Double Arrays, Triple Arrays, and Balanced Grids with $v=r+c-1$

John P. McSorley, Department of Mathematics, Southern Illinois University, Carbondale. IL 62901-4408.
mcsorley60@hotmail.com

Abstract

In Theorem 6.1 of [3] it was shown that, when $v=r+c-1$, every triple array $T A\left(v, k, \lambda_{r r}, \lambda_{c c}, k: r \times c\right)$ is a balanced $\operatorname{grid} B G(v, k, k$: $r \times c)$. Here we prove the converse of this Theorem. Our final result is: Let $v=r+c-1$. Then every triple array is a $T A(v, k, c-k, r-k, k$: $r \times c)$ and every balanced grid is a $B G(v, k, k: r \times c)$, and they are equivalent.

Keywords: arrays, double arrays, triple arrays, balanced grids, designs

1 Introduction, Main Result

We briefly introduce the main players: arrays, double arrays, triple arrays, and balanced grids. See [3] for more details.

Consider a rectangle with r rows and c columns, in which each cell contains exactly one element from the set $V=\{1,2, \ldots, v\}$. Suppose that the rectangle is binary, i.e., every row contains distinct elements and every column contains distinct elements. Further, suppose that the rectangle is equireplicate, i.e., every element of V occurs exactly k times in the rectangle for some $k \geq 1$. Call such a rectangle a $r \times c$ array based on the set V, and denote it by $\mathcal{A}=A(v, k: r \times c)$.

An array \mathcal{A} is a double array if it satisfies the following two properties:
(P1) any two distinct rows have the same number, $\lambda_{r r}$, of common elements;
(P2) any two distinct columns have the same number, $\lambda_{c c}$, of common elements.

Such an array is denoted by $D A\left(v, k, \lambda_{r r}, \lambda_{c c}: r \times c\right)$. Suppose further that \mathcal{A} satisfies the third property:
(P3) any row and any column have the same number, $\lambda_{r c}$, of common elements,
then \mathcal{A} is called a triple array, a $T A\left(v, k, \lambda_{r r}, \lambda_{c c}, \lambda_{r c}: r \times c\right)$.
Now consider a pair of distinct elements $x \in V$ and $y \in V$. If both occur in the same row of \mathcal{A} then we say that the pair $\{x, y\}$ occurs in this row, similarly for columns. Suppose that $\{x, y\}$ occurs in r_{1} rows of \mathcal{A} and in c_{1} columns of \mathcal{A}, then we say that it occurs $\mu_{\{x, y\}}=r_{1}+c_{1}$ times in the grid \mathcal{A}. We call \mathcal{A} a balanced grid if there is a constant μ such that $\mu=\mu_{\{x, y\}}$ for every x and y. We denote such a balanced grid by $B G(v, k, \mu: r \times c)$.

In Theorem 6.1 of [3] it was shown that, when $v=r+c-1$, every triple array $T A\left(v, k, \lambda_{r r}, \lambda_{c c}, k: r \times c\right)$ is a balanced $\operatorname{grid} B G(v, k, k: r \times c)$. It was then stated that examples to the converse of this Theorem had been found. In Theorem 2.5 of this paper we prove the converse of Theorem 6.1 of [3]. Our main result (Theorem 2.6) is: Let $v=r+c-1$. Then every triple array is a $T A(v, k, c-k, r-k, k: r \times c)$ and every balanced grid is a $B G(v, k, k: r \times c)$, and they are equivalent.

Finally, we restate a conjecture of Agrawal [1] concerning symmetric balanced incomplete block designs and triple arrays.

2 For $\mathrm{v}=\mathrm{r}+\mathrm{c}-1$, TA and BG are equivalent

We work mainly with the variables r, c, and k; writing other variables in terms of these three variables, see Theorems 2.2, 3.1, and 4.1 of [3].

$$
\begin{equation*}
v=\frac{r c}{k}, \quad \lambda_{r r}=\frac{c(k-1)}{r-1}, \quad \lambda_{c c}=\frac{r(k-1)}{c-1}, \quad \lambda_{r c}=k, \quad \mu=\frac{k^{2}(r+c-2)}{r c-k} . \tag{1}
\end{equation*}
$$

When $v=r+c-1$ if values of the two parameters r and c are given then all parameters in (1) can be expressed in terms of them, and so are 'forced'. But we prefer to keep k in our formulae:

Lemma 2.1

(i) In a triple array $T A\left(v, k, \lambda_{r r}, \lambda_{c c}, k: r \times c\right)$ the following are equivalent: $v=r+c-1$ and $\lambda_{r r}=c-k$ and $\lambda_{c c}=r-k$.
(ii) In a balanced grid $B G(v, k, \mu: r \times c)$ we have $v=r+c-1$ if and only if $\mu=k$.

Proof. (i) If $v=r+c-1$ then $c=v-r+1$. Then $c k=v k-r k+k=$ $r c-r k+k$, and so $c k-c=r c-r k-c+k=(r-1)(c-k)$. But, from (1), $\lambda_{r r}=\frac{c(k-1)}{r-1}$, and so $\lambda_{r r}=c-k$. The converse is given by working backwards. Hence $v=r+c-1$ if and only if $\lambda_{r r}=c-k$. Similarly we can prove that $v=r+c-1$ if and only if $\lambda_{c c}=r-k$.
(ii) Suppose that $v=r+c-1$. Then, from (1), $v=\frac{r c}{k}=r+c-1$. So $\frac{r c}{k}-1=\frac{r c-k}{k}=r+c-2$. Now (1) gives $\mu=k$. The converse is given by working backwards.

The following Corollary was not explicitly stated in [3].
Corollary 2.2 When $v=r+c-1$ every triple array is a $T A(v, k, c-$ $k, r-k, k: r \times c)$, and every balanced grid is a $B G(v, k, k: r \times c)$.

Matching BIBD's

Let \mathcal{D}_{1} be a $\left(v_{1}, b, r_{1}, \kappa, \lambda_{1}\right)-B I B D$ based on a v_{1}-set V_{1}, and \mathcal{D}_{2} a $\left(v_{2}, b, r_{2}, \kappa, \lambda_{2}\right)-B I B D$ based on a v_{2}-set V_{2}, with $v_{1} v_{2}=b \kappa$. Let the b blocks of \mathcal{D}_{1} be arranged in any fixed order, and let the κ elements in each block be arranged in any fixed order. Then \mathcal{D}_{1} and \mathcal{D}_{2} are matching if the b blocks of \mathcal{D}_{2}, and the κ elements within each block, can be arranged so that when \mathcal{D}_{2} is superimposed onto \mathcal{D}_{1} then each of the $v_{1} v_{2}$ pairs from $V_{1} \times V_{2}$ appears exactly once amongst the $b \kappa$ pairs covered. See Preece [4] Section 6, definition (b), for an equivalent definition of matching BIBD's. Such superimpositions are generally known as Graeco-Latin designs.

Example 1 Two matching BIBD's: a (5,10, 6,3,3) - BIBD based on $\left\{R_{1}, R_{2}, R_{3}, R_{4}, R_{5}\right\}$ and a $(6,10,5,3,2)-B I B D$ based on $\left\{C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}\right\}$, and their superimposition.

R_{1}	R_{2}	R_{3}	C_{1}	C_{4}	C_{5}	$R_{1} C_{1}$	$R_{2} C_{4}$	$R_{3} C_{5}$
R_{1}	R_{3}	R_{5}	C_{2}	C_{3}	C_{5}	$R_{1} C_{2}$	$R_{3} C_{3}$	$R_{5} C_{5}$
R_{1}	R_{3}	R_{4}	C_{3}	C_{5}	C_{6}	$R_{1} C_{3}$	$R_{3} C_{6}$	$R_{4} C_{5}$
R_{1}	R_{4}	R_{5}	C_{1}	C_{3}	C_{4}	$R_{1} C_{4}$	$R_{4} C_{3}$	$R_{5} C_{1}$
R_{1}	R_{2}	R_{5}	C_{1}	C_{5}	C_{6}	$R_{1} C_{5}$	$R_{2} C_{1}$	$R_{5} C_{6}$
R_{1}	R_{2}	R_{4}	C_{2}	C_{4}	C_{6}	$R_{1} C_{6}$	$R_{2} C_{2}$	$R_{4} C_{4}$
R_{2}	R_{4}	R_{5}	C_{3}	C_{4}	C_{6}	$R_{2} C_{3}$	$R_{4} C_{6}$	$R_{5} C_{4}$
R_{2}	R_{3}	R_{4}	C_{2}	C_{4}	C_{5}	$R_{2} C_{5}$	$R_{3} C_{4}$	$R_{4} C_{2}$
R_{2}	R_{3}	R_{5}	C_{1}	C_{2}	C_{6}	$R_{2} C_{6}$	$R_{3} C_{1}$	$R_{5} C_{2}$
R_{3}	R_{4}	R_{5}	C_{1}	C_{2}	C_{3}	$R_{3} C_{2}$	$R_{4} C_{1}$	$R_{5} C_{3}$

Block structures $\mathcal{R}^{\perp}, \mathcal{C}^{\perp}$, and \mathcal{S}
Let \mathcal{A} be an arbitrary array $A(v, k: r \times c)$. Label the r rows of \mathcal{A} with $R_{1}, R_{2}, \ldots, R_{r}$, and the c columns with $C_{1}, C_{2}, \ldots, C_{c}$.

Let $\mathcal{R}=\left\{R_{1}, R_{2}, \ldots, R_{r}\right\}$ be the block structure composed of the r rows of \mathcal{A}. Similarly, let $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{c}\right\}$ be the block structure composed of the c columns of \mathcal{A}.

For any $x \in V$ let $R_{x}^{\perp}=\left\{R_{i} \mid x \in R_{i}\right\}$. Then $\mathcal{R}^{\perp}=\left\{R_{x}^{\perp} \mid x \in V\right\}$ is the dual of \mathcal{R} and is a block structure based on the set $\left\{R_{1}, R_{2}, \ldots, R_{r}\right\}$ with v blocks each of size k. Similarly, for any $x \in V$ let $C_{x}^{\perp}=\left\{C_{j} \mid x \in C_{j}\right\}$. Then
$\mathcal{C}^{\perp}=\left\{C_{x}^{\perp} \mid x \in V\right\}$ is the dual of \mathcal{C} and is a block structure based on the set $\left\{C_{1}, C_{2}, \ldots, C_{c}\right\}$ with v blocks each of size k.

Define $S_{x}=R_{x}^{\perp} \cup C_{x}^{\perp}$ for every $x \in V$, and let \mathcal{S} be the block structure $\left\{S_{x} \mid x \in V\right\}$.

By definition of a double array and matching $B I B D$'s we have (compare Lemma 2.1 of [3]):

Lemma 2.3 Let \mathcal{A} be an arbitrary array $A(v, k: r \times c)$. Then \mathcal{A} is a double array $D A\left(v, k, \lambda_{r r}, \lambda_{c c}: r \times c\right)$ if and only if \mathcal{R}^{\perp} is a $\left(r, v, c, k, \lambda_{r r}\right)-$ $B I B D$ and \mathcal{C}^{\perp} is a $\left(c, v, r, k, \lambda_{c c}\right)-B I B D$, and \mathcal{R}^{\perp} and \mathcal{C}^{\perp} are matching.

When \mathcal{A} is a double array we call \mathcal{R}^{\perp} its $B I B D_{R}$ and \mathcal{C}^{\perp} its $B I B D_{C}$.
Example 2 A double array $D A(10,3,3,2: 5 \times 6)$ whose matching $B I B D_{R}$ and $B I B D_{C}$ were given above in Example 1.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
R_{1}	1	2	3	4	5	6
R_{2}	5	6	7	1	8	9
R_{3}	9	10	2	8	1	3
R_{4}	10	8	4	6	3	7
R_{5}	4	9	10	7	2	5

Before the next Theorem, we need the following result of Ryser [6], Chapter 8, Theorem 2.2:

Let \mathcal{B} be an incidence structure based on a v-set with v blocks each of size k, in which any two distinct blocks intersect in the same number λ of elements. Then \mathcal{B} is a $(v, k, \lambda)-S B I B D$.

Compare the following Theorem with Theorem 5.2 of [3].
Theorem 2.4 Let \mathcal{G} be a $B G(v, k, \mu: r \times c)$ with $v=r+c-1$. Then there exists $a(v+1, r, r-k)-S B I B D$.

Proof. Recall the definitions of the block structures \mathcal{R}^{\perp} and \mathcal{C}^{\perp} above. Let $B_{0}=\left\{R_{1}, R_{2}, \ldots, R_{r}\right\}$. For each $x \in V$ put $\bar{R}_{x}^{\perp}=B_{0} \backslash R_{x}^{\perp}$, then $\left|\bar{R}_{x}^{\perp}\right|=$ $r-k$.

Let $B_{x}=\bar{R}_{x}^{\perp} \cup C_{x}^{\perp}$ for each $x \in V$. Then $\left|B_{x}\right|=(r-k)+k=r$. Now consider the block structure $\mathcal{B}=\left\{B_{x} \mid x \in V\right\} \cup\left\{B_{0}\right\}$. It is based on
the $r+c=v+1$ elements from $\mathcal{R} \cup \mathcal{C}=\left\{R_{1}, R_{2}, \ldots, R_{r}, C_{1}, C_{2}, \ldots, C_{c}\right\}$ and has $v+1$ blocks each of size r. We now show that \mathcal{B} is the required $(v+1, r, r-k)-S B I B D$.

Now \mathcal{G} is a $B G$ in which every pair $\{x, y\}$ occurs $\mu=k$ (Lemma 2.1(ii)) times, so $\left|S_{x}^{\perp} \cap S_{y}^{\perp}\right|=\left|R_{x}^{\perp} \cap R_{y}^{\perp}\right|+\left|C_{x}^{\perp} \cap C_{y}^{\perp}\right|=k$. We have:

$$
\begin{aligned}
\left|B_{x} \cap B_{y}\right| & =\left|\bar{R}_{x}^{\perp} \cap \bar{R}_{y}^{\perp}\right|+\left|C_{x}^{\perp} \cap C_{y}^{\perp}\right| \\
& =\left|\bar{R}_{x}^{\perp}\right|+\left|\bar{R}_{y}^{\perp}\right|-\left|\bar{R}_{x}^{\perp} \cup \bar{R}_{y}^{\perp}\right|+\left|C_{x}^{\perp} \cap C_{y}^{\perp}\right| \\
& =(r-k)+(r-k)-\left|\overline{R_{x}^{\perp} \cap R_{y}^{\perp}}\right|+\left|C_{x}^{\perp} \cap C_{y}^{\perp}\right| \\
& =2 r-2 k-\left(r-\left|R_{x}^{\perp} \cap R_{y}^{\perp}\right|\right)+\left|C_{x}^{\perp} \cap C_{y}^{\perp}\right| \\
& =r-2 k+\left(\left|R_{x}^{\perp} \cap R_{y}^{\perp}\right|+\left|C_{x}^{\perp} \cap C_{y}^{\perp}\right|\right) \\
& =r-2 k+k=r-k .
\end{aligned}
$$

Also, for all $x \in V$, we have $\left|B_{x} \cap B_{0}\right|=r-k$. Thus any two distinct blocks of \mathcal{B} intersect in $r-k$ elements. So, from Ryser's result above, \mathcal{B} is a $(v+1, r, r-k)-S B I B D$.

Next is the converse to Theorem 6.1 of [3]:
Theorem 2.5 Let $v=r+c-1$. Every $B G(v, k, k: r \times c)$ is a $T A(v, k, c-$ $k, r-k, k: r \times c)$.

Proof. Let \mathcal{G} be a $B G(v, k, k: r \times c)$. Recall from Theorem 2.4 above that \mathcal{B} is a $(v+1, r, r-k)-S B I B D$. The construction of \mathcal{B} from \mathcal{R}^{\perp} and \mathcal{C}^{\perp} gives: Firstly, \mathcal{R}^{\perp} is the complement of the derived design of \mathcal{B} with respect to block B_{0}, hence \mathcal{R}^{\perp} is a $(r, v, c, k, c-k)-B I B D$. Secondly, \mathcal{C}^{\perp} is the residual design of \mathcal{B} with respect to B_{0}, hence \mathcal{C}^{\perp} is a $(c, v, r, k, r-k)-B I B D$. Since \mathcal{R}^{\perp} and \mathcal{C}^{\perp} are also constructed from an array, they are matching. Hence, via Lemma 2.3, \mathcal{G} is a double array, a $D A(v, k, c-k, r-k: r \times c)$.

Consider any pair $\left\{R_{i}, C_{j}\right\}$. Then C_{j} occurs r times in the first v blocks of \mathcal{B}, and pair $\left\{R_{i}, C_{j}\right\}$ occurs $r-k$ times in these blocks. So, amongst the first v blocks of \mathcal{B}, there are $r-(r-k)=k$ blocks which do not contain R_{i} but do contain C_{j}. Hence, in \mathcal{S}, there are k blocks containing pair $\left\{R_{i}, C_{j}\right\}$. Thus $\left|R_{i} \cap C_{j}\right|=k$ for every i and j, and so \mathcal{G} is a triple array, a $T A(v, k, c-k, r-k, k: r \times c)$.

Using Theorem 6.1 from [3] and Corollary 2.2 above, we have:

Theorem 2.6 Let $v=r+c-1$. Then every triple array is a $T A(v, k, c-$ $k, r-k, k: r \times c)$ and every balanced grid is a $B G(v, k, k: r \times c)$, and they are equivalent.

Example 3 An array \mathcal{A}, a $A(10,3: 5 \times 6)$, which is both a balanced grid $B G(10,3,3: 5 \times 6)$ and a triple array $T A(10,3,3,2,3: 5 \times 6)$. The three block structures shown are its $B I B D_{R}$, a $(5,10,6,3,3)-B I B D$; its $B I B D_{C}$, a $(6,10,5,3,2)-B I B D$; and \mathcal{B}, a $(11,5,2)-S B I B D$.

	C_{1}	C_{2}	C_{3}	C_{4}	C_{5}	C_{6}
R_{1}	1	2	3	4	5	6
R_{2}	4	7	1	3	8	9
R_{3}	2	5	10	8	9	3
R_{4}	10	8	7	6	1	2
R_{5}	9	4	5	10	6	7

R_{1}	R_{2}	R_{4}	C_{1}	C_{3}	C_{5}	R_{3}	R_{5}	C_{1}	C_{3}	C_{5}
R_{1}	R_{3}	R_{4}	C_{1}	C_{2}	C_{6}	R_{2}	R_{5}	C_{1}	C_{2}	C_{6}
R_{1}	R_{2}	R_{3}	C_{3}	C_{4}	C_{6}	R_{4}	R_{5}	C_{3}	C_{4}	C_{6}
R_{1}	R_{2}	R_{5}	C_{1}	C_{2}	C_{4}	R_{3}	R_{4}	C_{1}	C_{2}	C_{4}
R_{1}	R_{3}	R_{5}	C_{2}	C_{3}	C_{5}	R_{2}	R_{4}	C_{2}	C_{3}	C_{5}
R_{1}	R_{4}	R_{5}	C_{4}	C_{5}	C_{6}	R_{2}	R_{3}	C_{4}	C_{5}	C_{6}
R_{2}	R_{4}	R_{5}	C_{2}	C_{3}	C_{6}	R_{1}	R_{3}	C_{2}	C_{3}	C_{6}
R_{2}	R_{3}	R_{4}	C_{2}	C_{4}	C_{5}	R_{1}	R_{5}	C_{2}	C_{4}	C_{5}
R_{2}	R_{3}	R_{5}	C_{1}	C_{5}	C_{6}	R_{1}	R_{4}	C_{1}	C_{5}	C_{6}
R_{3}	R_{4}	R_{5}	C_{1}	C_{3}	C_{4}	R_{1}	R_{2}	C_{1}	C_{3}	C_{4}
						R_{1}	R_{2}	R_{3}	R_{4}	R_{5}

Agrawal's Conjecture

The second paragraph in the proof of Theorem 2.5 above is essentially Agrawal's method of constructing a triple array $T A(v, k, c-k, r-k, k: r \times c)$ with $v=r+c-1$ from a $(v+1, r, r-k)-S B I B D$ with $k>2$, see Agrawal [1]. It seems worthwhile to restate his conjecture in terms of matching BIBD's:

Let \mathcal{S} be a $\left(v_{s}, k_{s}, \lambda_{s}\right)-S B I B D$ with $k_{s}-\lambda_{s}>2$. For any fixed block S_{0} let $\mathcal{S}_{\text {der }}$ denote the derived design of \mathcal{S} with respect to S_{0}, and let $\mathcal{S}_{\text {res }}$ denote the residual design of \mathcal{S} with respect to S_{0}.

Then the complement of $\mathcal{S}_{\text {der }}$ and $\mathcal{S}_{\text {res }}$ are matching.

An incorrect proof of this conjecture appeared in Raghavarao and Nageswararao [5], as was pointed out in Bailey and Heidtmann [2], and Wallis and Yucas [7]. It appears that this conjecture is still open.

If Agrawal's conjecture is correct then any $\left(v_{s}, k_{s}, \lambda_{s}\right)-S B I B D$ with $k_{s}-\lambda_{s}>2$ gives rise to a $T A\left(v_{s}-1, k_{s}-\lambda_{s}, v_{s}-2 k_{s}+\lambda_{s}, \lambda_{s}, k_{s}-\lambda_{s}\right.$: $k_{s} \times\left(v_{s}-k_{s}\right)$, a triple array with ' $v=r+c-1$ '.

References

[1] H.Agrawal. Some methods of construction of designs for two-way elimination of heterogeneity, J. Amer. Statist. Assoc. Vol.61, No.1, (1966), pp.1153-1171.
[2] R.A.Bailey, P.Heidtmann. Personal communication.
[3] J.P.McSorley, N.C.K.Phillips, W.D.Wallis, J.L.Yucas. Double Arrays, Triple Arrays, and Balanced Grids, Designs, Codes, and Cryptography. Vol.35, (2005), pp.21-45.
[4] D.A.Preece. Non-orthogonal Graeco-Latin designs, Combinatorial Mathematics IV, Lecture Notes in Mathematics 560, Springer-Verlag, (1976), pp.7-26.
[5] D.Raghavarao, G.Nageswararao. A note on a method of construction of designs for two-way elimination of heterogeneity, Commun. Statist. Vol.3, (1974), pp.197-199.
[6] H.Ryser. Combinatorial Mathematics, Carus Mathematical Monographs 14, Mathematical Association of America, (1963).
[7] W.D.Wallis, J.L.Yucas. Note on the construction of designs for the elimination of heterogeneity, Jour. Combin. Maths. Combin. Comput. Vol.46, (2003), pp.155-160.

