∣

∣

∣

∣

1

)

=
(N − A)! (N − B)!

N ! (N − (A+B))!
.

0.5.2 Pfaff-Saalschütz sum

Let t = 3. Write τ = 1 + x + y + z, ∆ = −xyz. Now expand
τ(x, y, z)N−2k(xyz)k with s = a + b+ c, S = A+B + C

(1+x+y+z)N−2k(xyz)k =
∑ (N − 2k)!

a! b! c! (N − 2k − s)!
xa+kyb+kzc+k

Comparing coefficients, A = a + k,B = b + k, C = c + k,
S = s+ 3k, yields

(

N − B

A

)(

N − C

B

)(

N − A

C

)

=
N !

A!B!C! (N − S)!
3F2

( −A, −B, −C
−N, N − S + 1

∣

∣

∣

∣

1

)

Rewriting gives the Pfaff-Saalschütz summation

3F2

( −A, −B, −C
−N, N − S + 1

∣

∣

∣

∣

1

)

=
(N −A)! (N −B)! (N − C)! (N −A− B − C)!

N ! (N − A−B)! (N −A− C)! (N − B − C)!
.

0.5.3 General values of t

For t ≥ 4, the identities are rather more complex. For general
t, denote by x(i) monomials appearing in τ . Then we have,
ξ(i) denoting the exponent of x(i), s =

∑

α(i),

ΦN =
∑ (−1)k(t+1) (N − k)!

k! (N − 2k − s)!
(x1 · · ·xt)

k
∏ x(i)α(i)

α(i)!
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0.6 Conclusion

We have developed a machine that produces a hierarchy of hi-
erarchies of identities. Start with an r-term recurrence. Run
it for t steps, t > r. Now run the recurrence generated by the
resulting composite matrix, effectively t steps extended peri-
odically. Then each index of the recurrence for the composite
matrix yields a hierarchy of corresponding identities.

We have seen how the case r = 2 for low values of t already
yield interesting identities for hypergeometric functions. The
consequences for r > 2 and looking at larger values of t will
provide families of identities most worthy of further study.
In particular, we may ask if there are connections with math-
ematical objects such as multivariate Chebyshev polynomials.

The use of the multiplicative properties of the second quan-
tization provides a way for deeper analysis in contexts where
MacMahon’s theorem is used as a counting or analytic tech-
nique. Such possibilities are not yet commonly recognized,
thus leaving open great opportunities for exploration.
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