Comment on "The Expectation Of Independent Domination Number Over Random Binary Trees"

L.H. Clark and J.P. McSorley
Department of Mathematics
Southern Illinois University Carbondale
Carbondale, IL 62901-4408

Lee [3] purportedly derives an asymptotic formula for the expected independent domination number of a uniformly random binary tree. We review the derivation in [3] of an asymptotic formula for the expectation using the notation therein, then we point out and correct several errors in the derivation.

The number of binary trees with $2 n+1$ vertices is

$$
y_{2 n+1}=\frac{\binom{2 n}{n}}{n+1}
$$

Let $\mu(2 n+1)$ denote the expected value of the independent domination number of a binary tree chosen uniformly at random. The ordinary generating function for $\left\{\mu(2 n+1) y_{2 n+1}\right\}$ is $M=M(x)=\sum_{n=0}^{\infty} \mu(2 n+$ 1) $y_{2 n+1} x^{2 n+1}$. Then

$$
M(x)=\frac{2 x}{\sqrt{1-4 x^{2}}\left(1+\sqrt{1-4 x^{2}}\right)\left(2-\sqrt{1-4 x^{2}}\right)}
$$

hence,

$$
\begin{aligned}
M_{*}(u) & :=\sum_{n=0}^{\infty} \mu(2 n+1) y_{2 n+1} u^{n} \\
& =\frac{2}{\sqrt{1-4 u}(1+\sqrt{1-4 u})(2-\sqrt{1-4 u})}
\end{aligned}
$$

Then

$$
A(u)=\frac{2}{(1+\sqrt{1-4 u})(2-\sqrt{1-4 u})}
$$

has power series in u with radius of convergence $\rho_{1}=1 / 4$ which converges absolutely at $u=1 / 4$, and,

$$
B(u)=\sum_{n=0}^{\infty} b_{n} u^{n}=\frac{1}{\sqrt{1-4 u}}=\sum_{n=0}^{\infty}(-4)^{n}\binom{-\frac{1}{2}}{n} u^{n}
$$

has radius of convergence $\rho_{2}=1 / 4, b_{n}>0$ for all n, and $\lim _{n \rightarrow \infty} b_{n-1} / b_{n}=$ $1 / 4$. At this point the following result in [3] is used.
"To determine the asymptotic behavior of $\mu(2 n+1) /(2 n+1)$, we need the following lemma, which is a slight modification of Theorem 2 in [1]; we omit the proof.

Lemma 5. Let $A(u)=\sum_{n=0}^{\infty} a_{n} u^{n}$ and $B(u)=\sum_{n=0}^{\infty} b_{n} u^{n}$ be power series with radii of convergence $\rho_{1} \geq \rho_{2}$, respectively. Suppose that $A(u)$ converges absolutely at $u=\rho_{1}$. Suppose that $b_{n}>0$ for all n and that b_{n-1} / b_{n} approaches a limit b as $n \rightarrow \infty$. If $\sum_{n=0}^{\infty} c_{n} u^{n}=A(u) B(u)$, then $c_{n} \sim A(b) b_{n} . "$

The author then applies Lemma 5 to $M_{*}(u)=A(u) B(u)$ with $\rho_{1}=\rho_{2}=$ $1 / 4$ to find an asymptotic formula for $\mu(2 n+1) y_{2 n+1}$, hence, for $\mu(2 n+1)$.

Unfortunately Lemma 5, as we will demonstrate, is false in general for any $\rho_{1}=\rho_{2}>0$: the condition " $\rho_{1} \geq \rho_{2}$ " must be replaced with " $\rho_{1}>\rho_{2}$ " and the condition " $A(b) \neq 0$ " must be added in which case the conditions " $A(u)$ converges absolutely at $u=\rho_{1}$ " and " $b_{n}>0$ for all n " may be omitted. See Bender [1; Theorem 2] for a correct statement and a very brief indication of a proof or see Odlyzko [4; Theorem 7.1] for a correct statement without proof. Consequently, the derivation in [3] of an asymptotic formula for $\mu(2 n+1)$ is not valid.

Counter-examples to Lemma 5 for any $\rho_{1}=\rho_{2}=r>0$ are readily found.

Fix $r>0$. Let

$$
A(u)=\sum_{n=0}^{\infty} \frac{u^{n}}{r^{n}(n+1)^{2}}=B(u)
$$

which have radius of convergence r. Then $A(u)$ converges absolutely on the circle of convergence $|u|=r$ and $A(r)=\zeta(2)=\pi^{2} / 6$. In addition,
$b_{n}=1 / r^{n}(n+1)^{2}>0$ for all n and $\lim _{n \rightarrow \infty} b_{n-1} / b_{n}=r$. Here

$$
A(u) B(u)=\sum_{n=0}^{\infty}\left\{\frac{1}{r^{n}} \sum_{k=0}^{n} \frac{1}{(k+1)^{2}(n-k+1)^{2}}\right\} u^{n}=\sum_{n=0}^{\infty} c_{n} u^{n}
$$

Further

$$
\begin{aligned}
\sum_{k=0}^{n} \frac{(n+2)^{2}}{(k+1)^{2}(n-k+1)^{2}} & =\sum_{k=0}^{n}\left\{\frac{1}{k+1}+\frac{1}{n-k+1}\right\}^{2} \\
& =2 \sum_{k=0}^{n} \frac{1}{(k+1)^{2}}+2 \sum_{k=0}^{n} \frac{1}{(k+1)(n-k+1)}
\end{aligned}
$$

Now $f(x)=1 /(x+1)(n-x+1)$ decreases on $[0, n / 2]$ and increases on $[n / 2, n]$. For integer $\Delta \in[1, n / 2]$,

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{1}{(k+1)(n-k+1)} \\
= & 2 \sum_{k=0}^{\Delta-1} \frac{1}{(k+1)(n-k+1)}+\sum_{k=\Delta}^{n-\Delta} \frac{1}{(k+1)(n-k+1)} \\
\leq & \frac{2 \Delta}{n+1}+\frac{n-2 \Delta+1}{(\Delta+1)(n-\Delta+1)} .
\end{aligned}
$$

Setting $\Delta=\lceil\sqrt{n}\rceil$, for example, gives
$0 \leq \sum_{k=0}^{n} \frac{1}{(k+1)(n-k+1)} \leq \frac{2 \sqrt{n}+2}{n+1}+\frac{n-2 \sqrt{n}+1}{(\sqrt{n}+1)(n-\sqrt{n})} \rightarrow 0$ as $n \rightarrow \infty$.
Consequently,

$$
\begin{aligned}
r^{n}(n+2)^{2} c_{n} & =\sum_{k=0}^{n} \frac{(n+2)^{2}}{(k+1)^{2}(n-k+1)^{2}} \\
& =2 \sum_{k=0}^{n} \frac{1}{(k+1)^{2}}+2 \sum_{k=0}^{n} \frac{1}{(k+1)(n-k+1)} \\
& \rightarrow \frac{\pi^{2}}{3} \text { as } n \rightarrow \infty,
\end{aligned}
$$

which implies

$$
r^{n}(n+1)^{2} c_{n}=\frac{(n+1)^{2}}{(n+2)^{2}} r^{n}(n+2)^{2} c_{n} \rightarrow \frac{\pi^{2}}{3} \text { as } n \rightarrow \infty
$$

i.e.,

$$
c_{n} \sim 2 A(r) b_{n} \text { as } n \rightarrow \infty
$$

and not

$$
c_{n} \sim A(r) b_{n} \text { as } n \rightarrow \infty
$$

as claimed in Lemma 5 in [3] ($r=b$ here). Further counter-examples are given by

$$
A(u)=\sum_{n=0}^{\infty} \frac{u^{n}}{r^{n}(n+1)^{s}}=B(u) \quad(s-1 \in \mathbb{P}) .
$$

We now give a correct derivation of an asymptotic formula for $\mu(2 n+1)$. Darboux's Theorem (cf. Odlyzko [4; Theorem 11.7]) evidently does not apply since $A(u)$ in [3] is not analytic in a neighborhood of $u=1 / 4$ for any branch of $\sqrt{1-4 u}$. We use a transfer theorem of Flajolet and Odlyzko [2; Theorem 5] (cf. Odlyzko [4; Section 11.1] for definitions, notation and statement of Theorem 11.4).

Consider the closed domain $\Delta=\Delta(1, \pi / 8,1)$ and the function $L(u)=1$ of slow variation at ∞. Then

$$
M_{*}\left(\frac{u}{4}\right)=\frac{2}{\sqrt{1-u}(1+\sqrt{1-u})(2-\sqrt{1-u})}
$$

is analytic on $\Delta-\{1\}$ where we take the principal branch of the square root. Consequently,

$$
M_{*}\left(\frac{u}{4}\right) \sim \frac{1}{\sqrt{1-u}}=(1-u)^{-1 / 2} L\left(\frac{1}{1-u}\right)
$$

uniformly as $u \rightarrow 1$ on $\Delta-\{1\}$. Then Theorem 11.4 (C) of [4] implies

$$
\frac{\mu(2 n+1) y_{2 n+1}}{4^{n}}=\left[u^{n}\right] M_{*}\left(\frac{u}{4}\right) \sim \frac{n^{-1 / 2}}{\Gamma(1 / 2)} L(n)=\frac{n^{-1 / 2}}{\sqrt{\pi}} \text { as } n \rightarrow \infty .
$$

Stirling's Formula implies

$$
\binom{2 n}{n}=\frac{n^{-1 / 2} 4^{n}}{\sqrt{\pi}}(1+o(1)) \text { as } n \rightarrow \infty
$$

hence,

$$
\mu(2 n+1) \sim n+1 \sim \frac{2 n+1}{2} \text { as } n \rightarrow \infty .
$$

References

1. E.A. Bender, Asymptotic Methods in Enumeration, SIAM Rev. 16 (1974), 485-515.
2. P. Flajolet and A.M. Odlyzko, Singularity Analysis of Generating Functions, SIAM J. Discrete Math. 3 (1990), 216-240.
3. C. Lee, The Expectation of Independent Domination Number over Random Binary Trees, Ars Combinatoria 56 (2000), 201-209.
4. A.M. Odlyzko, Asymptotic Enumeration Methods, in : Handbook of Combinatorics V.2, (R.L. Graham, M. Grötshel and L. Lovász Eds.), Elsevier Science B.V., New York, NY, 1995, pps. 1063-1229.
