Double Arrays, Triple Arrays, and Balanced Grids with v = r + c - 1

John P. McSorley, Department of Mathematics, Southern Illinois University, Carbondale. IL 62901-4408. mcsorley60@hotmail.com

Abstract

In Theorem 6.1 of [3] it was shown that, when v = r + c - 1, every triple array $TA(v, k, \lambda_{rr}, \lambda_{cc}, k : r \times c)$ is a balanced grid $BG(v, k, k : r \times c)$. Here we prove the converse of this Theorem. Our final result is: Let v = r + c - 1. Then every triple array is a $TA(v, k, c - k, r - k, k : r \times c)$ and every balanced grid is a $BG(v, k, k : r \times c)$, and they are equivalent.

Keywords: arrays, double arrays, triple arrays, balanced grids, designs

1 Introduction, Main Result

We briefly introduce the main players: arrays, double arrays, triple arrays, and balanced grids. See [3] for more details.

Consider a rectangle with r rows and c columns, in which each cell contains exactly one element from the set $V = \{1, 2, ..., v\}$. Suppose that the rectangle is *binary*, *i.e.*, every row contains distinct elements and every column contains distinct elements. Further, suppose that the rectangle is *equireplicate*, *i.e.*, every element of V occurs exactly k times in the rectangle for some $k \ge 1$. Call such a rectangle a $r \times c$ array based on the set V, and denote it by $\mathcal{A} = A(v, k : r \times c)$.

An array \mathcal{A} is a *double array* if it satisfies the following two properties:

- (P1) any two distinct rows have the same number, λ_{rr} , of common elements;
- (P2) any two distinct columns have the same number, λ_{cc} , of common elements.

Such an array is denoted by $DA(v, k, \lambda_{rr}, \lambda_{cc} : r \times c)$. Suppose further that \mathcal{A} satisfies the third property:

(P3) any row and any column have the same number, λ_{rc} , of common elements,

then \mathcal{A} is called a *triple array*, a $TA(v, k, \lambda_{rr}, \lambda_{cc}, \lambda_{rc} : r \times c)$.

Now consider a pair of distinct elements $x \in V$ and $y \in V$. If both occur in the same row of \mathcal{A} then we say that the pair $\{x, y\}$ occurs in this row, similarly for columns. Suppose that $\{x, y\}$ occurs in r_1 rows of \mathcal{A} and in c_1 columns of \mathcal{A} , then we say that it occurs $\mu_{\{x,y\}} = r_1 + c_1$ times in the grid \mathcal{A} . We call \mathcal{A} a balanced grid if there is a constant μ such that $\mu = \mu_{\{x,y\}}$ for every x and y. We denote such a balanced grid by $BG(v, k, \mu : r \times c)$.

In Theorem 6.1 of [3] it was shown that, when v = r + c - 1, every triple array $TA(v, k, \lambda_{rr}, \lambda_{cc}, k : r \times c)$ is a balanced grid $BG(v, k, k : r \times c)$. It was then stated that examples to the converse of this Theorem had been found. In Theorem 2.5 of this paper we prove the converse of Theorem 6.1 of [3]. Our main result (Theorem 2.6) is: Let v = r + c - 1. Then every triple array is a $TA(v, k, c - k, r - k, k : r \times c)$ and every balanced grid is a $BG(v, k, k : r \times c)$, and they are equivalent.

Finally, we restate a conjecture of Agrawal [1] concerning symmetric balanced incomplete block designs and triple arrays.

2 For v=r+c-1, TA and BG are equivalent

We work mainly with the variables r, c, and k; writing other variables in terms of these three variables, see Theorems 2.2, 3.1, and 4.1 of [3].

$$v = \frac{rc}{k}, \ \lambda_{rr} = \frac{c(k-1)}{r-1}, \ \lambda_{cc} = \frac{r(k-1)}{c-1}, \ \lambda_{rc} = k, \ \mu = \frac{k^2(r+c-2)}{rc-k}.$$
(1)

When v = r + c - 1 if values of the two parameters r and c are given then all parameters in (1) can be expressed in terms of them, and so are 'forced'. But we prefer to keep k in our formulae:

Lemma 2.1

- (i) In a triple array $TA(v, k, \lambda_{rr}, \lambda_{cc}, k : r \times c)$ the following are equivalent: v = r + c - 1 and $\lambda_{rr} = c - k$ and $\lambda_{cc} = r - k$.
- (ii) In a balanced grid $BG(v, k, \mu : r \times c)$ we have v = r + c 1 if and only if $\mu = k$.

Proof. (i) If v = r + c - 1 then c = v - r + 1. Then ck = vk - rk + k = rc - rk + k, and so ck - c = rc - rk - c + k = (r - 1)(c - k). But, from (1), $\lambda_{rr} = \frac{c(k-1)}{r-1}$, and so $\lambda_{rr} = c - k$. The converse is given by working backwards. Hence v = r + c - 1 if and only if $\lambda_{rr} = c - k$. Similarly we can prove that v = r + c - 1 if and only if $\lambda_{cc} = r - k$. (ii) Suppose that v = r + c - 1. Then, from (1), $v = \frac{rc}{k} = r + c - 1$. So $\frac{rc}{k} - 1 = \frac{rc-k}{k} = r + c - 2$. Now (1) gives $\mu = k$. The converse is given by working backwards.

The following Corollary was not explicitly stated in [3].

Corollary 2.2 When v = r + c - 1 every triple array is a $TA(v, k, c - k, r - k, k : r \times c)$, and every balanced grid is a $BG(v, k, k : r \times c)$.

Matching BIBD's

Let \mathcal{D}_1 be a $(v_1, b, r_1, \kappa, \lambda_1) - BIBD$ based on a v_1 -set V_1 , and \mathcal{D}_2 a $(v_2, b, r_2, \kappa, \lambda_2) - BIBD$ based on a v_2 -set V_2 , with $v_1v_2 = b\kappa$. Let the b blocks of \mathcal{D}_1 be arranged in any fixed order, and let the κ elements in each block be arranged in any fixed order. Then \mathcal{D}_1 and \mathcal{D}_2 are matching if the b blocks of \mathcal{D}_2 , and the κ elements within each block, can be arranged so that when \mathcal{D}_2 is superimposed onto \mathcal{D}_1 then each of the v_1v_2 pairs from $V_1 \times V_2$ appears exactly once amongst the $b\kappa$ pairs covered. See Preece [4] Section 6, definition (b), for an equivalent definition of matching BIBD's. Such superimpositions are generally known as Graeco-Latin designs.

Example 1 Two matching BIBD's: a (5, 10, 6, 3, 3) - BIBD based on $\{R_1, R_2, R_3, R_4, R_5\}$ and a (6, 10, 5, 3, 2) - BIBD based on $\{C_1, C_2, C_3, C_4, C_5, C_6\}$, and their superimposition.

R_1	R_2	R_3	C_1	C_4	C_5	R_1C_1	R_2C_4	R_3C_5
R_1	R_3	R_5	C_2	C_3	C_5	R_1C_2	R_3C_3	R_5C_5
R_1	R_3	R_4	C_3	C_5	C_6	R_1C_3	R_3C_6	R_4C_5
R_1	R_4	R_5	C_1	C_3	C_4	R_1C_4	R_4C_3	R_5C_1
R_1	R_2	R_5	C_1	C_5	C_6	R_1C_5	R_2C_1	R_5C_6
R_1	R_2	R_4	C_2	C_4	C_6	R_1C_6	R_2C_2	R_4C_4
R_2	R_4	R_5	C_3	C_4	C_6	R_2C_3	R_4C_6	R_5C_4
R_2	R_3	R_4	C_2	C_4	C_5	R_2C_5	R_3C_4	R_4C_2
R_2	R_3	R_5	C_1	C_2	C_6	R_2C_6	R_3C_1	R_5C_2
R_3	R_4	R_5	C_1	C_2	C_3	R_3C_2	R_4C_1	R_5C_3

Block structures \mathcal{R}^{\perp} , \mathcal{C}^{\perp} , and \mathcal{S}

Let \mathcal{A} be an arbitrary array $A(v, k : r \times c)$. Label the r rows of \mathcal{A} with R_1, R_2, \ldots, R_r , and the c columns with C_1, C_2, \ldots, C_c .

Let $\mathcal{R} = \{R_1, R_2, \ldots, R_r\}$ be the block structure composed of the *r* rows of \mathcal{A} . Similarly, let $\mathcal{C} = \{C_1, C_2, \ldots, C_c\}$ be the block structure composed of the *c* columns of \mathcal{A} .

For any $x \in V$ let $R_x^{\perp} = \{R_i \mid x \in R_i\}$. Then $\mathcal{R}^{\perp} = \{R_x^{\perp} \mid x \in V\}$ is the dual of \mathcal{R} and is a block structure based on the set $\{R_1, R_2, \ldots, R_r\}$ with v blocks each of size k. Similarly, for any $x \in V$ let $C_x^{\perp} = \{C_j \mid x \in C_j\}$. Then

 $\mathcal{C}^{\perp} = \{C_x^{\perp} \mid x \in V\}$ is the dual of \mathcal{C} and is a block structure based on the set $\{C_1, C_2, \ldots, C_c\}$ with v blocks each of size k.

Define $S_x = R_x^{\perp} \cup C_x^{\perp}$ for every $x \in V$, and let \mathcal{S} be the block structure $\{S_x \mid x \in V\}.$

By definition of a double array and matching BIBD's we have (compare Lemma 2.1 of [3]):

Lemma 2.3 Let \mathcal{A} be an arbitrary array $A(v, k : r \times c)$. Then \mathcal{A} is a double array $DA(v, k, \lambda_{rr}, \lambda_{cc} : r \times c)$ if and only if \mathcal{R}^{\perp} is a $(r, v, c, k, \lambda_{rr}) - BIBD$ and \mathcal{C}^{\perp} is a $(c, v, r, k, \lambda_{cc}) - BIBD$, and \mathcal{R}^{\perp} and \mathcal{C}^{\perp} are matching.

When \mathcal{A} is a double array we call \mathcal{R}^{\perp} its $BIBD_R$ and \mathcal{C}^{\perp} its $BIBD_C$.

Example 2 A double array $DA(10, 3, 3, 2: 5 \times 6)$ whose matching $BIBD_R$ and $BIBD_C$ were given above in Example 1.

	C_1	C_2	C_3	C_4	C_5	C_6
R_1	1	2	3	4	5	6
R_2	5	6	7	1	8	9
R_3	9	10	2	8	1	3
R_4	10	8	4	6	3	7
R_5	4	9	10	$\overline{7}$	2	5

Before the next Theorem, we need the following result of Ryser [6], Chapter 8, Theorem 2.2:

Let \mathcal{B} be an incidence structure based on a v-set with v blocks each of size k, in which any two distinct blocks intersect in the same number λ of elements. Then \mathcal{B} is a $(v, k, \lambda) - SBIBD$.

Compare the following Theorem with Theorem 5.2 of [3].

Theorem 2.4 Let \mathcal{G} be a $BG(v, k, \mu : r \times c)$ with v = r + c - 1. Then there exists a (v + 1, r, r - k)-SBIBD.

Proof. Recall the definitions of the block structures \mathcal{R}^{\perp} and \mathcal{C}^{\perp} above. Let $B_0 = \{R_1, R_2, \ldots, R_r\}$. For each $x \in V$ put $\overline{R}_x^{\perp} = B_0 \setminus R_x^{\perp}$, then $|\overline{R}_x^{\perp}| = r - k$.

Let $B_x = \overline{R}_x^{\perp} \cup C_x^{\perp}$ for each $x \in V$. Then $|B_x| = (r-k) + k = r$. Now consider the block structure $\mathcal{B} = \{B_x | x \in V\} \cup \{B_0\}$. It is based on the r + c = v + 1 elements from $\mathcal{R} \cup \mathcal{C} = \{R_1, R_2, \ldots, R_r, C_1, C_2, \ldots, C_c\}$ and has v + 1 blocks each of size r. We now show that \mathcal{B} is the required (v + 1, r, r - k) - SBIBD.

Now \mathcal{G} is a BG in which every pair $\{x, y\}$ occurs $\mu = k$ (Lemma 2.1(*ii*)) times, so $|S_x^{\perp} \cap S_y^{\perp}| = |R_x^{\perp} \cap R_y^{\perp}| + |C_x^{\perp} \cap C_y^{\perp}| = k$. We have:

$$\begin{aligned} |B_x \cap B_y| &= |\overline{R}_x^{\perp} \cap \overline{R}_y^{\perp}| + |C_x^{\perp} \cap C_y^{\perp}| \\ &= |\overline{R}_x^{\perp}| + |\overline{R}_y^{\perp}| - |\overline{R}_x^{\perp} \cup \overline{R}_y^{\perp}| + |C_x^{\perp} \cap C_y^{\perp}| \\ &= (r-k) + (r-k) - |\overline{R_x^{\perp} \cap R_y^{\perp}}| + |C_x^{\perp} \cap C_y^{\perp}| \\ &= 2r - 2k - (r - |R_x^{\perp} \cap R_y^{\perp}|) + |C_x^{\perp} \cap C_y^{\perp}| \\ &= r - 2k + (|R_x^{\perp} \cap R_y^{\perp}| + |C_x^{\perp} \cap C_y^{\perp}|) \\ &= r - 2k + k = r - k. \end{aligned}$$

Also, for all $x \in V$, we have $|B_x \cap B_0| = r - k$. Thus any two distinct blocks of \mathcal{B} intersect in r - k elements. So, from Ryser's result above, \mathcal{B} is a (v+1, r, r-k) - SBIBD.

Next is the converse to Theorem 6.1 of [3]:

Theorem 2.5 Let v = r+c-1. Every $BG(v, k, k : r \times c)$ is a $TA(v, k, c-k, r-k, k : r \times c)$.

Proof. Let \mathcal{G} be a $BG(v, k, k : r \times c)$. Recall from Theorem 2.4 above that \mathcal{B} is a (v+1, r, r-k) - SBIBD. The construction of \mathcal{B} from \mathcal{R}^{\perp} and \mathcal{C}^{\perp} gives: Firstly, \mathcal{R}^{\perp} is the complement of the derived design of \mathcal{B} with respect to block B_0 , hence \mathcal{R}^{\perp} is a (r, v, c, k, c - k) - BIBD. Secondly, \mathcal{C}^{\perp} is the residual design of \mathcal{B} with respect to B_0 , hence \mathcal{C}^{\perp} is a (c, v, r, k, r - k) - BIBD. Since \mathcal{R}^{\perp} and \mathcal{C}^{\perp} are also constructed from an array, they are matching. Hence, via Lemma 2.3, \mathcal{G} is a double array, a $DA(v, k, c - k, r - k : r \times c)$.

Consider any pair $\{R_i, C_j\}$. Then C_j occurs r times in the first v blocks of \mathcal{B} , and pair $\{R_i, C_j\}$ occurs r - k times in these blocks. So, amongst the first v blocks of \mathcal{B} , there are r - (r - k) = k blocks which do not contain R_i but do contain C_j . Hence, in \mathcal{S} , there are k blocks containing pair $\{R_i, C_j\}$. Thus $|R_i \cap C_j| = k$ for every i and j, and so \mathcal{G} is a triple array, a $TA(v, k, c - k, r - k, k : r \times c)$.

Using Theorem 6.1 from [3] and Corollary 2.2 above, we have:

Theorem 2.6 Let v = r + c - 1. Then every triple array is a $TA(v, k, c - k, r - k, k : r \times c)$ and every balanced grid is a $BG(v, k, k : r \times c)$, and they are equivalent.

Example 3 An array \mathcal{A} , a $A(10, 3: 5 \times 6)$, which is both a balanced grid $BG(10, 3, 3: 5 \times 6)$ and a triple array $TA(10, 3, 3, 2, 3: 5 \times 6)$. The three block structures shown are its $BIBD_R$, a (5, 10, 6, 3, 3) - BIBD; its $BIBD_C$, a (6, 10, 5, 3, 2) - BIBD; and \mathcal{B} , a (11, 5, 2) - SBIBD.

	C_1	C_2	C_3	C_4	C_5	C_6
R_1	1	2	3	4	5	6
R_2	4	$\overline{7}$	1	3	8	9
R_3	2	5	10	8	9	3
R_4	10	8	7	6	1	2
R_5	9	4	5	10	6	7

R_1	R_2	R_4	C_1	C_3	C_5	R_3	R_5	C_1	C_3	C_5
R_1	R_3	R_4	C_1	C_2	C_6	R_2	R_5	C_1	C_2	C_6
R_1	R_2	R_3	C_3	C_4	C_6	R_4	R_5	C_3	C_4	C_6
R_1	R_2	R_5	C_1	C_2	C_4	R_3	R_4	C_1	C_2	C_4
R_1	R_3	R_5	C_2	C_3	C_5	R_2	R_4	C_2	C_3	C_5
R_1	R_4	R_5	C_4	C_5	C_6	R_2	R_3	C_4	C_5	C_6
R_2	R_4	R_5	C_2	C_3	C_6	R_1	R_3	C_2	C_3	C_6
R_2	R_3	R_4	C_2	C_4	C_5	R_1	R_5	C_2	C_4	C_5
R_2	R_3	R_5	C_1	C_5	C_6	R_1	R_4	C_1	C_5	C_6
R_3	R_4	R_5	C_1	C_3	C_4	R_1	R_2	C_1	C_3	C_4
						R_1	R_2	R_3	R_4	R_5

Agrawal's Conjecture

The second paragraph in the proof of Theorem 2.5 above is essentially Agrawal's method of constructing a triple array $TA(v, k, c-k, r-k, k: r \times c)$ with v = r+c-1 from a (v+1, r, r-k)-SBIBD with k > 2, see Agrawal [1]. It seems worthwhile to restate his conjecture in terms of matching BIBD's:

Let S be a $(v_s, k_s, \lambda_s) - SBIBD$ with $k_s - \lambda_s > 2$. For any fixed block S_0 let S_{der} denote the derived design of S with respect to S_0 , and let S_{res} denote the residual design of S with respect to S_0 .

Then the complement of S_{der} and S_{res} are matching.

An incorrect proof of this conjecture appeared in Raghavarao and Nageswararao [5], as was pointed out in Bailey and Heidtmann [2], and Wallis and Yucas [7]. It appears that this conjecture is still open.

If Agrawal's conjecture is correct then any $(v_s, k_s, \lambda_s) - SBIBD$ with $k_s - \lambda_s > 2$ gives rise to a $TA(v_s - 1, k_s - \lambda_s, v_s - 2k_s + \lambda_s, \lambda_s, k_s - \lambda_s : k_s \times (v_s - k_s))$, a triple array with 'v = r + c - 1'.

References

- H.Agrawal. Some methods of construction of designs for two-way elimination of heterogeneity, J. Amer. Statist. Assoc. Vol.61, No.1, (1966), pp.1153–1171.
- [2] R.A.Bailey, P.Heidtmann. Personal communication.
- [3] J.P.McSorley, N.C.K.Phillips, W.D.Wallis, J.L.Yucas. Double Arrays, Triple Arrays, and Balanced Grids, Designs, Codes, and Cryptography. Vol.35, (2005), pp.21–45.
- [4] D.A.Preece. Non-orthogonal Graeco-Latin designs, Combinatorial Mathematics IV, Lecture Notes in Mathematics 560, Springer-Verlag, (1976), pp.7–26.
- [5] D.Raghavarao, G.Nageswararao. A note on a method of construction of designs for two-way elimination of heterogeneity, Commun. Statist. Vol.3, (1974), pp.197–199.
- [6] H.Ryser. *Combinatorial Mathematics*, Carus Mathematical Monographs 14, Mathematical Association of America, (1963).
- [7] W.D.Wallis, J.L.Yucas. Note on the construction of designs for the elimination of heterogeneity, Jour. Combin. Maths. Combin. Comput. Vol.46, (2003), pp.155–160.