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Abstract

A vertex-magic total labeling of a graph G(V; E) is a one-to-one map � from E ∪V onto the
integers {1; 2; : : : ; |E| + |V |} such that

�(x) +
∑

�(xy);

where the sum is over all vertices y adjacent to x, is a constant, independent of the choice
of vertex x. In this paper we examine the existence of vertex-magic total labelings of trees
and forests. The situation is quite di9erent from the conjectured behavior of edge-magic total
labelings of these graphs. We pay special attention to the case of so-called galaxies, forests in
which every component tree is a star.
c© 2002 Elsevier Science B.V. All rights reserved.

0. Introduction

All graphs in this paper will be 4nite. The graph G=G(V; E) has vertex-set V =V (G)
and edge-set E=E(G); we write v for |V (G)| and e for |E(G)|.

A total labeling is a one-to-one map � from E∪V onto the integers {1; 2; : : : ; e+v}.
The weight of vertex x is the value �(x)+

∑
�(xy) (where the sum is over all vertices

y adjacent to x), and the weight of edge xy is �(x) + �(xy) + �(y). A total labeling
is edge-magic if there is a constant k such that every edge xy has weight k, and vertex-
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magic if there is a constant h such that every vertex x has weight h. A graph with
an edge-magic total labeling � is called edge-magic, and k is called the magic sum
associated with �; similarly a graph with a vertex-magic total labeling is vertex-magic,
and h is the magic constant.

Kotzig and Rosa [2] introduced edge-magic total labelings, under the name “magic
valuations”. In particular, they showed that all caterpillars are edge-magic, and con-
jectured that all trees are edge-magic. This conjecture is interesting because of its
similarity to the long-standing conjecture that all trees have graceful labelings, but so
far there has been no progress on it.

Vertex-magic total labelings were de4ned in [3], after MacDougall observed that this
natural analog of the edge-magic case arose in the solution to a high-school enrichment
problem [4]. We shall see that not all trees are vertex-magic, and also explore results
about forests.

1. Trees

In discussing trees, it is common to de4ne a leaf to be a vertex of degree 1. Other
vertices are called internal. The vertex-magic property depends on the proportion of
leaves.

Theorem 1. Let T be a tree with n internal vertices and n leaves. Then T does not
admit a vertex-magic total labeling if

¿
1 +

√
12n2 + 4n + 1

2n
:

Proof. If T has n internal vertices and n leaves, then v=(+1)n and e=(+1)n−1.
So the labels to be used are {1; 2; : : : ; M} where M =2( + 1)n− 1.

The maximum possible sum of weights on the leaves will be the sum of the 2n
largest labels:

M∑
1

i −
M−2n∑

1

i =
M (M + 1)

2
− (M − 2n)(M − 2n + 1)

2

= n(2n + 4n− 1):

Since there are n leaves, we get

h62n + 4n− 1:

On the other hand, the minimum possible sum of weights on the internal vertices oc-
curs when the smallest weights {1; : : : ; n−1} are assigned to the internal edges (because
they will be added twice) and the smallest remaining labels assigned to the internal
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vertices and the other edges. This sum of weights is

M−n∑
1

i +
n−1∑

1

i =
(M − n)(M − n + 1)

2
+

(n− 1)n
2

=
n(n2 + (4n− 1) + (5n− 3))

2

and since there are n internal vertices,

h¿n2 + (4n− 1) + (5n− 3):

So no labeling will be possible when

n2 + (4n− 1) + (5n− 3)
2

¿2n + 4n− 1;

i.e. when

n2 − − (3n− 1)¿0:

The result follows.

A simple approximation of the above shows that a labeling is impossible for more
than

√
3n + 1 leaves. For small n, here are the largest number of leaves permitted by

the theorem:

n 1 2 3 4 5 6 7
Ln 2 4 5 7 9 11 12

For n=2, 3, and 4, we can attain these bounds. Examples are shown in Fig. 1.
Theorem 1 does not provide a suLcient condition for existence of a vertex-magic

total labeling, however. The following result shows that there are also restrictions
imposed by the degrees of the internal vertices.

Theorem 2. If � is the largest degree of any vertex in a tree T with v vertices, then
T does not admit a vertex-magic total labeling whenever

�¿
−7 +

√
33 + 32v
2

:

Proof. Let c be the vertex of maximum degree �. The minimum possible weight on
c is the sum of the (� + 1) smallest labels.

h¿
�+1∑

1

i=
1
2
(� + 1)(� + 2):
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Fig. 1. Trees attaining the bound of Theorem 1.

On the other hand, since there is an internal vertex of degree �, there are at least �
leaves in T . So the maximum possible sum of weights on the leaves is at most the
sum of the 2� largest labels. Therefore

h6
1
M

(
2v−1∑

1

i −
2v−2�−1∑

1

i

)
=4v − 2�− 1:

So a labeling will be impossible whenever

4v − 2M − 1¡
(� + 1)(� + 2)

2
;

i.e., when

�2 + 7� + 4 − 8v¿0:

The result follows.

The following table shows the maximum degree permitted by the restriction in The-
orem 2 for small values of v:

v 3 4 5 6 7 8 9 10
� 2 2 3 4 4 5 5 5
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v

Fig. 2. A tree with no vertex-magic total labeling.

These theorems still do not provide suLcient conditions since we can prove, for ex-
ample, that the tree with six vertices shown in Fig. 2 has no vertex-magic total label-
ing. The reasoning is as follows: considering the weight of vertex v we see that the
constant is at least 1 + · · · + 5=15 and from the leaves, the constant is at most
(11 + 10 + · · · + 4)=4=15. So h=15, and this can only be achieved by the as-
signment of labels described. But this means that at least one of the edges incident
with v has label less than 4, which contradicts the assignment of labels to the leaf
edges.

In particular, Theorem 2 proves that the star K1; n (with �=n and v=n + 1) is not
vertex-magic when n¿2. It is obvious that K1;1 is not vertex-magic—the conditions
would require the two vertices to receive the same label. If the trivial case of K1 is
not treated as a star, we have:

Corollary 2.1. The only vertex-magic star is K1;2.

(This was observed in [3].)

2. Forests in general

Calculations similar to those in the proof of Theorem 1 can be carried out for a
forest of s components. If we have n internal vertices and n leaves, then there are
n−s internal edges, and the label set is {1; 2; : : : ; M} where now M =2(+1)n−s. The
comparison of maximum sum of weights on the leaves to minimum sum of weights
on internal vertices gives the following analog of Theorem 1:

Theorem 3. Let F be a forest of s components. If F has n internal vertices and n
leaves, then there is no vertex-magic total labeling whenever

¿
2s − 1 +

√
12n2 + 4n(2s − 1) − (4s2 − 4s − 1)

2n
:
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3. Galaxies

In view of our special knowledge about vertex-magic total labelings of stars, it is
reasonable to ask which forests consisting only of stars—disjoint unions of stars—are
vertex-magic. The term galaxy has been used for a disjoint union of stars (see, for
example [1]).

Suppose G is the union K1; n1 ∪K1; n2 ∪ · · · ∪K1; nt of t stars. The number of edges of
G is e=n1 + n2 + · · · + nt . Suppose G has a vertex-magic total labeling with magic
constant h. The sum of the weights of the centers of the stars will be th; on the other
hand, it will equal at least the sum of the smallest e+ t positive integers (the e spokes
and the t centers). So

th¿
e+t∑
i=1

i=
1
2

(e + t)(e + t + 1): (1)

On the other hand, the sum of the e weights of the leaves equals the sum of the labels
on all the edges and all the vertices except the centers, so

eh6
2e+t∑
i=t+1

i=
1
2
(2e + t)(2e + t + 1) − 1

2
t(t + 1): (2)

Combining (1) and (2),

e(e + t)(e + t + 1)6t(2e + t)(2e + t + 1) − t2(t + 1);

(e + t)(e + t + 1)6e2(4t) + e(4t2 + 2t);

so e2 + e(1 − 2t) − (3t2 + t)60: It follows that

e6
2t − 1 +

√
16t2 + 1

2
¡3t: (3)

Theorem 4. If a galaxy is vertex-magic, then the average size of the component stars
is less than 3.

It is clear that Theorem 4 is the best-possible conclusion from (3), because
(2t − 1 +

√
16t2 + 1)=2¿3t − 1. But not every union of stars with average size

smaller than 3 is vertex-magic.

4. Restrictions on star sizes

From here on we shall assume that G is a vertex-magic galaxy of t stars that has
3t − 1 edges, and G has a vertex-magic total labeling � with magic constant h.

Eqs. (1) and (2) yield

8t − 26h68t − 1:
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Say a and b are the labels on some edge and its adjacent leaf. Then a and b are pos-
itive and a + b=h. No label can be greater than 7t − 2, so neither a nor b can
be smaller than h − 7t + 2. So h¿8t − 2 implies that 1; 2; : : : ; t − 1 must all be
labels of centers of stars, and if h=8t − 1 then t is also a center label. Moreover,
if h=8t− 2 then neither a nor b can equal 4t− 1, because repetitions are not allowed.
So:

Lemma 5. If G has a vertex-magic total labeling � with constant 8t − 2, the centers
have labels

1; 2; : : : ; t − 1; 4t − 1:

If G has a vertex-magic total labeling � with constant 8t− 1, the centers have labels

1; 2; : : : ; t − 1; t:

Let SC and SE denote the sums of labels on the centers and edges, respectively.
Then, summing the weights of the centers, SC + SE =ht. If h=8t − 2, Lemma 5 gives
SC = 1

2 t(t − 1) + 4t − 1, so

SE = t(8t − 2) − [ 1
2 t(t − 1) + 4t − 1]= 1

2 (15t2 − 11t + 2):

But no edge label is smaller than t, so SE¿t + (t + 1) + · · · + (4t − 2)= 1
2 (15t2 −

11t+2), and equality must hold. So the edge labels are precisely t; (t+1); : : : ; (4t−2).
If h=8t − 1, the Lemma gives SC = 1

2 t(t + 1), so

SE = t(8t − 1) − 1
2 t(t + 1)= 1

2(15t2 − 3t):

In this case no edge label is smaller than t + 1, so SE¿(t + 1) + (t + 2) + · · · +
(4t − 1)= 1

2 (15t2 − 5t). This is not tight, but the sum of edge labels is only greater
than the minimum by t.

This information can be used to limit the number of small stars—K1;2’s—in any
vertex-magic union.

Theorem 6. Suppose G is a vertex-magic galaxy of t stars which between them have
3t − 1 edges; let r be the number of stars K1;2 in G. Then r6 2

5 (t + 1).

Proof. First suppose h=8t − 2. Possibly one K1;2 has center label 4t − 1. The sum
of the weights of the centers of the other K1;2’s is (r − 1)(8t − 2). This must equal
at most the sum of the r − 1 greatest center labels and the 2(r − 1) greatest edge
labels. So

(r − 1)(8t − 2)6 [(t − r + 1) + (t − r + 2) + · · · + (t − 1)]

+ [(4t − 2r + 1) + (4t − 2r + 2) + · · · + (4t − 2)];

8t − 269t − 1
2 (5r + 2):



292 I.D. Gray et al. / Discrete Mathematics 261 (2003) 285–298

so

t¿ 1
2 (5r − 2)

and r6 2
5 (t + 1).

If h=8t − 1, the sum of the weights of the centers of the K1;2’s is r(8t − 1). The
sum of the 2r greatest edge labels could exceed (4t−2r−1)+(4t−2r)+ · · ·+(4t−2)
by t, so

r(8t − 1)6 [(t − r + 1) + · · · + (t − 1) + t]

+ [(4t − 2r − 1) + (4t − 2r) + · · · + (4t − 2)] + t;

from which 5r2 − (2t − 3)r − 2t60, so

r6 1
10 (2t − 3 +

√
4t2 + 28t + 9)¡ 1

10 (2t − 3 +
√

4t2 + 28t + 49)= 2
5 (t + 1)

as required.

There is also a restriction on the largest star. Suppose one of the stars in G has s
edges. If h=8t − 2, then the center c of this large star has weight at least 1 + t +
(t + 1) + · · · + (t + s − 1)=1 + st + 1

2 s(s − 1), so

8t − 2¿1 + st + 1
2 s(s − 1): (4)

Clearly s¡8, no matter what value t takes. Even for smaller s, not all t are possible.
Inequality (4) can be written as

t¿
s2 − s + 6
16 − 2s

:

In the case h=8t − 1, the center of the largest star has weight at least 1 + (t + 1)
+ · · · + (t + s)=1 + st + 1

2 s(s + 1). Again s¡8. For smaller s we obtain the slightly
stronger condition

t¿
s2 + s + 4
16 − 2s

:

From this we can deduce the following bounds:

Theorem 7. Suppose G is a vertex-magic galaxy of t stars which between them
have 3t − 1 edges; then no star can contain 8 edges. If the largest star has s edges,
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then:

if h=8t − 1 then s=7⇒ t¿30;

s=6⇒ t¿12;

s=5⇒ t¿6;

s=4⇒ t¿3;

s=3⇒ t¿2;

while if h=8t − 2 then s=7⇒ t¿24;

s=6⇒ t¿9;

s=5⇒ t¿4;

s=4⇒ t¿3;

s=3⇒ t¿2:

The extreme cases are worth considering. If t is any positive integer, then
(t − 1)K1;3∪K1;2 is always a possibility according to Theorem 7, and it is in fact
vertex-magic. A labeling with h=8t − 2 has stars labeled as follows:

Center Edges
4t − 1 (2t; 6t − 2)

(2t − 1; 6t − 1)

i (t − 1 + i; 7t − 1 − i)
(3t − i; 5t − 2 + i) i=1; 2; : : : ; t − 1

(4t − 1 − i; 4t − 1 + i)

((s; b) : : : denotes an edge labeled b joining the center to a leaf labeled b) and is
illustrated in Fig. 3.

3t–ii

t–1+i

4t–1+i 5t–2+i

4t–1–i

7t–1–i
4t–1

6t–2 6t–1

2t–12t

i = 1, 2, . . . t–1

 

Fig. 3. Vertex-magic total labeling of (t − 1)K1; 3∪K1; 2.
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There is no vertex-magic total labeling with h=8t − 1 in the case t=2. For t=3,
one labeling is

Center Edges

1 (13,10),(9,14)

2 (11,12),(6,17),(4,19)

3 (8,15),(7,16),(5,18)

If t is even, say t=2u¿4, an example is

Center Edges

1 (7u − 1; 9u)

(9u − 1; 7u)

2 (3u − 1; 13u)

(5u − 2; 11u + 1)

i (4u + 2 − i; 12u − 3 + i)

(6u + 1 − i; 10u − 2 + i) 36i6u + 2

(6u − 4 + i; 10u + 3 − i)

i (4u + 1 − i; 12u − 2 + i)

(3u − 3 + i; 13u + 2 − i) u + 36i62u,

(9u + 1 − i; 7u − 2 + i)

and if t=2u + 1¿5, we can use

Center Edges

1 (7u + 2; 9u + 5)

(9u + 4; 7u + 3)

i (4u + 2 − i; 12u + 5 + i)

(5u + 2 + i; 11u + 5 − i) 26i6u

(7u + 3 − i; 9u + 4 + i)

i (u + 1 + i; 15u + 6 − i)

(6u + 2 − i; 10u + 5 + i) u + 16i62u

(9u + 4 − i; 7u + 3 + i)

2u + 1 (4u + 1; 12u + 6)

(5u + 2; 11u + 5)

(5u + 3; 11u + 4)
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However, (t − 1)K1;2∪K1; t+1 can never have a vertex-magic total labeling when t¿3.
The cases t=2; 3 are vertex-magic—when t=2, the construction of Fig. 3 provides an
example. A labeling of 2K1;2∪K1;4 is provided in Section 5.

5. Small galaxies

In Fig. 4 we present examples of vertex-magic total labelings for galaxies up to t=7
stars with 3t − 1 edges. The line “x − yz : : :” denotes a star with center label x and
leaf labels y; z; : : : (the edge labels are omitted, for brevity).

Note that two of the small examples cannot be realized; however, we have con-
structed a number of larger examples without diLculty, and it may be that the two
examples already found are the only cases where the known necessary conditions are
not suLcient.

6. Unions of 2-paths

Another interesting case is the union of s 3-vertex paths. The path is of course a
star K1;2. No vertex-magic graph can have a component K1;1, so sK1;2 is the smallest
galaxy containing s non-trivial stars. We construct a vertex-magic total labeling for
every case.

The construction when s≡ 0 or 1 (mod 4) uses a special type of starter. Recall (see,
for example [5]) that a starter in an abelian group G of odd order is a partition of
the set G∗ of non-zero elements of G into pairs {x1; y1}; {x2; y2}; : : : ; such that the
di9erences ±(y1 − x1);±(y2 − x2); : : : together constitute G∗. We use a starter in Z2s+1

with the special property that the di9erences {(y1−x1); (y2−x2); : : :} equal {1; 2; : : : ; s}
in ordinary integer arithmetic.

Lemma 8. If s≡ 0 or 1 (mod 4) then the integers 1; 2; : : : ; 2s can be partitioned into
s pairs (xi; yi) such that {yi − xi : i=1; 2; : : : ; s}={1; 2; : : : ; s}.

Proof. First assume s≡ 0 (mod 4), say s=4t: The integers are paired as follows:

for t=1 : (1; 2); (5; 7); (3; 6); (4; 8)

for t=2 : (2; 3); (11; 13); (4; 7); (10; 14); (1; 6); (9; 15); (5; 12); (8; 16)

for t¿3 : (t; t + 1); (2t; 4t − 1); (2t + 1; 6t);

(x; 4t − 1 − x) 16x6t − 1;

(x; 4t + 1 − x) t + 26x62t − 1;

(x; 12t − x) 4t6x66t − 1:
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Fig. 4. Labelings for small galaxies.
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When s≡ 1 (mod 4), say s=4t + 1; the integers are paired as follows:

for t=0 : (1; 2)

for t=1 : (1; 2); (7; 9); (3; 6); (4; 8); (5; 10)

for t¿2 : (t; t + 1); (2t + 1; 4t + 2); (2t + 2; 6t + 2); (4t + 1; 8t + 2);
(x; 4t + 1 − x) 16x6t − 1;

(x; 4t + 3 − x) t + 26x62t;

(x; 12t − 1 − x) 4t + 36x66t + 1:

In each case, it is readily veri4ed that each of 1; : : : ; 2s is used precisely once, and that
each of 1; : : : ; s occurs precisely once as a di9erence.

Theorem 9. If s≡ 0 or 1 (mod 4) then sK1;2 has a vertex-magic total labeling with
magic constant 6s + 1.

Proof. We construct a labeling in which the vertices of order 2 receive labels 1; 2; : : : ; s.
The edges adjacent to the center labeled i receive labels ei and fi, and the corresponding
leaves are labeled ui and vi respectively. If the labeling is to be vertex-magic with magic
constant h,

i + ei + fi =ei + ui =fi + vi =h: (5)

So, for each i,

i=h− (ei + fi)=(h− ei) − fi =ui − fi:

We select a partition of {1; 2; : : : ; 2s} into s pairs (xi; yi) such that {yi−xi : i=1; 2; : : : ; s}
={1; 2; : : : ; s}, as guaranteed by Lemma 8, and reorder the pairs so that yi − xi = i for
each i. We then de4ne

ei =3s + 1 − yi; fi =xi + 3s; ui =yi + 3s; vi =3s + 1 − xi:

It is clear that this assignment satis4es (5).

The construction when s≡ 2 or 3 (mod 4) is a slight generalization of the earlier
one.

Lemma 10. If s≡ 2 or 3 (mod 4) then the integers 1; 2; : : : ; 2s − 2 can be partitioned
into s − 1 pairs (xi; yi) such that {yi − xi : i=1; 2; : : : ; s}={1; 3; 4; : : : ; s}.

Proof. First assume s≡ 2 (mod 4), say s=4t + 2: The integers are paired as follows:

for t=0 : (1; 2)

for t=1 : (2; 3); (6; 9); (4; 8); (5; 10); (1; 7)
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for t¿2 : (t + 1; t + 2); (2t + 2; 4t + 4); (2t + 3; 6t + 4); (2t + 4; 6t + 3);

(x; 4t + 4 − x) 16x6t;

(x; 4t + 6 − x) t + 36x62t + 1;

(x; 12t + 7 − x) 4t + 56x66t + 2:

When s≡ 3 (mod 4), say s=4t + 3; the integers are paired as follows:

for t=0 : (2; 3); (1; 4)

for t=1 : (3; 4); (9; 12); (6; 10); (2; 7); (5; 11); (1; 8)

for t¿2 : (t + 2; t + 3); (2t + 3; 6t + 5); (2t + 4; 6t + 4); (6t + 3; 8t + 4);

(x; 4t + 5 − x) 16x6t + 1;

(x; 4t + 7 − x) t + 46x62t + 2;

(x; 12t + 8 − x) 4t + 56x66t + 2:

Again it is readily veri4ed that each of 1; : : : ; 2s − 2 is used precisely once, and that
each of 1; 3; 4; : : : ; s occurs precisely once as a di9erence.

Theorem 11. If s≡ 0 or 1 (mod 4) then sK1;2 has a vertex-magic total labeling with
magic constant 6s + 1.

The proof is very similar to that of Theorem 9. We take e2; f2; u2; v2 to be 3s −
1; 3s; 3s + 2; 3s + 1; s − 1 pairs {xi; yi}(i �= 2) are chosen from {1; 2; : : : ; 2s − 2} so
that yi − xi = i, and

ei =3s − 1 − yi; fi =xi + 3s + 2; ui =yi + 3s + 2; vi =3s − 1 − xi

yield a vertex-magic total labeling with h=6s + 1.

References

[1] F. Harary, D.F. Hsu, Node-graceful graphs, Comput. Math. Appl. 15 (1988) 291–298.
[2] A. Kotzig, A. Rosa, Magic valuations of 4nite graphs, Canad. Math. Bull. 13 (1970) 451–461.
[3] J. MacDougall, M. Miller, Slamin, W.D. Wallis, Vertex-magic total labelings, Utilitas Math., to appear.
[4] University of Sydney, Mathematics Enrichment Groups, Exercises for March 26, 1999.
[5] W.D. Wallis, One-Factorizations, Kluwer Academic Publishers, Dordrecht, 1997.


	Vertex-magic labeling of trees and forests
	Introduction
	Trees
	Forests in general
	Galaxies
	Restrictions on star sizes
	Small galaxies
	Unions of 2-paths
	References


