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Abstract

A scan statistic methodology for detecting anomalies has been de-
veloped for application to graphs. We equate anomalies with vertices
that exhibit high local connectivity properties. In particular we look
for cases where all vertices have similar local connectivity, except for
one vertex (a champion) that has much higher connectivity at a cer-
tain level. For example, a neighborhood champion is a vertex whose
closed neighborhood is larger than those of other vertices; a scale k
champion is a vertex whose distance k closed neighborhood is larger
than those of other vertices. An anomaly graph is a graph with a
scale k champion, in which all neighborhoods are the same size at dis-
tance h when h < k, and the distance k closed neighborhoods of the
non-champions are of equal size.

We shall survey the constructions of anomaly graphs and more
general results on neighborhood champions.

1 Introduction

1.1 Scan Statistics

Scan statistics provide a statistical inference methodology in which a window
is scanned about a data field, a locality statistic is calculated based on the
data in each window — e.g, the mean for an image or a time series, or
the number of events for a point pattern — and the maximum of these
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locality statistics is compared against some appropriate extreme value null
distribution. This approach has long been used to detect anomalies — local
regions of excessive activity — in spatial or temporal data. There is a vast
literature on this methodology; see, for instance, the survey book [1] for
historical context, development and applications.

Recently, an analogous methodology for detecting anomalies has been
developed for application to graphs, where “anomalies” are equated with
vertices that exhibit distinctive local connectivity properties [4, 5].

We assume the standard ideas of graph theory. We sometimes specify the
vertex-set V and edge-set E of a graph G by denoting the graph V (G,E).
|V | and |E| are respectively the order and size of G. The complete graph
on n vertices is Kn, while Km,n denotes the complete bipartite graph with
vertex-sets of sizes m and n. The distance d(v, u) between two vertices v, u
in a graph is defined to be the number of edges in a shortest path from v to
u. The closed k-neighborhood of a vertex v is defined as

Nk[v] = {u ∈ V : d(v, u) ≤ k}.

When k = 1 we simply use the term “closed neighborhood.” We sometimes
say a vertex sees the edges in its closed neighborhood (or sees at level k the
vertices in its closed k-neighborhood).

The scale-k locality statistic {Ψk(v)}v∈V of a graph G(V,E) was defined
in [6] to be the size of the subgraph induced by the closed k-neighborhood
of v:

Ψk(v) = |Ω(Nk[v])|.

The scale-k scan statistic Mk(G) is was then defined to be the maximum over
v ∈ V of the scale-k locality statistics:

Mk(G) = max
v∈V

Ψk(v).

In a mild abuse of notation, we define Ψ0(v) to be the degree of vertex v in
G, and M0(G) to be the maximum degree in G.

Large values of Mk(G), with “large” dictated by the distribution of Mk

under some appropriate homogeneous random graph null hypothesis, are used
to detect anomalies, i.e. the existence of local regions of excessive activity, or
more local connectivity than would be expected under the null hypothesis.



The vertices associated with these anomalies, elements of the set

V ∗
k (G) = arg max

v∈V
Ψk(v),

are potentially operating under some alternative model HA and may be can-
didates for further investigation by subsequent processes. More generally,
outliers amongst the {Ψk(v)}v∈V are anomalies. However, outliers with un-
usually small locality statistics would need to be investigated by other meth-
ods, and are not the subject of this study.

An anomaly graph (for scale K) is a graph G such that, for some integer
K ≥ 2:
(P1) locality homogeneity for all scales k < K:
for k < K, there exists a constant ck such that Ψk(v) = ck for all v ∈ V —
that is, these scale-specific locality statistics are constant across vertices;
(P2) unique and dramatic champion for scale K:
there exist a constant cK and a distinguished vertex v∗ such that ΨK(v) = cK

for all v 6= v∗ and ΨK(v∗) >> cK — that is, the scale-K locality statistic
is constant across vertices except for v∗ and is dramatically larger for the
distinguished vertex v∗. An anomaly graph possesses a unique and dra-
matic champion v∗, a clear outlier amongst the scale-K locality statistics
{ΨK(v)}v∈V , and no outliers amongst locality statistics for any smaller scale;
thus the scale-K scan statistic MK will detect an anomaly while no other
scale-specific scan statistic Mk with k < K will do so.

2 Families of anomaly graphs

2.1 Anomaly graphs with K > 1

The following construction, from [6], yields graphs GK,r for integers K ≥ 2
and r ≥ 1; GK,r is an anomaly graph for scale K, except for G3,1. GK,r is
constructed from 2r+1 depth-K 2r-ary trees Ti, where the subscripts K and
r are integers mod 2r + 1, another vertex v∗, and the following additional
edges: the root of each tree is joined to v∗, and the (2r)K−1 leaves of tree Ti

are connected to the (2r)K−1 leaves of the trees T(i−1) and T(i+1) in r-regular
bipartite fashion. This can be done in many ways: for example, the 2r leaves
with a common parent could arbitrarily be partitioned into two r-sets, and



the members of each such set in Ti could be joined to the members of one
of the sets in T(i−1) and one of the sets in T(i+1). The construction is shown
in Figure 1. It may be shown that GK,r has properties (P1) and (P2) unless
K = 3, r = 1 (in that case, the vertices at level 2 are all equal ”champions”).

v 
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2r+ 1

···

··· ···

...

r-regularbipartite

TK,2r TK,2r TK,2r

2r + 1

Figure 1: Illustration of the construction of anomaly graph GK,r.

2.2 Some anomaly graphs with K = 1

The existence of anomaly graphs for K = 1 appears to be a difficult problem.
We shall present some infinite families of graphs that have a unique vertex
v∗ for which Ψ1(v∗) >> Ψ1(v) for all vertices v 6= v∗. We do not satisfy (P2),
because ΨK(v) is not constant, although (P1) is satisfied in some cases (in
this case (P1) is simply regularity). These results will appear in [2].

2.3 First construction

In our first construction, the degree is approximately half the order of the
graph.

We first form a graph with 4n + 1 vertices, regular of degree 2n, for
positive integer n.



We start with a complete bipartite graph K2n,2n on 4n vertices, say 1, 2,
· · · , 4n, where each of vertices 1, 2, · · · , 2n is joined to each of 2n+1, 2n+2,
· · · , 4n (and no others). We add a new vertex, 0, join it to each of 1, 2, · · · ,
n, 2n + 1, 2n + 2, · · · , 3n. We then delete edges (1, 2n + 1), (1, 2n + 1), . . . ,
(n, 3n). Formally:

(i) vertices are 0, 1, 2, · · · , 4n;

(ii) 0 is adjacent to 1, 2, · · · , n, 2n + 1, 2n + 2, · · · , 3n;

(iii) i is adjacent to j + 2n for 1 ≤ i, j ≤ 2n, except i is not adjacent to
i + 2n when ≤ i ≤ n.

Ψ1(0) = n2 + n, Ψ1(i) = 3n− 1 when 1 ≤ i ≤ n or 2n + 1 ≤ i ≤ 3n, and
Ψ1(i) = 2n otherwise. So 0 is a neighborhood champion.

This construction is useful when n ≥ 2, that is the number of vertices is
at least 9. It is of course more important for large n.

If the number of vertices is congruent to 3 modulo 4, say 4n+3, a similar
construction is available. The vertices are 0, 1, 2, · · · , 4n + 2. Vertex 0 is
adjacent to 1, 2, · · · , n, 2n+2, 2n+2, · · · , 3n+1. The other vertices form a
K2n+1,2n+1 with vertices 1, 2, · · · , 2n+1 joined to each of 2n+2, 2n+3, · · · ,
4n+2, except each edge (i, i+2n+1) is deleted, as are the edges (1, 2n+3),
(2, 2n+4), . . . , (n− 1, 3n+1), (n, 2n+2). Then Ψ1(0) = n2, Ψ1(i) = 3n− 2
when 1 ≤ i ≤ n or 2n + 2 ≤ i ≤ 3n + 1, and Ψ1(i) = 2n otherwise.

If the number of vertices is even, interesting graphs can be constructed by
deleting one vertex (other than 0). Although not regular, these graphs have
neighborhood champions and are almost regular. We shall refer to them as
approximation graphs.

Another interesting construction is available when there are 4n + 3 ver-
tices; again, call them 0, 1, 2, · · · , 4n+2. Vertex 0 is adjacent to 1, 2, · · · , n,
2n+2, 2n+2, · · · , 3n+1. The other vertices form a K2n+1,2n+1 with vertices
1, 2, · · · , 2n + 1 joined to each of 2n + 2, 2n + 3, · · · , 4n + 2, except each
edge (i, i+2n+1) is deleted for 1 ≤ i ≤ n. Then Ψ1(0) = n2 +n, Ψ1(i) = 3n
when 1 ≤ i ≤ n or 2n + 2 ≤ i ≤ 3n + 1, and Ψ1(i) = 2n otherwise.

This graph would be regular except for the fact that the champion vertex,
vertex 0, has degree one smaller than all the others.



2.4 Second Construction

We now present an infinite family of regular graphs with neighborhood cham-
pions, in which the degree is relatively small. We form a graph with tn + 1
vertices, regular of degree 2n. Clearly 2n can be arbitrarily small compared
to tn + 1.

We start with t sets S1, S2, . . . , St (where these subscripts are integers
modulo t), each containing n vertices: write

Si = {xi1, xi2, . . . , xin}.

We add another vertex x0. Then:

(i) x0 is adjacent to all members of S1 ∪ S2;

(ii) Each member of Si is adjacent to each member of Si−1 ∪ Si+1 except

(iii) x1j is not adjacent to x2j for 1 ≤ j ≤ n.

Ψ1(x0) = n2 + n, Ψ1(xij) = 3n − 2 when i = 1 or 2, and Ψ1(xij) = 2n
otherwise.

This construction is useful when t ≥ 4. It is of course more important for
large n.

If the required number of vertices is not congruent to 1 modulo n, ap-
proximation graphs can be constructed by adding one vertex to one, two,
. . . or all of the sets Si. The degree will be 2n+1 or 2n+2 for some vertices.

3 More theoretical results

In this section, which presents results from [3], we focus on the pure graph
theory of the situation, and consider the existence of neighborhood champions
for scale 1 in connected regular graphs. We shall sometimes discuss graphs
in which more than one vertex attains the maximum value M1(G). We shall
use the word “co-champion” to denote these vertices.

Theorem 1 For d = 1, 2, and 3 there are no d-regular graphs with a neigh-
borhood champion.



Proof Clearly regular graphs of degrees d = 1 or 2 have no champions.

Now suppose G is a cubic graph: If M1(G) = 3 then every vertex attains
M1(G). If M1(G) = 4, then any vertex x with Ψ1(x) = 4 lies in exactly
one triangle, and the other vertices of the triangle are co-champions; so G
contains at least three co-champions. If M1(G) = 5 and vertex x sees five
edges, the configuration must be as shown in Figure 2, where y is a co-
champion. And if M1(G) = 6 (the maximum) we have G = K4, and every
vertex is a co-champion. Thus no cubic graph has a champion. ut

x

y

Figure 2: A cubic configuration

However, one can construct cubic graphs with precisely two co-champ-
ions, or twin champions, for every even number n ≥ 10 of vertices. From
above we must have M1(G) = 5.

A short exhaustive search shows that this is impossible for fewer than 10
vertices (the graphs may be found on page 127 of [7]).

For every even n ≥ 10 we construct a cubic graph G on n vertices for
which Ψ1(x) = M1(G) = 5 for precisely two vertices. Our technique is to
implant the graph shown in Figure 3 as a subgraph of a host graph. The
implant graph H has six vertices a, b, p, q, y, z and adjacencies ap, bq, yp, yq,
zp, zq, yz.

Construction Select any triangle-free cubic graph on n − 4 vertices and
choose any edge ab in that graph. Delete this edge. Then identify vertices
a, b with the vertices a, b of H. See Figure 4 for an example of this; the value
of Ψ1(x) is shown on each vertex and the champion is emphasized.

Ψ1(y) = Ψ1(z) = 5, Ψ1(p) = Ψ1(q) = 4 and Ψ1(x) = 3 otherwise.

To show that the construction is always possible for n ≥ 10, we observe

Lemma 1 If n − 4 = 2s ≥ 6, there is a triangle-free cubic graph on n − 4
vertices.
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Figure 3: The graph H to be implanted

Proof Take the integers modulo 2s as vertices. For each i, let vertex i be
adjacent to vertices i− 1, i + 1, and i + s (modulo 2s). ut
(This graph is called a Möbius ladder [7, p263].)

So we have

Theorem 2 For every even n ≥ 10 there exists a cubic graph on n vertices
with precisely two co-champions.
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Figure 4: Example for 10 vertices

3.1 General Constructions: d ≥ 4

For even d ≥ 4 let n0(c, d) be the smallest number such that for every n ≥
n0(c, d) there exists a n vertex d-regular graph with precisely c neighborhood
co-champions; for odd d we require existence for even n ≥ n0(c, d) only.

In this section we discuss n0(1, d).



A one-factor is a graph consisting of disjoint edges; in particular, given
two ordered sets of vertices Y = {y0, y1, . . . , yn−1} and Z = {z0, z1, . . . , zn−1},
we define the one-factor F n

j (Y, Z) to consist of the edges

y0zj, y1z1+j, , . . . , yn−1zn−1+j,

where subscripts are reduced modulo n. Then Kn,n can be represented as

F n
0 (Y, Z) ∪ F n

1 (Y, Z) ∪ . . . F n
n−1(Y, Z).

Lemma 2 Suppose d ≥ 4. For every t ≥ 0 there exists a d-regular graph,
with a neighborhood champion, on n = 3d + 2t + 1 vertices.

Proof Let H represent the complete graph on the d+1 vertices x0, x1, . . . ,
xd with the d edges of the cycle x0x1x2 . . . xd−1 deleted. Take a copy of
F n

0 (Y, Z) ∪ F n
1 (Y, Z) ∪ . . . F n

d−1(Y, Z), where n = d + t, and delete the edges
y0z0, y1z1, . . . , yd−1zd−1. Adjoin this to H by adding edges x0y0, x0z0, x1y1,
x1z1, . . . , xd−1yd−1, xd−1zd−1. In this graph,

Ψ1(xd) = d(d− 1)/2,

Ψ1(xi) = (d2 − 5d + 14)/2, for 0 ≤ i ≤ d− 1,

Ψ1(yj) = Ψ1(zj) = d, for 0 ≤ j ≤ n− 1.

Then xd is a champion provided d(d−1)/2 > (d2−5d+14)/2, that is d ≥ 4.
ut

The above construction gives graphs whose order is of opposite parity
to d. When d is odd, this provides all possible orders from some point on,
because regular graphs of odd degree must have even order. However, for
even degree, another construction is needed for even orders.

Suppose G is the graph of Lemma 2 in the case where d ≥ 4 is even. We
modify G to form Ĝ as follows: Add a vertex x̂. Delete the d/2 edges x0y0,
x2y2, x4y4, . . . , xd−2yd−2, and add the d edges x̂x0, x̂y0, x̂x2, x̂y2, x̂x4, x̂y4,
. . . , x̂xd−2, x̂yd−2.

The Ψ1 values of all vertices of G are unchanged. We have Ψ1(x̂) =
d +

°
d/2
2

¢
= (d2 + 6d)/8. Thus vertex xd is still the champion, and we have

Lemma 3 Suppose d ≥ 4 is even. For every t ≥ 0 there exists a d-regular
graph, with a neighborhood champion, on n = 3d + 2t + 2 vertices.



Theorem 3 Suppose d ≥ 4. Then

d + 3 ≤ n0(1, d) ≤ 3d + 1.

Proof For any d ≥ 4 the only d-regular graph with d + 1 vertices is Kd+1,
which clearly does not have a unique champion. And for odd d ≥ 4 there is
no d-regular graph with d+2 vertices, so n0(1, d) ≥ d+3. And for even d ≥ 4
the only d-regular graph with d+2 vertices is Kd+2 minus a one-factor, which
again doesn’t have a unique champion; so n0(1, d) ≥ d + 3 here also. Hence,
for any d ≥ 4, we have n0(1, d) ≥ d + 3. The upper bound n0(1, d) ≤ 3d + 1
comes from Lemmas 2 and 3. ut

3.2 Small degrees, d = 4, 5
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Figure 5: Small quartic graphs, each with a champion



By inspection, there are no 4-regular (quartic) graphs on n = 7 or 8
vertices with a unique champion (see [7, p145]). From Theorem 3 and the
examples for orders n = 9, 10, 11 and 12 shown in Figure 5 we see that
n0(4) = 9, i.e., there is a 4-regular graph, with a neighborhood champion,
on n vertices whenever n ≥ 9.
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Figure 6: Small quintic graphs, each with a champion



Similarly, at degree 5, inspection shows (see [7, p154]) there are no quintic
graphs on n = 6 or 8 vertices with a unique champion. We present examples
on 10, 12 and 14 vertices in Figure 6, showing that n0(5) = 10. Thus there
is a 5-regular graph, with a neighborhood champion, on n vertices for every
even n ≥ 10. So the cases of d = 4 or 5 are completely solved.

References

[1] J. Glaz, J. Naus, and S. Wallenstein. Scan Statistics (Springer, 2001).

[2] J. P. McSorley, C. E. Priebe, and W. D. Wallis, Neighborhood Champi-
ons. (In preparation).

[3] J. McSorley and W. D. Wallis. Neighborhood champions in regular
graphs. J. Combin. Math. Combin. Comput. (to appear).

[4] C. E. Priebe. Scan statistics on graphs. Technical report #650, The
Johns Hopkins University (Baltimore, MD, 2004).

[5] C. E. Priebe, J. M. Conroy, D. J. Marchette, and Y. Park. Scan statistics
on Enron graphs. Comp. Math. Organization Theory, 11(2005), 229–
247.

[6] C. E. Priebe and W. D. Wallis. On the Anomalous Behaviour of a Class
of Locality Statistics. Discrete Math. 308(2008), 2034–2037.

[7] R. C. Read and R. J. Wilson, An Atlas of Graphs (Oxford U.P., 1999).


