Rhombic tilings of (n, k)-Ovals, (n, k, λ)-cyclic difference sets, and related topics

John P. McSorley*, Alan H. Schoen
Department of Mathematics
Mailcode 4408
Southern Illinois University Carbondale, IL 62901-4408 mcsorley60@hotmail.com alan_schoen@frontier.com
* Corresponding author

Abstract

Each fixed integer n has associated with it $\left\lfloor\frac{n}{2}\right\rfloor$ rhombs: $\rho_{1}, \rho_{2}, \ldots, \rho_{\left\lfloor\frac{n}{2}\right\rfloor}$, where, for each $1 \leq h \leq\left\lfloor\frac{n}{2}\right\rfloor$, rhomb ρ_{h} is a parallelogram with all sides of unit length and with smaller face angle equal to $h \times \frac{\pi}{n}$ radians.

An Oval is a centro-symmetric convex polygon all of whose sides are of unit length, and each of whose turning angles equals $\ell \times \frac{\pi}{n}$ for some positive integer ℓ. An (n, k)-Oval is an Oval with $2 k$ sides tiled with rhombs $\rho_{1}, \rho_{2}, \ldots, \rho_{\left\lfloor\frac{n}{2}\right\rfloor}$; it is defined by its Turning Angle Index Sequence, a k-composition of n. For any fixed pair (n, k) we count and generate all (n, k)-Ovals up to translations and rotations, and, using multipliers, we count and generate all (n, k)-Ovals up to congruency. For odd n if an (n, k)-Oval contains a fixed number λ of each type of rhomb $\rho_{1}, \rho_{2}, \ldots, \rho_{\left\lfloor\frac{n}{2}\right\rfloor}$ then it is called a magic (n, k, λ) Oval. We prove that a magic (n, k, λ)-Oval is equivalent to a (n, k, λ) Cyclic Difference Set. For even n we prove a similar result. Using tables of Cyclic Difference Sets we find all magic (n, k, λ)-Ovals up to congruency for $n \leq 40$.

Many related topics including lists of (n, k)-Ovals, partitions of the regular $2 n$-gon into Ovals, Cyclic Difference Families, partitions of triangle numbers, u-equivalence of (n, k)-Ovals, etc., are also considered.

Keywords: rhomb; tiling; polygon; oval; cyclic difference set; multiplier.

1 Introduction

An (n, k)-Oval is a centro-symmetric convex polygon all of whose sides are of unit length, and which is tiled by rhombs; see p. 141 of Ball and Coxeter [1] and Section 3.1 of Schoen [8]. In this paper we investigate (n, k)-Ovals; it appears that this is the first significant piece of research concerning (n, k) Ovals to be published in the mathematical literature. A preliminary version of some of this research first appeared in Schoen [8]. See Fig. 1 for an example of a (15, 6)-Oval.

$$
\begin{aligned}
& \operatorname{TAIS}(\mathcal{X})=\left[\begin{array}{llllll}
4 & 2 & 1 & 4 & 1
\end{array}\right] \\
& \operatorname{RIV}(\mathcal{X})=(2,1,2,2,4,2,2)
\end{aligned}
$$

Figure 1: A $(15,6)$-Oval, \mathcal{X}, its TAIS and RIV.

In Section 2 of this paper we define an (n, k)-Oval using its Turning Angle Index Sequence (TAIS); we count all (n, k)-Ovals equivalent up to translations and rotations. We introduce the concept of a multiplier for an (n, k)-Oval and show how to generate all (n, k)-Ovals using multipliers.

In Section 3 we show the geometrical meaning of multiplier -1 for an (n, k)-Oval. We count those (n, k)-Ovals with multiplier -1 , and those without multiplier -1 . We define congruency for (n, k)-Ovals and count (n, k) Ovals up to congruency.

In Section 4 we define the Rhombic Inventory Vector (RIV) of an (n, k) Oval. This vector contains the number of each type of rhomb that an (n, k) Oval contains. For each $2 \leq n \leq 10$ we list all (n, k)-Ovals up to congruency, and compute their RIVs.

In Section 5 we study magic (n, k, λ)-Ovals. For odd n a magic (n, k, λ) Oval contains a fixed number $\lambda \geq 1$ of each type of rhomb $\rho_{1}, \rho_{2}, \ldots, \rho_{\left\lfloor\frac{n}{2}\right\rfloor}$; there is a similar definition for even n. We prove that a magic (n, k, λ) Oval is equivalent to a (n, k, λ)-Cyclic Difference Set. Using tables of Cyclic Difference Sets we find all non-trivial magic (n, k, λ)-Ovals up to congruency for $n \leq 40$.

In Section 6 the rhombs of the regular $2 n$-gon are partitioned into Ovals. Cyclic Difference Families are introduced and are shown to be equivalent to various Oval partitions; we also consider relevant integer partitions of the triangular number $\binom{n}{2}$.

In Section 7 we define u-equivalence for (n, k)-Ovals. The RIV's of two u equivalent (n, k)-Ovals are closely related to each other. For each $2 \leq n \leq 10$ we list all (n, k)-Ovals up to u-equivalence .

$2(n, k)$-Ovals, TAIS, the number of (n, k)-Ovals, multipliers, generating all (n, k)-Ovals

Each fixed integer $n \geq 2$ has associated with it $\left\lfloor\frac{n}{2}\right\rfloor$ rhombs: $\rho_{1}, \rho_{2}, \ldots, \rho_{\left\lfloor\frac{n}{2}\right\rfloor}$. For each $1 \leq h \leq\left\lfloor\frac{n}{2}\right\rfloor$ rhomb ρ_{h} is a parallelogram with all sides of unit length and with smaller face angle equal to $h \times \frac{\pi}{n}$ radians; h is the principal index of the rhomb. The index of an adjacent face angle is $n-h$. The 7 rhombs for $n=15$ are shown in Fig. 2.

Definitions 2.1 Centro-symmetric, turning angle, Oval
(1) A polygon is centro-symmetric if it is unchanged by a rotation of π radians (half a circle).
(2) The turning angle at a vertex of a polygon is the supplement of the interior angle at that vertex.
(3) An Oval is a centro-symmetric convex polygon all of whose sides are of unit length, and each of whose turning angles equals $\ell \times \frac{\pi}{n}$ for some positive integer ℓ.

Every Oval necessarily has an even number of sides, which are arranged in k parallel pairs.

Definitions $2.2(n, k)$-Oval, Turning Angle Index Sequence-TAIS

(1) An (n, k)-Oval is an Oval with $2 k$ sides; it is described by the pair (n, k) and by its
(2) Turning Angle Index Sequence (TAIS), a list of the turning angle indices for any k consecutive vertices.

We denote an arbitrary (n, k)-Oval by \mathcal{O} and specify a stem vertex of \mathcal{O}; the TAIS of \mathcal{O} is then the list of turning angle indices at the k consecutive vertices taken in a counter-clockwise direction starting from the first vertex after the stem vertex.

Remark 2.3 The TAIS T of an (n, k)-Oval is simply a k-composition of n, i.e., an ordered list of k positive integers that sum to n : $T=\left[t_{1} t_{2} \cdots t_{k}\right]$ with each $t_{i} \geq 1$ and $\sum_{i=1}^{k} t_{i}=n$.

Figure 2: The 7 rhombs, and their principal indices, corresponding to $n=15$.

Example 2.4 The regular $2 n$-gon, $\{2 n\}$, is an (n, n)-Oval with TAIS $=\underbrace{\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]}_{n}$. See Fig. 5 for a picture of the regular 12 -gon, $\{12\}$.

Example 2.5 $\quad(n, k)=(15,6)$. In Fig. 3(a) we show the $(15,6)$-Oval \mathcal{X} with TAIS $T=\left[\begin{array}{llllll}4 & 3 & 2 & 1 & 4 & 1\end{array}\right]$. We write $\mathcal{X}=\mathcal{O}(T)=\mathcal{O}\left(\left[\begin{array}{llll}4 & 2 & 1 & 4\end{array}\right]\right)$. In (b) the turning angle index at each vertex of \mathcal{X} is shown, as well as all indices of the $\binom{6}{2}=15$ rhombs in \mathcal{X}. Note that the indices along the straight line at an 'external' vertex sum to $n=15$, and the indices around an 'internal' vertex sum to $2 n=30$.

Figure 3: See Fig. 1. The (15, 6)-Oval \mathcal{X} with TAIS $T=\left[\begin{array}{lllll}4 & 3 & 2 & 1 & 4\end{array}\right]$.

Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ where $0 \leq s_{1}<s_{2}<\cdots<s_{k}$ be a k-subset of \mathbb{Z}_{n} with increasing elements. Throughout this paper the elements of S will always be written in increasing order.

Let $U(n)$ denote the group of units modulo n, i.e., the multiplicative group of elements relatively prime to n.

Definitions $2.6 u S+z, z$-equivalent and \equiv_{z}, cyclically-equivalent and $\equiv_{\text {cyc }}$
(1) $u S+z=\left\{u s_{1}+z, u s_{2}+z, \ldots, u s_{k}+z\right\} \subseteq \mathbb{Z}_{n}$ for $u \in U(n)$ and $z \in \mathbb{Z}_{n}$.
(2) Two k-subsets S and S^{\prime} of \mathbb{Z}_{n} are z-equivalent, $S \equiv_{z} S^{\prime}$, if there exists $z \in \mathbb{Z}_{n}$ such that $S=S^{\prime}+z$.
(3) Two TAIS's T and T^{\prime} are cyclically-equivalent, $T \equiv_{\mathrm{cyc}} T^{\prime}$, if T^{\prime} is a cyclic permutation of T.

Remark 2.7 As an example of (3) above:

$$
\left[t_{1} t_{2} t_{3} t_{4}\right] \equiv_{\operatorname{cyc}}\left[t_{4} t_{1} t_{2} t_{3}\right] \equiv_{\mathrm{cyc}}\left[t_{3} t_{4} t_{1} t_{2}\right] \equiv_{\operatorname{cyc}}\left[t_{2} t_{3} t_{4} t_{1}\right]
$$

Sometimes we use $=$ in place of \equiv_{z} or $\equiv_{\text {cyc }}$ for convenience.
Let $\mathcal{S}^{*}(n, k)$ denote the set of all k-subsets $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$ where $0 \leq s_{1}<s_{2}<\cdots<s_{k}$. Then \equiv_{z} is an equivalence relation on $\mathcal{S}^{*}(n, k)$. We denote the set of equivalences classes of \equiv_{z} by $\mathcal{S}_{\equiv z}^{*}(n, k)$. In an equivalence class $[S]_{\equiv_{z}}$ or $[S]$ we often use as representative the lowest member of $[S]$ in lexicographic ordering.

Let $\mathcal{T}^{*}(n, k)$ denote the set of all k-compositions of n, i.e., the set of TAIS T for all (n, k)-Ovals. Then $\equiv_{\text {cyc }}$ is an equivalence relation on $\mathcal{T}^{*}(n, k)$. We denote the set of equivalences classes of $\equiv_{\text {cyc }}$ by $\mathcal{T}_{\equiv \text { cyc }}^{*}(n, k)$, and a typical equivalences class by $[T]_{\equiv \text { cyc }}$ or $[T]$.

Theorem 2.12 below gives a bijection between the sets $\mathcal{S}_{\Xi_{z}}^{*}(n, k)$ and $\mathcal{T}_{\equiv \text { ㄷyc }}^{*}(n, k)$.

Definitions $2.8 \quad \alpha(S)$ and $\mathcal{O}(\alpha(S))$ or $\mathcal{O}(T), \beta(T)$
Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$ where $0 \leq s_{1}<s_{2}<\cdots<s_{k}$.
(1) $\alpha(S)$ is the ordered k-tuple

$$
\alpha(S)=\left[s_{2}-s_{1}, s_{3}-s_{2}, \ldots, s_{k}-s_{k-1}, s_{1}-s_{k}\right]
$$

(note that $s_{1}-s_{k}$ will be negative, it must be replaced with $n-s_{1}+s_{k}$). Then $\mathcal{O}(\alpha(S))=\mathcal{O}(T)$ is the (n, k)-Oval with TAIS $\alpha(S)=T$.

Let $T=\left[t_{1} t_{2} \cdots t_{k}\right]$ be the TAIS of an (n, k)-Oval.
(2) $\beta(T)$ is the increasing k-subset of \mathbb{Z}_{n}

$$
\beta(T)=\beta\left(\left[t_{1} t_{2} \cdots t_{k}\right]\right)=\left\{0, t_{1}, t_{1}+t_{2}, \ldots, t_{1}+t_{2}+\cdots+t_{k-1}\right\} .
$$

Remark 2.9 See similar definitions on p. 221 of Beth, Jungnickel, and Lenz [3].

Example $2.10(n, k)=(15,6)$. For the $(15,6)$-Oval \mathcal{X} of Example 2.5 with TAIS $T=\left[\begin{array}{llllll}4 & 3 & 2 & 1 & 4 & 1\end{array}\right]$ we have $X=S=\beta(T)=\{0,4,7,9,10,14\}$, then $\alpha(X)=T$.

Compare the following Theorem with Lemma 9.8, p. 221 of [3].
Theorem 2.11 Let S and S^{\prime} be k-subsets of \mathbb{Z}_{n}. Then $S \equiv_{z} S^{\prime}$ if and only if $\alpha(S) \equiv_{\text {cyc }} \alpha\left(S^{\prime}\right)$.

Proof. Necessity: as usual let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ where $0 \leq s_{1}<s_{2}<$ $\ldots<s_{k}$ and $\alpha(S)=\left[s_{2}-s_{1}, \ldots, s_{k}-s_{k-1}, s_{1}-s_{k}\right]$. Suppose $S \equiv_{z} S^{\prime}$ then there exists $z \in \mathbb{Z}_{n}$ with

$$
\begin{aligned}
S^{\prime}=S+z & =\left\{s_{1}+z, s_{2}+z, \ldots, s_{k}+z\right\} \\
& =\left\{s_{i}+z, s_{i+1}+z, \ldots, s_{k}+z, s_{1}+z, s_{2}+z, \ldots, s_{i-1}+z\right\}
\end{aligned}
$$

where $0 \leq s_{i}+z<s_{i+1}+z<\ldots<s_{i-1}+z$ is an increasing sequence for some $i=1,2, \ldots, k$. So

$$
\begin{aligned}
\alpha\left(S^{\prime}\right) & =\left[s_{i+1}-s_{i}, \ldots, s_{1}-s_{k}, s_{2}-s_{1}, \ldots, s_{i-1}-s_{i-2}, s_{i}-s_{i-1}\right] \\
& \equiv{ }_{\operatorname{cyc}}\left[s_{2}-s_{1}, \ldots, s_{i-1}-s_{i-2}, s_{i}-s_{i-1}, s_{i+1}-s_{i}, \ldots, s_{1}-s_{k}\right] \\
& =\alpha(S), \text { as required. }
\end{aligned}
$$

Sufficiency: if $\alpha(S) \equiv_{\text {cyc }} \alpha\left(S^{\prime}\right)$ then $\alpha\left(S^{\prime}\right)$ is a cyclic permutation of $\alpha(S)$. Without loss of generality let $\alpha(S)=\left[t_{1} t_{2} \cdots t_{k}\right]$ and $\alpha\left(S^{\prime}\right)=\left[t_{i} t_{i+1} \cdots t_{k} t_{1} \cdots t_{i-1}\right]$ for some $i=1,2, \ldots, k$. Then $\beta(\alpha(S))=\left\{0, t_{1}, t_{1}+t_{2}, \ldots, t_{1}+\cdots+t_{k-1}\right\}$ and

$$
\begin{aligned}
\beta\left(\alpha\left(S^{\prime}\right)\right) & =\left\{0, t_{i}, t_{i}+t_{i+1}, \ldots, t_{i}+\cdots+t_{k}+t_{1}+\cdots+t_{i-2}\right\} \\
& =\beta(\alpha(S))+\left(t_{i}+\cdots+t_{k}\right) \\
& \equiv_{z} \beta(\alpha(S)) .
\end{aligned}
$$

So $\beta\left(\alpha\left(S^{\prime}\right)\right) \equiv{ }_{z} \beta(\alpha(S))$, but from Definitions 2.8 we have $\beta(\alpha(S))=S-$ $s_{1} \equiv_{z} S$ for any S, and so $S \equiv_{z} S^{\prime}$ as required.

Theorem 2.12 Let $\alpha_{\equiv}: \mathcal{S}_{\equiv \equiv_{z}}^{*}(n, k) \leftrightarrow \mathcal{T}_{\equiv \text { cyc }}^{*}(n, k)$ be given by $\alpha_{\equiv}([S]) \leftrightarrow$ $[\alpha(S)]$. Then α_{\equiv} is a bijection, and $\left|\mathcal{S}_{\equiv z}^{*}(n, k)\right|=\left|\mathcal{T}_{\equiv \text { cyc }}^{*}(n, k)\right|$.
Remark 2.13 Geometrically speaking, if two TAIS's T and T^{\prime} are cyclicallyequivalent, then the Ovals $\mathcal{O}(T)$ and $\mathcal{O}\left(T^{\prime}\right)$ can be 'moved' to one another in the plane using translations and rotations, a reflection is not required; we write $\mathcal{O}(T)=\mathcal{O}\left(T^{\prime}\right)$. The converse is also true. Thus $T \equiv_{\text {cyc }} T^{\prime}$ if and only if $\mathcal{O}(T)=\mathcal{O}\left(T^{\prime}\right)$.
Definitions $2.14 \quad \mathcal{O}^{*}(n, k), \mathcal{O}(n, k)$
(1) $\mathcal{O}^{*}(n, k)$ is the set of (n, k)-Ovals equivalent up to translations and rotations.
(2) $\mathcal{O}(n, k)=\left|\mathcal{O}^{*}(n, k)\right|$ is the number of (n, k)-Ovals equivalent up to translations and rotations.

Each Oval in $\mathcal{O}^{*}(n, k)$ has associated with it an equivalence class $[T]$ in $\mathcal{T}_{\equiv \text { =cyc }}^{*}(n, k)$, and conversely each equivalence class $[T]$ in $\mathcal{T}_{\equiv \text { cyc }}^{*}(n, k)$ gives an Oval $\mathcal{O}(T)$ in $\mathcal{O}^{*}(n, k)$. So $\mathcal{O}(n, k)=\left|\mathcal{T}_{\equiv \text { eyc }}^{*}(n, k)\right|$. This function is wellknown to be the number of necklaces of size n with k white and $n-k$ black beads; for an explicit calculation of $\mathcal{O}(n, k)$ see p. 468 of Van Lint and Wilson [10]. Thus, letting $\operatorname{gcd}(n, k)$ denote the greatest common divisor of n and k, and $\phi(x)$ denote Euler's totient function, we have the following.

Theorem 2.15 For $n \geq 2$ and $k \geq 2$, the number of (n, k)-Ovals is

$$
\begin{equation*}
\mathcal{O}(n, k)=\frac{1}{n} \sum_{d \mid \operatorname{gcd}(n, k)} \phi(d)\binom{\frac{n}{d}}{\frac{k}{d}} . \tag{1}
\end{equation*}
$$

2.1 Multipliers, generating all (n, k)-Ovals

We wish to generate all Ovals in $\mathcal{O}^{*}(n, k)$. To do this we find a representative of each equivalence class $[S]$ in $\mathcal{S}_{\overline{\# n}_{z}^{*}}^{*}(n, k)$ and then use Theorem 2.12 to find a representative of each equivalence class $[T]$ in $\mathcal{T}_{\equiv \text { cyc }}^{*}(n, k)$.

Definitions $2.16 \quad$ multiplier m and $\operatorname{mult}(S), \operatorname{mult}(\mathcal{O})$
Let S be a k-subset of \mathbb{Z}_{n} :
(1) $m \in U(n)$ is a multiplier of S if $S \equiv_{z} m S$, i.e., if there exists $z \in \mathbb{Z}_{n}$ with $S=m S+z$. The set of multipliers of S is $\operatorname{mult}(S)$.

Let $\mathcal{O}(T)$ be a (n, k)-Oval with TAIS T :
(2) $m \in U(n)$ is a multiplier of $\mathcal{O}(T)$ if m is a multiplier of $S=\beta(T)$. The set of multipliers of $\mathcal{O}(T)$ is $\operatorname{mult}(\mathcal{O}(T))=\operatorname{mult}(S)$.

Remark 2.17 See Chapter VI of [3] for examples of how multipliers are used in the theory of Cyclic Difference Sets; see also Section 5 of this paper. The set $\operatorname{mult}(S)$ is a subgroup of $U(n)$, and if $S \equiv_{z} S^{\prime}$ then $\operatorname{mult}(S)=$ mult $\left(S^{\prime}\right)$. Let T and T^{\prime} be two different TAIS of an (n, k)-Oval \mathcal{O}. Then $T \equiv{ }_{\text {cyc }} T^{\prime}$ and so $\beta(T) \equiv_{z} \beta\left(T^{\prime}\right)$ by Theorem 2.11 , and then $\operatorname{mult}(\beta(T))=$ $\operatorname{mult}\left(\beta\left(T^{\prime}\right)\right)$. Hence $\operatorname{mult}(\mathcal{O})$ is independent of the TAIS of \mathcal{O}.

Example $2.18(n, k)=(15,6)$. For the $(15,6)$-Oval \mathcal{X} of Examples 2.5 and 2.10 we have $X=\{0,4,7,9,10,14\}$ and so $\operatorname{mult}(\mathcal{X})=\operatorname{mult}(X)=\{1\}$, the trivial group. For an example of a 6 -set of \mathbb{Z}_{15} with non-trivial multiplier group consider $Y=\{0,1,4,7,10,13\}$, here $\operatorname{mult}(Y)=\{1,4,7,13\}$.

Now $m \in \operatorname{mult}(S)$ if and only if $S \equiv_{z} m S$. Hence the number of $z-$ inequivalent sets in $\{u S: u \in U(n)\}$ equals the index of $\operatorname{mult}(S)$ in $U(n)$, i.e., equals $|U(n): \operatorname{mult}(S)|=\frac{|U(n)|}{|\operatorname{mult}(S)|}$.

As an example of how to generate all Ovals in $\mathcal{O}^{*}(n, k)$ we generate all Ovals in $\mathcal{O}^{*}(7,3)$.

We have $U(7)=\{1,2,3,4,5,6\}$ and so $|U(7)|=6$.
Start with $A=\{0,1,2\}$. So mult $(A)=\{1,-1\}$ and $|U(7): \operatorname{mult}(A)|=3$. The 3 cosets of $\operatorname{mult}(A)$ in $U(7)$ are $\operatorname{mult}(A), 2 \operatorname{mult}(A)$, and $3 \operatorname{mult}(A)$. Hence the $3 z$-inequivalent sets in $\{u A: u \in U(n)\}$ are $A_{1}=A, A_{2}=2 A=$ $\{0,2,4\}$, and $A_{3}=3 A=\{0,3,6\} \equiv_{z}\{0,1,4\}$.

Then choose $A^{\prime}=\{0,1,3\}$ from $\mathcal{S}^{*}(7,3) \backslash\left(\left[A_{1}\right] \cup\left[A_{2}\right] \cup\left[A_{3}\right]\right)$. We have $\operatorname{mult}\left(A^{\prime}\right)=\{1,2,4\}$ and $\left|U(7): \operatorname{mult}\left(A^{\prime}\right)\right|=2$. The 2 cosets of $\operatorname{mult}\left(A^{\prime}\right)$ in $U(7)$ are mult $\left(A^{\prime}\right)$ and 3 mult $\left(A^{\prime}\right)$. Hence the $2 z$-inequivalent sets in $\left\{u A^{\prime}: u \in U(n)\right\}$ are $A_{1}^{\prime}=A^{\prime}$ and $A_{2}^{\prime}=3 A^{\prime}=\{3,5,6\} \equiv_{z}\{0,1,5\}$.

Now $\mathcal{S}^{*}(7,3) \backslash\left(\left[A_{1}\right] \cup\left[A_{2}\right] \cup\left[A_{3}\right] \cup\left[A_{1}^{\prime}\right] \cup\left[A_{2}^{\prime}\right]\right)=\emptyset$, so we stop. See Example 2.19.

Example $2.19(n, k)=(7,3)$. Equation (1) gives $\mathcal{O}(7,3)=\left|\mathcal{T}_{\equiv \text { cyc }}^{*}(7,3)\right|=$ $\frac{1}{7} \phi(1)\binom{7}{3}=5$. Representatives of the 5 equivalence classes in both $\mathcal{S}_{\equiv \equiv z}^{*}(7,3)$ and $\mathcal{T}_{\equiv \text { =cyc }}^{*}(7,3)$, and the bijection between them, are given in the table below. The 5 (7,3)-Ovals up to translations and rotations are $\mathcal{O}^{*}(7,3)=$ $\left\{\mathcal{O}\left(T_{1}\right), \mathcal{O}\left(T_{2}\right), \mathcal{O}\left(T_{3}\right), \mathcal{O}\left(T_{4}\right), \mathcal{O}\left(T_{5}\right)\right\}$, see Fig. 4 below. We will see that multiplier -1 plays an important role in this paper. We use ' A_{i} ' for a set with multiplier -1 , and ' B_{i} ' for a set without multiplier -1 .

S		T	$\operatorname{mult}(S)$	$\frac{\|U(7)\|}{\mid m u l t(S)]}$
$A_{1}=\{0,1,2\}$	\leftrightarrow	$T_{1}=\left[\begin{array}{lll}1 & 1 & 5\end{array}\right]$	$\{1,-1\}$	3
$A_{2}=\{0,2,4\}$	\leftrightarrow	$T_{2}=\left[\begin{array}{ll}2 & 2\end{array}\right]$	$\{1,-1\}$	
$A_{3}=\{0,1,4\}$	\leftrightarrow	$T_{3}=\left[\begin{array}{lll}1 & 3 & 3\end{array}\right]$	$\{1,-1\}$	
$B_{1}=\{0,1,3\}$	\leftrightarrow	$T_{4}=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$	$\{1,2,4\}$	2
$B_{2}=\{0,1,5\}$	\leftrightarrow	$T_{5}=\left[\begin{array}{lll}1 & 4 & 2\end{array}\right]$	$\{1,2,4\}$	

Figure 4: The $\mathcal{O}(7,3)=5(7,3)$-Ovals up to translations and rotations. The last 2 form a congruent enantiomorphic pair.

It is clear how to generalize Example 2.19 to generate all Ovals in $\mathcal{O}^{*}(n, k)$, i.e., all (n, k)-Ovals up to translations and rotations, for an arbitrary (n, k) starting with $A=\{0,1, \ldots, k-1\}$.

3 Multiplier -1 , reversible T, congruent Ovals, various counts

In this Section we consider multiplier -1 of an (n, k)-Oval \mathcal{O}. We will return to consideration of multiplier -1 in Section 5 .

Let $T=\left[\begin{array}{llll}t_{1} & t_{2} & \cdots & t_{k}\end{array}\right]$ be a TAIS of an (n, k)-Oval \mathcal{O}.
Definition 3.1 $\overleftarrow{T}=\left[t_{k} t_{k-1} \cdots t_{1}\right]$ is the reverse of T.
Lemma 3.2 Let S and S^{\prime} be k-subsets of \mathbb{Z}_{n}. Then
(i) $\alpha(-S) \equiv \equiv_{\text {cyc }} \overleftarrow{\alpha(S)}$.
(ii) $S \equiv_{z}-S^{\prime}$ if and only if $\alpha(S) \equiv_{\text {cyc }} \alpha \overleftarrow{\left(S^{\prime}\right)}$.

Proof. (i) Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$, where $0 \leq s_{1}<s_{2}<\cdots<s_{k}$. Then $-S=\left\{-s_{1},-s_{2}, \ldots,-s_{k}\right\}=\left\{n-s_{1}, n-s_{2}, \ldots, n-s_{k}\right\}=\left\{n-s_{k}, n-\right.$ $\left.s_{k-1}, \ldots, n-s_{2}, n-s_{1}\right\}$, in increasing order. So $\alpha(-S)=\left[s_{k}-s_{k-1}, \ldots, s_{2}-\right.$ $\left.s_{1}, s_{1}-s_{k}\right] \equiv_{\mathrm{cyc}}\left[s_{1}-s_{k}, s_{k}-s_{k-1}, \ldots, s_{2}-s_{1}\right]=\alpha(S)$.
(ii) Necessity: let $S \equiv_{z}-S^{\prime}$ then $\alpha(S) \equiv_{\text {cyc }} \alpha\left(-S^{\prime}\right) \equiv_{\text {cyc }} \overleftarrow{\left(S^{\prime}\right)}$ using Theorem 2.11 and then part (i) above.
Sufficiency: let $\alpha(S) \equiv_{\text {cyc }} \alpha \overleftarrow{\left(S^{\prime}\right)}$ then $\alpha(S) \equiv_{\text {cyc }} \alpha\left(-S^{\prime}\right)$ by part (i) applied to S^{\prime}, and so $S \equiv_{z}-S^{\prime}$ by Theorem 2.11.

Definition 3.3 TAIS T is reversible if it is cyclically-equivalent to its reverse, i.e., if $T \equiv_{\mathrm{cyc}} \overleftarrow{T}$, (equivalently, $T \in[\overleftarrow{T}]$ or $\overleftarrow{T} \in[T]$).

Theorem 3.4 Let S be a k-subset of \mathbb{Z}_{n}. Then $-1 \in \operatorname{mult}(S)$ if and only if $\alpha(S)$ is reversible.

Proof. Now $-1 \in \operatorname{mult}(S)$ if and only if $S \equiv_{z}-S$, if and only if $\alpha(S) \equiv_{\mathrm{cyc}} \alpha(S)$, if and only if $\alpha(S)$ is reversible.

Definitions 3.5 $\mathcal{O}(n, k ;-1), \mathcal{O}(n, k ; \overline{-1})$
(1) $\mathcal{O}(n, k ;-1)$ is the number of (n, k)-Ovals with -1 as a multiplier.
(2) $\mathcal{O}(n, k ; \overline{-1})$ is the number of (n, k)-Ovals without -1 as a multiplier.

A k-reverse of n is a reversible k-composition of n. In McSorley [6] using Polya Theory we count the number of k-reverses of n up to cyclic permutation; this number is denoted by $\mathcal{R}_{\equiv}(n, k)$. From Theorem 3.4 above we have $\mathcal{O}(n, k ;-1)=\mathcal{R}_{\equiv}(n, k)$.

Theorem 3.6 For $n \geq 2$ and $k \geq 2$, the number of (n, k)-Ovals with -1 as a multiplier is

For a given TAIS T we obtain Oval $\mathcal{O}(\overleftarrow{T})$ from Oval $\mathcal{O}(T)$ by reflecting $\mathcal{O}(T)$ in a straight line that (for simplicity) does not intersect $\mathcal{O}(T)$. We denote the reflection of \mathcal{O} by $\overleftarrow{\mathcal{O}}$.

When Ovals $\mathcal{O}(T)$ and $\mathcal{O}(\overleftarrow{T})$ cannot be moved to one another using only translations and rotations, we say they are enantiomorphs of each other. In this case $\mathcal{O}(T) \neq \mathcal{O}(\overleftarrow{T})$ and a reflection is required to move $\mathcal{O}(T)$ to $\mathcal{O}(\overleftarrow{T})$ and vice-versa. (Oval $\mathcal{O}(T)$ is congruent to $\mathcal{O}(\overleftarrow{T})$; see Section 3.1.) These comments and Theorem 3.4 give the following.

Theorem 3.7 Let $\mathcal{O}(T)$ be an (n, k)-Oval.
(i) $\mathcal{O}(T)$ has multiplier -1 if and only if T is reversible, if and only if $\mathcal{O}(T)=\mathcal{O}(\overleftarrow{T})$.
(ii) $\mathcal{O}(T)$ does not have multiplier -1 if and only if T is not reversible, if and only if $\mathcal{O}(T) \neq \mathcal{O}(\overleftarrow{T})$. Such Ovals occur in $\{\mathcal{O}(T), \mathcal{O}(\overleftarrow{T})\}$ (congruent) enantiomorphic pairs in $\mathcal{O}^{*}(n, k)$. (Hence there is an even number of Ovals in $\mathcal{O}^{*}(n, k)$ without multiplier -1.)

Example $3.8(n, k)=(7,3)$. See Example 2.19.
$\mathcal{O}^{*}(7,3)=\left\{\mathcal{O}\left(T_{1}\right), \mathcal{O}\left(T_{2}\right), \mathcal{O}\left(T_{3}\right), \mathcal{O}\left(T_{4}\right), \mathcal{O}\left(T_{5}\right)\right\}$, and Theorem 3.6 gives $\mathcal{O}(7,3 ;-1)=\binom{3}{1}=3$.

If $i=1,2$, or 3 , then $-1 \in \operatorname{mult}\left(\mathcal{O}\left(T_{i}\right)\right)$ and so $T_{i} \equiv_{\text {cyc }} \overleftarrow{T}_{i} ;$ eg., for $i=1$ we have $\left[\begin{array}{lll}1 & 1 & 5\end{array}\right] \equiv_{\mathrm{cyc}}\left[\begin{array}{lll}5 & 1 & 1\end{array}\right]\left(=\left[\begin{array}{lll}1 & 1 & 5\end{array}\right]\right)$.

If $i=4$, or 5 , then $-1 \notin \operatorname{mult}\left(\mathcal{O}\left(T_{i}\right)\right)$ and so $T_{i} \not \equiv \mathrm{cyc} \overleftarrow{T}_{i} ;$ eg., for $i=4$ we have $\left[\begin{array}{lll}1 & 2 & 4\end{array}\right] \not \equiv \equiv_{\text {cyc }}\left[\begin{array}{lll}4 & 2 & 1\end{array}\right]\left(=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]\right)$.

The pair $\left\{\mathcal{O}\left(T_{4}\right), \mathcal{O}\left(T_{5}\right)\right\}=\left\{\mathcal{O}\left(T_{4}\right), \mathcal{O}\left(\overleftarrow{T}_{4}\right)\right\}$ is a (congruent) enantiomorphic pair referred to in Theorem 3.7(ii).

3.1 Congruent Ovals

Definitions 3.9 congruent and $\equiv_{\text {c }}$

(1) Two k-subsets S and S^{\prime} of \mathbb{Z}_{n} are congruent, $S \equiv_{c} S^{\prime}$, if $S \equiv_{z} S^{\prime}$ or $S \equiv_{z}-S^{\prime}$.
(2) Two TAIS T and T^{\prime} are congruent, $T \equiv_{\mathrm{c}} T^{\prime}$, if $T \equiv_{\mathrm{cyc}} T^{\prime}$ or $T \equiv_{\mathrm{cyc}} \overleftarrow{T^{\prime}}$.
(3) Two (n, k)-Ovals \mathcal{O} and \mathcal{O}^{\prime} are congruent, $\mathcal{O} \equiv{ }_{\mathrm{c}} \mathcal{O}^{\prime}$, if $\mathcal{O}=\mathcal{O}^{\prime}$ or $\mathcal{O}=\overleftarrow{\mathcal{O}^{\prime}}$, i.e., if \mathcal{O} can be moved to \mathcal{O}^{\prime} by a sequence of translations, rotations, or reflections, (isometries).

Then, from Theorem 2.11 and Lemma 3.2, we have the following.
Theorem 3.10 Let S and S^{\prime} be k-subsets of \mathbb{Z}_{n}. Then $S \equiv_{\mathrm{c}} S^{\prime}$ if and only if $\alpha(S) \equiv_{\mathrm{c}} \alpha\left(S^{\prime}\right)$, if and only if $\mathcal{O}(\alpha(S)) \equiv_{\mathrm{c}} \mathcal{O}\left(\alpha\left(S^{\prime}\right)\right)$.

Definition 3.11 $\operatorname{Mult}(S)=\operatorname{mult}(S) \cup-\operatorname{mult}(S)$.
Remark 3.12 It is straightforward to show that $\operatorname{Mult}(S)$ is a subgroup of $U(n)$. If $-1 \in \operatorname{mult}(S)$ then $\operatorname{Mult}(S)=\operatorname{mult}(S)$, and if $-1 \notin \operatorname{mult}(S)$ then $|\operatorname{Mult}(S)|=2|\operatorname{mult}(S)|$.

Definitions $3.13 \quad \mathcal{O}_{\mathrm{c}}^{*}(n, k), \mathcal{O}_{\mathrm{c}}(n, k)$
(1) $\mathcal{O}_{\mathrm{c}}^{*}(n, k)$ is the set of (n, k)-Ovals up to congruency.
(2) $\mathcal{O}_{\mathrm{c}}(n, k)=\left|\mathcal{O}_{\mathrm{c}}^{*}(n, k)\right|$ is the number of (n, k)-Ovals up to congruency.

In order to generate the set $\mathcal{O}_{\mathrm{c}}^{*}(n, k)$ for an arbitrary (n, k) we may use the procedure in Section 2.1 to find $\mathcal{O}^{*}(n, k)$ and then combine congruent enantiomorphic pairs of Ovals; see Theorem 3.7(ii). Alternatively, we may use this procedure with the group mult (S) replaced by $\operatorname{Mult}(S)$.

Example $3.14(n, k)=(7,3)$. See Examples 2.19 and 3.8.
To find $\mathcal{O}_{\mathrm{c}}^{*}(7,3)$ using the first method mentioned above we start with $\mathcal{O}^{*}(7,3)=\left\{\mathcal{O}\left(T_{1}\right), \mathcal{O}\left(T_{2}\right), \mathcal{O}\left(T_{3}\right), \mathcal{O}\left(T_{4}\right), \mathcal{O}\left(T_{4}\right)\right\}$ and combine the last 2 Ovals into a single congruency class to give $\mathcal{O}_{\mathrm{c}}^{*}(7,3)=\left\{\mathcal{O}\left(T_{1}\right), \mathcal{O}\left(T_{2}\right), \mathcal{O}\left(T_{3}\right), \mathcal{O}\left(T_{4}\right)\right\}$.

Using the second method, the procedure of Section 2.1 with $\operatorname{mult}(S)$ replaced by $\operatorname{Mult}(S)$ gives the following table:

S		T	$\operatorname{Mult}(S)$	$\frac{\|U(7)\|}{\|\operatorname{Mult}(S)\|}$
$A_{1}=\{0,1,2\}$	\leftrightarrow	$T_{1}=\left[\begin{array}{ll}1 & 1 \\ \hline\end{array}\right]$	$\{1,-1\}$	3
$A_{2}=\{0,2,4\}$	\leftrightarrow	$T_{2}=\left[\begin{array}{lll}2 & 2 & 3\end{array}\right]$	$\{1,-1\}$	
$A_{3}=\{0,1,4\}$	\leftrightarrow	$T_{3}=\left[\begin{array}{lll}1 & 3 & 3\end{array}\right]$	$\{1,-1\}$	
$B_{1}=\{0,1,3\}$	\leftrightarrow	$T_{4}=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$	$U(7)$	1

This also gives $\mathcal{O}_{\mathrm{c}}^{*}(7,3)=\left\{\mathcal{O}\left(T_{1}\right), \mathcal{O}\left(T_{2}\right), \mathcal{O}\left(T_{3}\right), \mathcal{O}\left(T_{4}\right)\right\}$, the set of all $(7,3)$ Ovals up to congruency.

$3.2 \mathcal{O}_{\mathrm{c}}(n, k), \mathcal{O}_{\mathrm{c}}(n, k ;-1)$, and $\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})$

Definitions $3.15 \mathcal{O}_{\mathrm{c}}(n, k ;-1), \mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})$
(1) $\mathcal{O}_{\mathrm{c}}(n, k ;-1)$ is the number of (n, k)-Ovals with -1 as a multiplier, up to congruency.
(2) $\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})$ is the number of (n, k)-Ovals without -1 as a multiplier, up to congruency.

Lemma 3.16

$$
\mathcal{O}_{\mathrm{c}}(n, k)=\frac{1}{2}(\mathcal{O}(n, k)+\mathcal{O}(n, k ;-1)) .
$$

Proof.

$$
\begin{aligned}
\mathcal{O}_{\mathrm{c}}(n, k) & =\mathcal{O}_{\mathrm{c}}(n, k ;-1)+\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1}) \\
& =\mathcal{O}(n, k ;-1)+\frac{1}{2} \mathcal{O}(n, k ; \overline{-1}) \\
& =\mathcal{O}(n, k ;-1)+\frac{1}{2}(\mathcal{O}(n, k)-\mathcal{O}(n, k ;-1)) \\
& =\frac{1}{2}(\mathcal{O}(n, k)+\mathcal{O}(n, k ;-1))
\end{aligned}
$$

At the second line we use $\mathcal{O}(n, k ;-1)=\mathcal{O}_{\mathrm{c}}(n, k ;-1)$ because if \mathcal{O} and \mathcal{O}^{\prime} both have -1 as a multiplier then, from Definitions 3.9(3) and Theorem $3.7(\mathrm{i})$, we have $\mathcal{O}=\mathcal{O}^{\prime}$ if and only if $\mathcal{O} \equiv{ }_{\mathrm{c}} \mathcal{O}^{\prime}$. And $\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})=$ $\frac{1}{2} \mathcal{O}(n, k ; \overline{-1})$ comes directly from Theorem 3.7(ii).

Recall that $\mathcal{O}(n, k)$ is given explicitly in Equation (1).
Theorem 3.17 For $n \geq 2$ and $k \geq 2$, the number of (n, k)-Ovals up to congruency is

$$
\mathcal{O}_{\mathrm{c}}(n, k)= \begin{cases}\frac{1}{2}\left(\mathcal{O}(n, k)+\left(\frac{\frac{n-2}{2}}{\frac{k-1}{2}}\right)\right), & \text { if } n \text { is even and } k \text { is odd; } \\ \frac{1}{2}\left(\mathcal{O}(n, k)+\left(\frac{\frac{n}{n} 2}{2}\right)\right), & \text { if } n \text { is odd and } k \text { is odd; } \\ \frac{1}{2}\left(\mathcal{O}(n, k)+\binom{\frac{n}{2}}{\frac{k}{2}},\right. & \text { if } n \text { is even and } k \text { is even; } \\ \frac{1}{2}\left(\mathcal{O}(n, k)+\binom{\frac{n-1}{2}}{\frac{k}{2}}\right), & \text { if } n \text { is odd and } k \text { is even. }\end{cases}
$$

Theorem 3.6 now gives the following.
Theorem 3.18 For $n \geq 2$ and $k \geq 2$, the number of (n, k)-Ovals without -1 as a multiplier up to congruency is

$$
\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})= \begin{cases}\frac{1}{2}\left(\mathcal{O}(n, k)-\left(\frac{n-2}{2}\right)\right), & \text { if } n \text { is even and } k \text { is odd; } \\ \frac{1}{2}\left(\mathcal{O}(n, k)-\binom{\frac{n-1}{2}-1}{\frac{k-1}{2}},,\right. & \text { if } n \text { is odd and } k \text { is odd; } \\ \frac{1}{2}\left(\mathcal{O}(n, k)-\binom{\frac{n}{2}}{\frac{k}{k}},\right. & \text { if } n \text { is even and } k \text { is even; } \\ \frac{1}{2}\left(\mathcal{O}(n, k)-\binom{\frac{n-1}{k}}{\frac{k}{2}}\right), & \text { if } n \text { is odd and } k \text { is even. }\end{cases}
$$

$n \backslash k$	2	3	4	5	6	7	8	9	10	$\mathcal{O}_{\mathrm{c}}(n)$
2	1								1	
3	1	1							2	
4	2	1	1						4	
5	2	2	1	1						6
6	3	3	3	1	1				11	
7	3	4	4	3	1	1				16
8	4	5	8	5	4	1	1			28
9	4	7	10	10	7	4	1	1		44
10	5	8	16	16	16	8	5	1	1	76
\vdots										

(a) $\mathcal{O}_{\mathrm{c}}(n, k)$

$n \backslash k$	2	3	4	5	6	7	8	9	10	$\mathcal{O}_{\mathrm{c}}(n ;-1)$	$n \backslash k$	2	3	4	5	6	7	8	9	10	$\mathcal{O}_{\mathrm{c}}(n ; \overline{-1})$
2	1								1		2	0									0
3	1	1								2	3	0	0							0	
4	2	1	1							4	0	0	0							0	
5	2	2	1	1						6	5	0	0	0	0						0
6	3	2	3	1	1					10	6	0	1	0	0	0					0
7	3	3	3	3	1	1				14	7	0	1	1	0	0	0				2
8	4	3	6	3	4	1	1			22	8	0	2	2	2	0	0	0			6
9	4	4	6	6	4	4	1	1		30	9	0	3	4	4	3	0	0	0		14
10	5	4	10	6	10	4	5	1	1	46	10	0	4	6	10	6	4	0	0	0	30
\vdots																					

(b) $\mathcal{O}_{\mathrm{c}}(n, k ;-1)$
(c) $\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})$

Table 1: Values of $\mathcal{O}_{\mathrm{c}}(n, k), \mathcal{O}_{\mathrm{c}}(n, k ;-1)$, and $\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})$ for $2 \leq k \leq n \leq$ 10 , and of $\mathcal{O}_{\mathrm{c}}(n), \mathcal{O}_{\mathrm{c}}(n ;-1)$, and $\mathcal{O}_{\mathrm{c}}(n ; \overline{-1})$ for $2 \leq n \leq 10$.

See Table 1(a). The triangle of values of $\mathcal{O}_{c}(n, k)$ when read row-by-row gives sequence A052307 in the Online Encyclopedia of Integer Sequences [7].

See Table 1(b). The triangle of values of $\mathcal{O}_{\mathrm{c}}(n, k ;-1)=\mathcal{O}(n, k ;-1)$ (see Theorem 3.6) is equal to the triangle of sequence A119963 in [7] (with the first two columns of 1 's removed). So $\mathcal{O}_{c}(n, k ;-1)$ gives the first combinatorial interpretation of sequence A119963 in [7]. Thus (ignoring the first two columns of 1's) the (n, k) term in the triangle of sequence A119963 is the number of (n, k)-Ovals with -1 as a multiplier, up to congruency. For
the sequence of row sums of the triangle of sequence A119963 see sequence A029744, and the comment 'Necklaces with n beads that are the same when turned over'.

See Table 1(c). When the triangle of values of $\mathcal{O}_{\mathrm{c}}(n, k ; \overline{-1})$ is read row-byrow we obtain a new sequence, see sequence A180472 in [7]. For the sequence of row sums of this triangle see sequence A059076: 'Number of orientable necklaces with n beads and two colors; i.e., turning over the necklace does not leave it unchanged'.

Example $3.19(n, k)=(7,3)$. From Example 3.14 the number of $(7,3)$ Ovals up to congruency is 4 . Theorem 3.17 gives $\mathcal{O}_{\mathrm{c}}(7,3)=\frac{1}{2}\left(\mathcal{O}(7,3)+\binom{3}{1}\right)=$ $\frac{1}{2}(5+3)=4$, also. Of these 4 Ovals, 3 have -1 as a multiplier, and 1 does not. Theorem 3.6 gives $\mathcal{O}_{\mathrm{c}}(7,3 ;-1)=\binom{3}{1}=3$, and Theorem 3.18 gives $\mathcal{O}_{\mathrm{c}}(7,3 ; \overline{-1})=\frac{1}{2}\left(\mathcal{O}(7,3)-\binom{3}{1}\right)=\frac{1}{2}(5-3)=1$. Thus all counts for $(n, k)=(7,3)$ from Example 3.14 are confirmed.

4 Rhombic Inventory Vector, all (n, k)-Ovals for $n \leq 10$

We use \subseteq_{m} to denote containment in multisets. For example, if multiset $M=\{1,1,1,2,3,3,4,4,4,4\}$ then $L=\{1,1,1,2,4,4\} \subseteq_{\mathrm{m}} M$ but $L^{\prime}=$ $\{1,1,1,2,2\} \mathbb{Z m}_{\mathrm{m}} M$. We say that L is a multisubset of M. Further, we replace $\underbrace{a, a, \ldots, a}_{b}$ by a^{b}, so $M=\left\{1^{3}, 2^{1}, 3^{2}, 4^{4}\right\}$.

On p. 141 of Ball and Coxeter [1] it is proved that every (n, k)-Oval \mathcal{O}, with $2 \leq k \leq n$, can be tiled by a multiset of $\binom{k}{2}$ rhombs chosen from $\rho_{1}, \rho_{2}, \ldots, \rho_{\left\lfloor\frac{n}{2}\right\rfloor}$.

The regular $2 n$-gon, $\{2 n\}$, is an (n, n)-Oval with TAIS $=\underbrace{\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]}_{n}$.
Definition 4.1 The Standard Rhombic Inventory, $\mathrm{SRI}_{2 n}$, is the multiset of $\binom{n}{2}$ rhombs that tile $\{2 n\}$.

There are $\left\lfloor\frac{n}{2}\right\rfloor$ different shapes of rhombs in $\mathrm{SRI}_{2 n}$; see Section 2. When n is odd, $\mathrm{SRI}_{2 n}$ contains n copies of each of the $\frac{n-1}{2}=\left\lfloor\frac{n}{2}\right\rfloor$ shapes of rhomb,
$\rho_{1}, \rho_{2}, \ldots, \rho_{\frac{n-1}{2}}$. When n is even, $\mathrm{SRI}_{2 n}$ contains n copies of each of the $\frac{n}{2}-1$ non-square rhombs, $\rho_{1}, \rho_{2}, \ldots, \rho_{\frac{n}{2}-1}$, but only $\frac{n}{2}$ copies of the square $\rho_{\frac{n}{2}}$.

For a fixed (n, k)-Oval \mathcal{O} let λ_{h} equal the number of rhombs in \mathcal{O} with principal index h.

Definition 4.2 The Rhombic Inventory Vector (RIV) of Oval $\mathcal{O}, \operatorname{RIV}(\mathcal{O})$, is the vector $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\left\lfloor\frac{n}{2}\right\rfloor}\right)$ of length $\left\lfloor\frac{n}{2}\right\rfloor$.

The sum of the components in $\operatorname{RIV}(\mathcal{O})$ equals $\binom{k}{2}$.
Example $4.3(n, k)=(15,6)$. See Figs. 1 and 3. The $(15,6)$-Oval \mathcal{X} is tiled by $\binom{6}{2}=15$ rhombs. The rhomb ρ_{4} occurs twice in \mathcal{X}, so $\lambda_{4}=2$. We have $\operatorname{RIV}(\mathcal{X})=(2,1,2,2,4,2,2)$.

The RIV of an (n, k)-Oval can be derived from its TAIS by constructing its Oval Index Triangle, (OIT). The construction of an OIT is described below for our $(15,6)$-Oval \mathcal{X}.

First we define the function $r: \mathbb{Z}_{n} \backslash\{0\} \mapsto \mathbb{Z}_{n} \backslash\{0\}$:

$$
r(a)=\left\{\begin{array}{cl}
a & \text { if } a \leq\left\lfloor\frac{n}{2}\right\rfloor, \tag{2}\\
-a \text { or } n-a & \text { if } a>\left\lfloor\frac{n}{2}\right\rfloor .
\end{array}\right.
$$

We extend the definition of r to multisets M as follows: $r(M)=\{r(a) \mid a \in M\}$.
The TAIS for \mathcal{X} is $\left[\begin{array}{lllll}4 & 3 & 2 & 1 & 4\end{array}\right]$. To compute $\operatorname{RIV}(\mathcal{X})$:
(i) Delete the last turning angle index from the TAIS, thereby obtaining the sequence of indices for the upper interior face angles of the rhombs in the receptacle - the cluster of $k-1$ rhombs that are incident on the stem vertex of the Oval. ('Receptacle' is the term used by botanists to denote the part of a plant that holds the fruit.) We call this sequence the 'truncated TAIS'. The truncated TAIS for \mathcal{X} is $\left[\begin{array}{lllll}4 & 3 & 2 & 1 & 4\end{array}\right]$.
(ii) The first row of the OIT equals the truncated TAIS. Below each pair of consecutive indices in the first row enter their sum in the second row:

$$
\begin{array}{llllll}
4 & 3 & & 2 & 1 & 4 \\
7 & 5 & 3 & 5
\end{array}
$$

(iii) Let $h_{i, j}$ denote the index in row i and position j of the triangle, where $i \geq 3$, and $j=1,2, \ldots, k-i$, counting from the left. Now the indices at each interior vertex of an (n, k)-Oval sum to $2 n$, so simple trigonometry gives:

$$
h_{i+1, j}=h_{i, j}+h_{i, j+1}-h_{i-1, j+1} .
$$

See the left-hand triangle in (iv) below.
(iv) Apply function r to the indices of the left-hand triangle, i.e., replace index $h>\left\lfloor\frac{n}{2}\right\rfloor$ by $n-h$. The OIT is now complete.

(v) Now count the frequency of each principal index in the OIT to obtain $\operatorname{RIV}(\mathcal{X})=(2,1,2,2,4,2,2)$, as above.

Recall the definition of $\alpha(S)$ from Definitions 2.8(1).
Definitions 4.4 $\delta(S)$, $\operatorname{OIT}(\alpha(S))$ or $\operatorname{OIT}(T)$
Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$.
(1) $\delta(S)=\left\{s_{j}-s_{i}: 1 \leq i<j \leq k\right\}$ is a multiset of non-zero differences of S. Note that $|\delta(S)|=\binom{k}{2}$.
(2) $\operatorname{OIT}(\alpha(S))=\operatorname{OIT}(T)$ is the multiset of indices in the OIT with first row $\left[s_{2}-s_{1}, s_{3}-s_{2}, \ldots, s_{k}-s_{k-1}\right]$, the truncation of $\alpha(S)=T$.

Lemma 4.5 Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$. Then $\operatorname{OIT}(\alpha(S))=r(\delta(S))$.

Proof. Consider the triangle formed previously with $h_{i, j}$ as the index in row i and position j, counting from the left, and let H denote the multiset of all such $h_{i, j}$.

We show for $i=1,2, \ldots, k-1$, and $j=1,2, \ldots, k-i$ that $h_{i, j}=s_{i+j}-s_{j} \in$ $\delta(S)$, i.e., that the indices in row i of this triangle are the difference of two s 's $\in S$ whose subscripts differ by i.

By definition of the triangle this is clearly true for $i=1,2$. Assume that the hypothesis is true for rows $1,2, \ldots, i$. Then, for $i \geq 3$:

$$
\begin{aligned}
h_{i+1, j} & =h_{i, j}+h_{i, j+1}-h_{i-1, j+1} \\
& =\left(s_{i+j}-s_{j}\right)+\left(s_{i+(j+1)}-s_{j+1}\right)-\left(s_{(i-1)+(j+1)}-s_{j+1}\right) \\
& =s_{(i+1)+j}-s_{j} \in \delta(S)
\end{aligned}
$$

using strong induction at the second line. Hence the induction goes through, and $H \subseteq_{\mathrm{m}} \delta(S)$, but $|H|=\binom{k}{2}=|\delta(S)|$, and so $H=\delta(S)$. Now apply r to both sides of this equation to give the result.

Example $4.6(n, k)=(15,6)$. Our $(15,6)-O v a l \mathcal{X}$ has TAIS $T=[432141]$. So $X=\beta(T)=\{0,4,7,9,10,14\}$, giving $\delta(X)=\left\{1^{1}, 2^{1}, 3^{2}, 4^{2}, 5^{2}, 6^{1}, 7^{2}, 9^{1}, 10^{2}, 14^{1}\right\}$, and $r(\delta(X))=\left\{1^{2}, 2^{1}, 3^{2}, 4^{2}, 5^{4}, 6^{2}, 7^{2}\right\}$. So $\operatorname{RIV}(\mathcal{X})=(2,1,2,2,4,2,2)$, as above.

Remark 4.7 It is straightforward to show that the multiset OIT (T) doesn't depend on how we truncated T to form the first row of the OIT.

4.1 All (n, k)-Ovals and their RIV's for $n \leq 10$

In Tables 2 and 3 below we list and number all (n, k)-Ovals up to congruence, and their RIV's, for $2 \leq n \leq 10$. We refer to these Ovals by their numbers in later Sections.

\mathcal{O}_{i}	k	TAIS	RIV
\mathcal{O}_{1}	2	[11]	(1)

\mathcal{O}_{i}	k	TAIS	RIV
\mathcal{O}_{1}	2	$\left[\begin{array}{lll}1 & 3\end{array}\right]$	$(1,0)$
\mathcal{O}_{2}	2	$\left[\begin{array}{lll} & 2\end{array}\right]$	$(0,1)$
\mathcal{O}_{3}	3	$\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]$	$(2,1)$
\mathcal{O}_{4}	4	$\left[\begin{array}{llll}1 & 1 & 1 & 1\end{array}\right]$	$(4,2)$
$n=4$			

\mathcal{O}_{i}	k	TAIS	RIV
\mathcal{O}_{1}	2	[16]	(1, 0, 0)
\mathcal{O}_{2}	2	[2 5]	(0, 1, 0)
\mathcal{O}_{3}	2	[34]	$(0,0,1)$
\mathcal{O}_{4}	3	$\left[\begin{array}{lll}1 & 1\end{array}\right]$	(2, 1, 0)
\mathcal{O}_{5}	3	[124]	$(1,1,1)$
\mathcal{O}_{6}	3		$(1,0,2)$
\mathcal{O}_{7}	3	[2 2131$]$	(0, 2, 1)
\mathcal{O}_{8}	4	$\left[\begin{array}{llll}1 & 1 & 1 & 4\end{array}\right]$	(3, 2, 1)
\mathcal{O}_{9}	4	[lllllll $\left.11 \begin{array}{llll}1 & 2\end{array}\right]$	(2, 2, 2)
\mathcal{O}_{10}	4	$\left[\begin{array}{lllll}1 & 2 & 1 & 3\end{array}\right]$	$(2,1,3)$
\mathcal{O}_{11}	4	$\left[\begin{array}{lllll}1 & 2 & 2 & 2\end{array}\right]$	$(1,3,2)$
\mathcal{O}_{12}	5	[1111113]	$(4,3,3)$
\mathcal{O}_{13}	5	[1 111112220$]$	$(3,4,3)$
\mathcal{O}_{14}	5	[11212]	(3, 3, 4)
\mathcal{O}_{15}	6	[111112]	$(5,5,5)$
\mathcal{O}_{16}	7	[1111111]	$(7,7,7)$

Table 2: All (n, k)-Ovals up to congruence and their RIV's for $2 \leq n \leq 7$.

5 Magic Ovals, cyclic difference sets, multiplier -1 , all magic (n, k, λ)-Ovals for $n \leq 40$

Recall $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$, and $r: \mathbb{Z}_{n} \backslash\{0\} \mapsto \mathbb{Z}_{n} \backslash\{0\}$ from Equation (2), and $\delta(S)$ from Definitions 4.4(1); let M be a multiset with elements from $\mathbb{Z}_{n} \backslash\{0\}$. We need two more definitions.

Definitions 5.1 $\quad f_{M}(a), \Delta(S)$
(1) $f_{M}(a)$ is the frequency of $a \in M$.
(2) $\Delta(S)=\delta(S) \cup-\delta(S)$ is the multiset of non-zero differences of S.

\mathcal{O}_{i}	k	TAIS	RIV
\mathcal{O}_{1}	2	[17]	(1, 0, 0, 0)
\mathcal{O}_{2}	2	26.	$(0,1,0,0)$
\mathcal{O}_{3}	2	35	$(0,0,1,0)$
\mathcal{O}_{4}	2	$44]$	(0, 0, 0, 1)
\mathcal{O}_{5}	3	$\left[\begin{array}{lll}1 & 1 & 6\end{array}\right]$	(2, 1, 0, 0)
\mathcal{O}_{6}	3	${ }_{1}^{1} 25$.	$(1,1,1,0)$
\mathcal{O}_{7}	3	${ }_{1}^{1} 34$	$(1,0,1,1)$
\mathcal{O}_{8}	3	${ }_{\left[\begin{array}{llll}2 & 2 & 4 \\ 2\end{array}\right]}$	$(0,2,0,1)$
\mathcal{O}_{9}	3	[2303]	(0, 1, 2, 0)
\mathcal{O}_{10}	4	$\left[\begin{array}{llll}1 & 1 & 1 & 5\end{array}\right]$	(3, 2, 1, 0)
\mathcal{O}_{11}	4	${ }_{1}^{1} 11244$.	$(2,2,1,1)$
\mathcal{O}_{12}	4	$\mathrm{llll}_{1}^{1} 1331$	$(2,1,2,1)$
\mathcal{O}_{13}	4	${ }_{1}^{1} 2144$	$(2,1,2,1)$
\mathcal{O}_{14}	4	$l_{1}^{1} 2233$	$(1,2,2,1)$
\mathcal{O}_{15}	4	${ }_{1}^{1} 2332$	$(1,2,3,0)$
\mathcal{O}_{16}	4	${ }_{1}^{1} 3131$	$(2,0,2,2)$
\mathcal{O}_{17}	4	$\left[\begin{array}{llll}2 & 2 & 2 & 2\end{array}\right]$	(0, 4, 0, 2)
\mathcal{O}_{18}	5	[111114]	(4, 3, 2, 1)
\mathcal{O}_{19}	5	$\begin{array}{llllll}1 & 1 & 1 & 2 & 3\end{array}$	$(3,3,3,1)$
\mathcal{O}_{20}	5	111213	$(3,2,3,2)$
\mathcal{O}_{21}	5	111222	$(2,4,2,2)$
\mathcal{O}_{22}	5	$12122]$	(2, 3, 4, 1)
\mathcal{O}_{23}	6	[11111113]	(5, 4, 4, 2)
\mathcal{O}_{24}	6	$\begin{array}{lllllll}1 & 1 & 1 & 1 & 2 & 2\end{array}$	$(4,5,4,2)$
\mathcal{O}_{25}	6	[1111212.	$(4,4,5,2)$
\mathcal{O}_{26}	6	[112112]	($4,4,4,3)$
\mathcal{O}_{27}	7	[1111112]	($6,6,6,3)$
\mathcal{O}_{28}	8	[11111111]	$(8,8,8,4)$

$n=8$

\mathcal{O}_{i}	k	TAIS	RIV
\mathcal{O}_{1}	2	[18]	(1, 0, 0, 0)
\mathcal{O}_{2}	2	27	$(0,1,0,0)$
\mathcal{O}_{3}	2	-36.	$(0,0,1,0)$
\mathcal{O}_{4}	2	[4 5]	(0, 0, 0, 1)
\mathcal{O}_{5}	3	[117].	(2, 1, 0, 0)
\mathcal{O}_{6}	3	1126	(1, 1, 1, 0)
\mathcal{O}_{7}	3	${ }_{1}^{13} 5$	$(1,0,1,1)$
\mathcal{O}_{8}	3	${ }_{1}^{144}$	$(1,0,0,2)$
\mathcal{O}_{9}	3	[2 215	(0, 2, 0, 1)
\mathcal{O}_{10}	3	${ }_{2}^{2} 344$.	$(0,1,1,1)$
\mathcal{O}_{11}	3	$\left[\begin{array}{llll}3 & 3 & 3\end{array}\right]$	(0, 0, 3, 0)
\mathcal{O}_{12}	4	[11116]	(3, 2, 1, 0)
\mathcal{O}_{13}	4	$\left[\begin{array}{llll}1 & 1 & 2 & 5\end{array}\right]$	$(2,2,1,1)$
\mathcal{O}_{14}	4	$\mathrm{llll}_{1}^{1} 134$.	$(2,1,1,2)$
\mathcal{O}_{15}	4	${ }_{1}^{1} 215$	$(2,1,2,1)$
\mathcal{O}_{16}	4	$l l l l l_{1}^{12} 24$.	$(1,2,1,2)$
\mathcal{O}_{17}	4	${ }_{1}^{123} 31$	$(1,1,3,1)$
\mathcal{O}_{18}	4	${ }_{1}^{1} 2442$	$(1,2,2,1)$
\mathcal{O}_{19}	4	$l l l l l l_{1}^{1} 314$.	$(2,0,1,3)$
\mathcal{O}_{20}	4	$l_{1}^{1} 3233$	$(1,1,2,2)$
\mathcal{O}_{21}	4	[2223]	(0, 3, 1, 2)
O_{22}	5	$\left[\begin{array}{lllll}1 & 1 & 1 & 1 & 5\end{array}\right.$	(4, 3, 2, 1)
\mathcal{O}_{23}	5	$\begin{array}{llllll}1 & 1 & 1 & 2 & 4\end{array}$	$(3,3,2,2)$
\mathcal{O}_{24}	5	${ }_{1}^{1} 111333$	$(3,2,3,2)$
\mathcal{O}_{25}	5	$l_{1}^{1} 11214$.	(3, 2, 2, 3)
\mathcal{O}_{26}	5	${ }_{l}^{1} 1122233$	$(2,3,2,3)$
\mathcal{O}_{27}	5	-11232	$(2,3,3,2)$
\mathcal{O}_{28}	5	${ }_{1}^{1} 11313$	$(3,1,2,4)$
\mathcal{O}_{29}	5	${ }_{1}^{1} 21123$	$(2,2,4,2)$
\mathcal{O}_{30}	5	${ }_{-1}^{1} 22133$	$(2,2,3,3)$
\mathcal{O}_{31}	5	12222	(1, 4, 2, 3)
\mathcal{O}_{32}	6	$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 1 & 4\end{array}\right]$	(5, 4, 3, 3)
\mathcal{O}_{33}	6	$1 \begin{array}{llll}111 & 1 & 2 & 3\end{array}$	$(4,4,4,3)$
\mathcal{O}_{34}	6	$1 \begin{array}{llllll}1 & 1 & 1 & 1 & 3\end{array}$	$(4,3,4,4)$
\mathcal{O}_{35}	6	$\begin{array}{lllll}1 & 1 & 1 & 2 & 2\end{array}$	$(3,5,3,4)$
\mathcal{O}_{36}	6	$1 \begin{array}{lll}112113\end{array}$	$(4,3,3,5)$
\mathcal{O}_{37}	6	${ }_{1}^{1} 12122$	$(3,4,4,4)$
\mathcal{O}_{38}	6	$121212]$	(3, 3, 6, 3)
\mathcal{O}_{39}	7	$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 3\end{array}\right]$	
\mathcal{O}_{40}	7	$\begin{array}{lllllllll}1 & 1 & 1 & 1 & 1 & 2 & 2\end{array}$	$(5,6,5,5)$
\mathcal{O}_{41}	7	$\left.\mathrm{lllllll}_{1}^{1} 111121212\right]$	$(5,5,6,5)$
\mathcal{O}_{42}	7	1112112	$(5,5,5,6)$
O_{43}	8	[1111111112]	(7, 7, 7, 7)
\mathcal{O}_{44}	9	$\left[\begin{array}{lllllllllll}1 & 1 & 1 & 1 & 1 & 1 & \end{array}\right.$	(9, 9, 9, 9)

$n=9$

\mathcal{O}_{i}	k	TAIS	RIV
\mathcal{O}_{1}	2	19]	(1, 0, 0, 0, 0)
\mathcal{O}_{2}	2	281.	(0, 1, 0, 0, 0)
O_{3}	2	37	$(0,0,1,0,0)$
O_{4}	2	46.	$(0,0,0,1,0)$
\mathcal{O}_{5}	2	$55]$	$(0,0,0,0,1)$
\mathcal{O}_{6}	3	$\begin{array}{lll}1 & 1 & 8 \\ 1 & 7\end{array}$	(2, 1, 0, 0, 0)
\mathcal{O}_{7}	3	$\begin{array}{lll}1 & 2 & 7\end{array}$	$(1,1,1,0,0)$
\mathcal{O}_{8}	3	$\mathrm{lll}_{1}^{1} 36$	$(1,0,1,1,0)$
O_{9}	3	$1 \begin{array}{ll}1 & 4 \\ 2\end{array}$	$(1,0,0,1,1)$
\mathcal{O}_{10}	3	[12961.	$(0,2,0,1,0)$
\mathcal{O}_{11}	3	2315]	$(0,1,1,0,1)$
\mathcal{O}_{12}	3	$\mathrm{l}_{2} 4.44$.	$(0,1,0,2,0)$
\mathcal{O}_{13}	3	$\left[\begin{array}{lll}3 & 3 & 4\end{array}\right]$	$(0,0,2,1,0)$
\mathcal{O}_{14}	4		$(3,2,1,0,0)$
\mathcal{O}_{15}	4	$\begin{array}{llll}1 & 1 & 2 & 6\end{array}$	$(2,2,1,1,0)$
\mathcal{O}_{16}	4	$\begin{array}{llll}1 & 1 & 3 & 5\end{array}$	$(2,1,1,1,1)$
\mathcal{O}_{17}	4	$\mathrm{lllll}_{1}^{1} 1444$.	$(2,1,0,2,1)$
\mathcal{O}_{18}	4	$\mathrm{llll}_{1}^{1} 2161$.	$(2,1,2,1,0)$
\mathcal{O}_{19}	4	$\mathrm{llll}_{1}^{1} 225$	$(1,2,1,1,1)$
\mathcal{O}_{20}	4	$\begin{array}{lllll}1 & 2 & 3\end{array}$	$(1,1,2,1,1)$
\mathcal{O}_{21}	4	${ }_{1}^{1} 2433$	$(1,1,2,2,0)$
\mathcal{O}_{22}	4	[12ccl	$(1,2,2,0,1)$
\mathcal{O}_{23}	4	${ }_{1}^{1} 31315$	$(2,0,1,2,1)$
\mathcal{O}_{24}	4	$\left[\begin{array}{llll}1 & 3 & 2 & 4\end{array}\right]$	$(1,1,1,2,1)$
\mathcal{O}_{25}	4	$\begin{array}{llll}1 & 3 & 3 & 3\end{array}$	$(1,0,3,2,0)$
\mathcal{O}_{26}	4	$\mathrm{llll}_{1}^{1} 41_{4}$	$(2,0,0,2,2)$
\mathcal{O}_{27}	4	$\left[\begin{array}{lllll}2 & 2 & 2 & 4 \\ 2 & 2 & 3\end{array}\right.$	$(0,3,0,3,0)$
\mathcal{O}_{28}	4	$\mathrm{lllll}_{2}^{2} \begin{aligned} & 3\end{aligned}$	$(0,2,2,1,1)$
O_{29}	4	$2 \begin{array}{llll}2 & 2 & 3\end{array}$	$(0,2,2,0,2)$
O_{30}	5		$(4,3,2,1,0)$
\mathcal{O}_{31}	5	$\left[\begin{array}{lllll}1 & 1 & 1 & 2 & 5\end{array}\right.$	$(3,3,2,1,1)$
\mathcal{O}_{32}	5	$\left[\begin{array}{lllll}1 & 1 & 1 & 3 & 4\end{array}\right]$	$(3,2,2,2,1)$
\mathcal{O}_{33}	5	$\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 5\end{array}\right.$	$(3,2,2,2,1)$
O_{34}	5		$(2,3,1,3,1)$
\mathcal{O}_{35}	5	$\left[\begin{array}{lllll}1 & 1 & 2 & 3 & 3\end{array}\right.$	$(2,2,3,2,1)$
\mathcal{O}_{36}	5	$\left[\begin{array}{lllll}1 & 1 & 2 & 4 & 2\end{array}\right]$	$(2,3,2,3,0)$
\mathcal{O}_{37}	5	$\left[\begin{array}{lllll}1 & 1 & 3 & 1 & 4\end{array}\right]$	$(3,1,1,3,2)$
\mathcal{O}_{38}	5	$\left(\begin{array}{lllll}1 & 1 & 3 & 2 & 3\end{array}\right]$	$(2,2,2,2,2)$
\mathcal{O}_{39}	5	[1212lll	$(2,2,3,2,1)$
\mathcal{O}_{40}	5	[1213ll	$(2,1,4,3,0)$
\mathcal{O}_{41}	5	$\left.\mathrm{llllll}_{1}^{12} 2223\right]$	$(1,3,2,3,1)$
\mathcal{O}_{42}	5	$\left[\begin{array}{llllll}1 & 2 & 2 & 3 & 2\end{array}\right]$	(1, 3, 3, 1, 2)
O_{43}	5	[12lll $\begin{array}{lll}1 & 2 & 2\end{array} 1$	$(2,2,2,2,2)$
\mathcal{O}_{44}	5	$1 \begin{array}{lllll}1 & 2 & 3 & 1 & 3\end{array}$	$(2,1,3,3,1)$
\mathcal{O}_{45}	5	$22222]$	$(0,5,0,5,0)$
\mathcal{O}_{46}	6		$(5,4,3,2,1)$
\mathcal{O}_{47}	6		$(4,4,3,3,1)$
O_{48}	6	$\left[\begin{array}{llllll}1 & 1 & 1 & 1 & 3 & 3\end{array}\right.$	$(4,3,4,3,1)$
\mathcal{O}_{49}	6	$\left[\begin{array}{llllll}1 & 1 & 1 & 2 & 1 & 4\end{array}\right]$	$(4,3,3,3,2)$
\mathcal{O}_{50}	6	$\left[\begin{array}{llllll}1 & 1 & 1 & 2 & 2 & 3\end{array}\right]$	$(3,4,3,3,2)$
\mathcal{O}_{51}	6	$\left[\begin{array}{llllll}1 & 1 & 1 & 2 & 3 & 2\end{array}\right]$	$(3,4,4,2,2)$
\mathcal{O}_{52}	6	$\left[\begin{array}{llllll}1 & 1 & 1 & 3 & 1 & 3\end{array}\right]$	$(4,2,3,4,2)$
\mathcal{O}_{53}	6	$\left[\begin{array}{llllll}1 & 1 & 2 & 1 & 1 & 4 \\ 1 & 1 & 2 & 1 & 2 & 3\end{array}\right.$	$(4,3,2,4,2)$
\mathcal{O}_{54}	6	[1121lll	$(3,3,4,3,2)$
\mathcal{O}_{55}	6	[1112llll	$(3,3,4,4,1)$
\mathcal{O}_{56}	6	[1112lll	$(3,3,3,4,2)$
\mathcal{O}_{57}	6	$\left[\begin{array}{llllll}1 & 1 & 2 & 2 & 2 & 2\end{array}\right]$	$(2,5,2,5,1)$
\mathcal{O}_{58}	6	$\left[\begin{array}{llllll}1 & 1 & 3 & 1 & 1 & 3\end{array}\right]$	$(4,2,2,4,3)$
\mathcal{O}_{59}	6	$\mathrm{lllllll}_{1}^{1} 21121213$.	$(3,2,5,4,1)$
\mathcal{O}_{60}	6		$(2,4,4,3,2)$
\mathcal{O}_{61}	6	$122122]$	$(2,4,4,2,3)$
O_{62}	7	$\left[\begin{array}{llllllll}1 & 1 & 1 & 1 & 1 & 1 & 4 \\ 1 & 1\end{array}\right.$	(6, 5, 4, 4, 2)
\mathcal{O}_{63}	7		$(5,5,5,4,2)$
\mathcal{O}_{64}	7		$(5,4,5,5,2)$
\mathcal{O}_{65}	7	[11111112lll	$(4,6,4,5,2)$
\mathcal{O}_{66}	7		$(5,4,4,5,3)$
\mathcal{O}_{67}	7	[1111112llll	$(4,5,5,4,3)$
\mathcal{O}_{68}	7	[1112lllll	$(4,5,4,6,2)$
\mathcal{O}_{69}	7	$\left[\begin{array}{llllllll}1 & 1 & 2 & 1 & 2 & 1\end{array}\right]$	$(4,4,6,5,2)$
\mathcal{O}_{70}	8	1 1 1 1 1 1 1 3	$(7,6,6,6,3)$
\mathcal{O}_{71}	8		$(6,7,6,6,3)$
\mathcal{O}_{72}	8	[17llllllll	$(6,6,7,6,3)$
\mathcal{O}_{73}	8		$(6,6,6,7,3)$
\mathcal{O}_{74}	8	11 1 1 2 1 1 1	$(6,6,6,6,4)$
\mathcal{O}_{75}	9	111111112	$(8,8,8,8,4)$
\mathcal{O}_{76}	10	$1111111111]$	(10, 10, 10, 10, 5)

$n=10$

Table 3: All (n, k)-Ovals up to congruence and their RIV's for $8 \leq n \leq 10$.

Note that $-\delta(S)=\left\{s_{i}-s_{j}: 1 \leq i<j \leq k\right\}$, and $|-\delta(S)|=|\delta(S)|=\binom{k}{2}$, and $|\Delta(S)|=k(k-1)$.

Lemma 5.2 Let M be a multiset with elements from $\mathbb{Z}_{n} \backslash\{0\}$. Then $r(M)=$ $r(-M)$.

Proof. Let n be even. Consider an occurrence of $a \in M$.
Suppose $a \leq\left\lfloor\frac{n}{2}\right\rfloor$. First, if $a=\frac{n}{2}$ then $r(a)=\frac{n}{2}$. Now $-a=\frac{n}{2} \in-M$ and $r(-a)=\frac{n}{2}$ also. Thus element $\frac{n}{2} \in M$ 'contributes' the same element $\frac{n}{2}$ to both multisets $r(M)$ and $r(-M)$. Second, if $a<\left\lfloor\frac{n}{2}\right\rfloor$ then $r(a)=a$. Now $-a \in-M$ satisfies $-a>\left\lfloor\frac{n}{2}\right\rfloor$ so $r(-a)=-(-a)=a$. So, again, element $a \in M$ contributes the same element a to both $r(M)$ and $r(-M)$.

Suppose $a>\left\lfloor\frac{n}{2}\right\rfloor$. Then $r(a)=-a$. Now $-a \in-M$ satisfies $-a<\left\lfloor\frac{n}{2}\right\rfloor \leq$ $\left\lfloor\frac{n}{2}\right\rfloor$ so $r(-a)=-a$. Thus, element $a \in M$ contributes the same element $-a$ to both $r(M)$ and $r(-M)$.

In conclusion, any occurrence of $a \in M$ contributes the same element to both multisets $r(M)$ and $r(-M)$. Thus $r(M)=r(-M)$. The proof for odd n is similar.

Definition 5.3 The Short Frequency Vector (SFV) of $r(M)$ is the vector $\left(f_{r(M)}(1), f_{r(M)}(2), \ldots, f_{r(M)}\left(\left\lfloor\frac{n}{2}\right\rfloor\right)\right)$ of length $\left\lfloor\frac{n}{2}\right\rfloor$.

Remark 5.4 From Lemma 4.5 we have $\operatorname{RIV}(\mathcal{O}(\alpha(S)))=\operatorname{SFV}(r(\delta(S)))$.
Example $5.5(n, k)=(15,6)$. See Example 4.6. Here $X=\{0,4,7,9,10,14\}$ $\subseteq \mathbb{Z}_{15}$ and $\delta(X)=\left\{1^{1}, 2^{1}, 3^{2}, 4^{2}, 5^{2}, 6^{1}, 7^{2}, 9^{1}, 10^{2}, 14^{1}\right\}$, and $r(\delta(X))=\left\{1^{2}, 2^{1}, 3^{2}, 4^{2}, 5^{4}, 6^{2}, 7^{2}\right\}$. So $\operatorname{RIV}(\mathcal{O}(\alpha(X)))=\operatorname{SFV}(r(\delta(X)))=$ (2, 1, 2, 2, 4, 2, 2).

Lemma 5.6 Let $S \subseteq \mathbb{Z}_{n}$. Then $\operatorname{SFV}(r(\Delta(S)))=2 \times \operatorname{SFV}(r(\delta(S)))$.
Proof. Now $\Delta(S)=\delta(S) \cup-\delta(S)$, and so $r(\Delta(S))=r(\delta(S)) \cup-r(\delta(S))=$ $r(\delta(S)) \cup r(\delta(S))$ using Lemma 5.2. Hence for any $a \in r(\delta(S))$ we have $f_{r(\Delta(S))}(a)=2 \times f_{r(\delta(S))}(a)$, and so the result.

Example $5.7(n, k)=(15,6)$. See Example 5.5. Again, $X=\{0,4,7,9,10,14\}$ $\subseteq \mathbb{Z}_{15}$ and $\Delta(X)=\left\{1^{2}, 2^{2}, 3^{4}, 4^{4}, 5^{4}, 6^{2}, 7^{4}, 9^{2}, 10^{4}, 14^{2}\right\}$, and $r(\Delta(X))=\left\{1^{4}, 2^{2}, 3^{4}, 4^{4}, 5^{8}, 6^{4}, 7^{4}\right\}$. So $\operatorname{SFV}(r(\Delta(X)))=(4,2,4,4,8,4,4)=$ $2 \times(2,1,2,2,4,2,2)=2 \times \operatorname{SFV}(r(\delta(X)))$.

5.1 Magic Ovals and cyclic difference sets

Definition 5.8 A (n, k, λ)-cyclic difference set - (n, k, λ)-CDS - is a k subset $D \subseteq \mathbb{Z}_{n}$ with the property that $\Delta(D)$ contains every non-zero element of \mathbb{Z}_{n} exactly λ times.

In a (n, k, λ)-CDS straightforward counting gives:

$$
\begin{equation*}
\lambda(n-1)=k(k-1) \tag{3}
\end{equation*}
$$

this shows that λ is even if n is even.
Example $5.9(n, k)=(7,3) . \quad D=\{0,1,3\}$ is a $(7,3,1)$-CDS. We have $\delta(D)=\{1,3,2\}$ and $-\delta(D)=\{-1,-3,-2\}=\{6,4,5\}$, giving $\Delta(D)=$ $\left\{1^{1}, 2^{1}, 3^{1}, 4^{1}, 5^{1}, 6^{1}\right\}$.

Recall that, when n is odd, there are n copies of each of the $\left\lfloor\frac{n}{2}\right\rfloor$ distinct rhombs in $\operatorname{SRI}_{2 n}$, i.e., $\operatorname{RIV}(\{2 n\})=(n, n, \ldots, n, n)$, and, when n is even, there are n copies of each of the $\frac{n}{2}-1$ non-square rhombs in $\mathrm{SRI}_{2 n}$, but only $\frac{n}{2}$ copies of the square, i.e., $\operatorname{RIV}(\{2 n\})=\left(n, n, \ldots, n, \frac{n}{2}\right)$.

Definition 5.10 A magic (n, k, λ)-Oval is, for odd n, an (n, k)-Oval that contains exactly λ copies of each of the $\left\lfloor\frac{n}{2}\right\rfloor$ distinct rhombs of $\mathrm{SRI}_{2 n}$, i.e., that has $\operatorname{RIV}=(\lambda, \lambda, \ldots, \lambda, \lambda)$, and is, for even n, an (n, k)-Oval that contains exactly λ copies of each of the $\frac{n}{2}-1$ non-square rhombs in $\mathrm{SRI}_{2 n}$, but only $\frac{\lambda}{2}$ copies of the square, i.e., that has RIV $=\left(\lambda, \lambda, \ldots, \lambda, \frac{\lambda}{2}\right)$.

The following Theorem 5.11 is a main result, it proves equivalence of a magic (n, k, λ)-Oval and a (n, k, λ)-CDS.

Theorem 5.11 Let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\} \subseteq \mathbb{Z}_{n}$. Then $\mathcal{O}(\alpha(S))$ is a magic (n, k, λ)-Oval if and only if S is a $(n, k, \lambda)-C D S$. Moreover, λ is equal to the number of 1's in TAIS $\alpha(S)$.

Proof. Necessity: let $\mathcal{O}(\alpha(S))$ be a magic (n, k, λ)-Oval.
For odd n : for each $h=1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor$, there are λ occurrences of h in OIT $(\alpha(S))$ so, by the proof of Lemma 4.5 , the multiset $\delta(S)$ contains λ occurrences from $\{h, n-h\}$. Suppose h occurs λ^{\prime} times in $\delta(S)$ then $n-h$ will occur $\lambda-\lambda^{\prime}$ times in $\delta(S)$, so h will occur $\lambda-\lambda^{\prime}$ times in $-\delta(S)$. Hence h will occur exactly λ times in $\Delta(S)=\delta(S) \cup-\delta(S)$. For $h=\left\lfloor\frac{n}{2}\right\rfloor+$
$1,\left\lfloor\frac{n}{2}\right\rfloor+2, \ldots, n-1$, we argue in a similar way with h replaced by $n-h$ to conclude that these h also occur λ times in $\Delta(S)$. Now $\Delta(S)$ is the multiset of differences defined by S; hence S is a cyclic difference set with repetition number λ, i.e., S is a (n, k, λ)-CDS.

For even n : arguing as above each $h \neq \frac{n}{2}$ occurs λ times in $\Delta(S)$. Also $h=\frac{n}{2}$ occurs $\frac{\lambda}{2}$ times in $\operatorname{OIT}(\alpha(S))$, i.e., $\frac{\lambda}{2}$ times in $r(\delta(S))$ and so $\frac{\lambda}{2}$ times in $\delta(S)$, and thus λ times in $\Delta(S)$ using Lemma 5.6. Hence, for even n also, S is a (n, k, λ)-CDS.
Sufficiency: let $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ be a (n, k, λ)-CDS. So, for odd n, we have $\operatorname{SFV}(r(\Delta(S)))=(2 \lambda, 2 \lambda, \ldots, 2 \lambda, 2 \lambda)$, and, for even n, we have $\operatorname{SFV}(r(\Delta(S)))=$ $(2 \lambda, 2 \lambda, \ldots, 2 \lambda, \lambda)$. Hence, from Lemma 5.6, for odd n, we have $\operatorname{SFV}(r(\delta(S)))=$ $(\lambda, \lambda, \ldots, \lambda, \lambda)$, and, for even n, we have $\operatorname{SFV}(r(\delta(S)))=\left(\lambda, \lambda, \ldots, \lambda, \frac{\lambda}{2}\right)$. But $\operatorname{RIV}(\mathcal{O}(\alpha(S)))=\operatorname{SFV}(r(\delta(S)))$ and so $\mathcal{O}(\alpha(S))$ is a magic ($n, k, \lambda)$-Oval.

Let μ be the number of 1's in TAIS $\alpha(S)=\left[s_{2}-s_{1}, s_{3}-s_{2}, \cdots, s_{k}-\right.$ $\left.s_{k-1}, s_{1}-s_{k}\right]$. Recall that the elements in $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ are in increasing order and satisfy $0 \leq s_{1}<s_{2}<\cdots<s_{k}$. There are λ 1's in $\Delta(S)$; hence there are λ solutions to $s_{j}-s_{i} \equiv 1(\bmod n)$, where $i, j \in\{1,2, \ldots, k\}$, $i \neq j$. Now if $s_{j}-s_{i}=1$ or $-(n-1)$ then $j=i+1$ for $1 \leq i \leq k-1$, or $j=1$ and $i=k$ (respectively), and thus $s_{j}-s_{i}$ is an element of $\alpha(S)$. Hence $\mu \geq \lambda$. Conversely, because there are μ 1's in the TAIS $\alpha(S)$ and every element of this TAIS is also an element of $\Delta(S)$, then $\mu \leq \lambda$. Hence $\lambda=\mu$.

Example 5.12

(a) The regular $2 n$-gon $\{2 n\}$ has TAIS $=\underbrace{\left[\begin{array}{lll}11 \cdots 1\end{array}\right]}_{n}$, which contains n 1's. It is a magic (n, n, n)-Oval with corresponding (n, n, n) - $\operatorname{CDS} D=\{0,1, \ldots, n-$ $1\}$. For odd n we have $\operatorname{RIV}(\{2 n\})=(n, n, \ldots, n, n)$, and for even $n \operatorname{RIV}(\{2 n\})=$ $\left(n, n, \ldots, n, \frac{n}{2}\right)$.
(b) If we remove the right-hand strip of rhombs in $\{2 n\}$ we produce a magic ($n, n-1, n-2$)-Oval $\{2 n\}^{\prime}$ with TAIS $=\underbrace{\left[\begin{array}{lll}11 \cdots 12\end{array}\right]}_{n-1}$, containing $n-21$'s.
For odd n we have $\operatorname{RIV}\left(\{2 n\}^{\prime}\right)=(n-2, n-2, \ldots, n-2, n-2)$, and, for even n, we have $\operatorname{RIV}\left(\{2 n\}^{\prime}\right)=\left(n-2, n-2, \ldots, n-2, \frac{n-2}{2}\right)$. The corresponding $(n, n-1, n-2)$-CDS is $D^{\prime}=\{0,1, \ldots, n-2\}$. See Fig. 5 for an example with $n=12$.

If we remove another strip of rhombs we obtain an ($n, n-2$)-Oval but only

Figure 5: The regular 12-gon $\{12\}$, and the magic $(6,5,4)$-Oval $\{12\}^{\prime}$ obtained by removing the right-hand strip of rhombs from $\{12\}$.
non-integer values of λ result from Equation (3), and so such an Oval is not magic.
(c) $(n, k)=(7,3)$. See Example 5.9. The set $D=\{0,1,3\}$ is a $(7,3,1)$-CDS, and so $\mathcal{O}(\alpha(D))$ is a magic $(7,3,1)$-Oval with TAIS $\alpha(D)=\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]$, which contains one 1. The OIT for $\mathcal{O}(\alpha(D))$ is 12 and so $\operatorname{RIV}(\mathcal{O}(\alpha(D)))=(1,1,1)$. See the fourth (7,3)-Oval in Fig. 4.
(d) $(n, k)=(15,7)$. See Fig. 6. The set $D=\{0,1,2,4,5,8,10\}$ is a $(15,7,3)$ CDS. We have $\alpha(D)=\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 2\end{array}\right.$ 5 $]$, which contains 3 1's, and the (15, 7)Oval $\mathcal{O}(\alpha(D))$ is a magic $(15,7,3)$-Oval with OIT

Figure 6: The magic (15, 7, 3)-Oval $\mathcal{O}\left(\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 3\end{array} 25\right]\right)$.

Remark 5.13 The CDS's D and D^{\prime} in Examples 5.12(a) and (b) above are usually considered to be 'trivial' CDS; see p. 298 of [3]. We ignore the other two trivial CDS, namely \emptyset and $\left\{s_{i}\right\}$, because $k \geq 2$. Thus non-trivial magic (n, k, λ)-Ovals have $2 \leq k \leq n-2$.

Both these trivial CDS's have mult $(D)=\operatorname{mult}\left(D^{\prime}\right)=U(n)$, so both have -1 as a multiplier. Let D be a non-trivial (n, k, λ)-CDS. Then it is combinatorial folklore that -1 is not a multiplier of D; see the discussion on p. 60 of Baumert [2]. Thus -1 is not a multiplier of the non-trivial magic (n, k, λ)-Oval $\mathcal{O}(\alpha(D))$. Then Theorem 3.7(ii) gives Theorem 5.14 below which is a geometrical interpretation of this fact.

Theorem 5.14 Let $\mathcal{O}(\alpha(D))$ be a non-trivial magic ($n, k, \lambda)$-Oval. Then -1 is not a multiplier of $\mathcal{O}(\alpha(D))$, so $\mathcal{O}(\alpha(D)) \neq \mathcal{O}(\alpha(-D))$ and $\{\mathcal{O}(\alpha(D)), \mathcal{O}(\alpha(-D))\}$ is a congruent enantiomorphic pair in $\mathcal{O}^{*}(n, k)$.

Example $5.15 \quad(n, k)=(7,3)$. See Examples 3.8 and 5.12(c). The (7,3)Oval $\mathcal{O}(\alpha(\mathcal{D}))$ with $D=\{0,1,3\}$ is a non-trivial magic $(7,3,1)$-Oval, so $-1 \notin$ $\operatorname{mult}(\mathcal{O}(\alpha(\mathcal{D}))$) and $\{\mathcal{O}(\alpha(D)), \mathcal{O}(\alpha(-D))\}$ is a congruent enantiomorphic pair in $\mathcal{O}^{*}(7,3)$.

To the end of this Section we assume our CDS's are non-trivial.

Definition 5.16 A (n, k, λ)-CDS is planar if $\lambda=1$.
We now give a new proof that -1 is not a multiplier of a planar CDS.
Theorem 5.17 Let D be a planar ($n, k, 1$)-CDS with $k \geq 3$. Then $-1 \notin$ mult (D).

Proof. Let $T=\alpha(D)=\left[\begin{array}{llll}t_{1} & t_{2} & \cdots & t_{k}\end{array}\right]$ be the TAIS of $\mathcal{O}(\alpha(D))$. Then $\mathcal{O}(\alpha(D))$ is a magic $(n, k, 1)$-Oval. Suppose that two parts of T are equal, say $t_{i}=t_{j}=h$ for $1 \leq i<j \leq k$ and $1 \leq h \leq\left\lfloor\frac{n}{2}\right\rfloor$. Now form $\operatorname{OIT}(T)$ using any truncated TAIS containing both t_{i} and t_{j}, this is possible because $k \geq 3$. Then $\operatorname{OIT}(T)$ will contain at least 2 copies of rhomb ρ_{h}, i.e., $\lambda_{h} \geq 2$ in $\operatorname{RIV}(\mathcal{O}(\alpha(D)))$, a contradiction because $\lambda=\lambda_{h}=1$. So the k parts of $T=\left[\begin{array}{llll}t_{1} & t_{2} & \cdots & t_{k}\end{array}\right]$ are distinct.

Suppose that T is reversible, so $T \equiv_{\text {cyc }} \overleftarrow{T}$ where $\overleftarrow{T}=\left[t_{k} t_{k-1} \cdots t_{1}\right]$. Now, because the parts of T are distinct, we have $T \equiv{ }_{\text {cyc }}\left[t_{1} t_{k} \cdots t_{2}\right]=\left[t_{1} t_{2} \cdots t_{k}\right]$, so $t_{k}=t_{2}$, a contradiction. Hence T is not reversible, and, by Theorem 3.4, we have $-1 \notin \operatorname{mult}(D)$.

5.2 All magic (n, k, λ)-Ovals, $n \leq 40$

See p. 2 of Baumert [2].
Definition 5.18 Two k-subsets S and S^{\prime} of \mathbb{Z}_{n} are (u, z)-equivalent, $S \equiv_{u, z}$ S^{\prime}, if there exists $u \in U(n)$ and $z \in \mathbb{Z}_{n}$ such that $S=u S^{\prime}+z$.

Table 6.1, p. 150 of [2] contains a complete list of the $74(n, k, \lambda)$ triples with $k \leq 100$ for which a (n, k, λ)-CDS exists, with at least one example of such a CDS for each triple.

Moreover, for the $12(n, k, \lambda)$ triples with $n \leq 40$, see our Table 4 below, the (n, k, λ)-CDS examples in Table 6.1 of [2] are all the examples up to (u, z)-equivalence. To confirm this statement for these 12 triples see Hall [5]. As a double-check for the 8 triples: $(7,3,1),(13,4,1),(15,7,3)$, $(19,9,4),(21,5,1),(23,11,5),(31,6,1)$, and $(37,9,2)$ see the explicit examples on pp.306-308 and p. 327 of [3]. The remaining 4 triples: $(11,5,2)$, $(31,15,7),(35,17,8)$, and $(40,13,4)$ were also double-checked by the authors using computer searches and Theorem 2.9 on p. 306 of [3].

Amongst these 12 triples, for just one triple, namely $(31,15,7)$, there is more than one inequivalent (n, k, λ)-CDS: there are two inequivalent $(31,15,7)$ CDS's, these are labelled '31A' and '31B' in Table 6.1 of [2], and 'A' and ' B ' in our Table 4.

We stopped at $n=40$ in our Table 4 to indicate that magic (n, k, λ)-Ovals with n even can occur.

Remark 5.19 Now $-1 \notin \operatorname{mult}(D) ;$ hence $\operatorname{Mult}(D)=\operatorname{mult}(D) \cup-\operatorname{mult}(D)$ and $|\operatorname{Mult}(D)|=2|\operatorname{mult}(D)|$ from Definition 3.11 and Remark 3.12.

Example $5.20(n, k)=(13,4)$. The unique $(13,4,1)$-CDS up to (u, z) equivalence is $D=\{0,1,3,9\}$.

We have $\operatorname{mult}(D)=\{1,3,9\}$ and $\operatorname{Mult}(D)=\{1,3,4,9,10,12\}$. Now $|U(13)|=12$ so $|U(13): \operatorname{Mult}(D)|=2$. A set of 2 coset representatives for $\operatorname{Mult}(D)$ in $U(13)$ is $\{1,2\}$. Then the 2 incongruent $(13,4,1)$-CDS's that are each (u, z)-equivalent to D are D and $2 D=\{0,2,5,6\} \equiv_{z}\{0,1,8,10\}$, with corresponding TAIS's $\left[\begin{array}{lll}1 & 2 & 6\end{array}\right]$] and $\left[\begin{array}{lll}1 & 3 & 2\end{array}\right]$ respectively. Thus there are 2 magic (13, 4, 1)-Ovals up to congruency; see our Table 4.

A similar procedure applied to each (n, k, λ)-CDS of Table 6.1 of [2] for $n \leq 40$ produces our Table 4 .

Example $5.21(n, k)=(16,6)$. There does not exist a (16, 6, 2)-CDS; see Example 14.20(a) on p. 425 of [3]. So there does not exist a magic ($16,6,2$)-Oval, i.e., a (16,6)-Oval with RIV (2, 2, 2, 2, 2, 2, 2, 1). Consider the $(16,6)$-Oval $\mathcal{O}=\mathcal{O}\left(\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 5\end{array}\right]\right)$. Then $\operatorname{RIV}(\mathcal{O})=(3,2,2,2,2,2,1,1)$ which is the 'closest' that the RIV with $\lambda_{8}=1$ of a (16,6)-Oval can be to $(2,2,2,2,2,2,2,1)$, i.e., Oval \mathcal{O} is the 'closest' that a $(16,6)$-Oval with one square rhomb can be to a magic $(16,6,2)$-Oval. Oval \mathcal{O} has $\lambda_{1}=3$ (instead of $\lambda_{1}=2$ for a magic $(16,6,2)$-Oval), and $\lambda_{7}=1$ (instead of $\left.\lambda_{7}=2\right)$. Alternatively, $S=\beta\left(\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 5\end{array}\right]\right)=\{0,1,2,4,5,10\}$ is the 'closest' that a 6 -subset S^{\prime} of \mathbb{Z}_{16} with the frequency in $\Delta\left(S^{\prime}\right)$ of 8 equal to 2 can be to a $(16,6,2)$-CDS. In $\Delta(S)$ the frequencies of 1 and 15 are 3 (instead of 2), and the frequencies of 7 and 9 are 1 (instead of 2).

(n, k, λ)	D	TAIS
(7, 3, 1)	\{0, 1, 3\}	[12 4]
$(11,5,2)$	$\{0,1,2,6,9\}$	[11433]
$(13,4,1)$	\{0, 1, 3, 9\}	$\begin{array}{llll} {\left[\begin{array}{lll} 1 & 2 & 6 \end{array}\right]} \\ {\left[\begin{array}{lll} 1 & 3 & 2 \end{array}\right]} \\ \hline \end{array}$
(15, 7, 3)	$\{0,1,2,4,5,8,10\}$	[1112113325$]$
$(19,9,4)$	\{0, 1, 2, 3, 5, 7, 12, 13, 16\}	[11122 $\left.{ }^{1} 515133\right]$
$(21,5,1)$	\{0, 1, 6, 8, 18\}	[1515llll
(23, 11, 5)	$\{0,1,2,3,5,7,8,11,12,15,17\}$	[111222131326]
$(31,6,1)$	\{0, 1, 3, 8, 12, 18\}	$\left.\begin{array}{llllll} {\left[\begin{array}{llllll} 1 & 2 & 5 & 4 & 6 & 13 \end{array}\right]} \\ {\left[\begin{array}{lllll} 1 & 3 & 6 & 2 & 5 \end{array} 14\right.} \end{array}\right]$
$(31,15,7)-\mathrm{A}$	$\{0,1,2,3,5,7,11,14,15,16,22,23,26,28,29\}$	
$\frac{(31,15,7)-\mathrm{B}}{(35,17,8)}$	$\frac{\{0,1,2,3,7,9,11,12,13,18,21,25,26,28,29\}}{\{0,1,2,3,5,6,10,16,17,18,22,24,25,27,28,31,33\}}$	[11121461142121322]
$(37,9,2)$	$\{0,1,3,7,17,24,25,29,35\}$	$\left.\begin{array}{lllll} 1 & 2 & 4 & 107146 \end{array}\right]$
(40, 13, 4)	$\{0,1,2,4,5,8,13,14,17,19,24,26,34\}$	

Table 4: All non-trivial (n, k, λ)-CDS's (up to (u, z)-equivalence) and the corresponding TAIS's of all non-trivial magic (n, k, λ)-Ovals (up to congruency) for $n \leq 40$ and $2 \leq k \leq\left\lfloor\frac{n}{2}\right\rfloor$.

6 Oval-partitions of $\{2 n\}^{p}$, cyclic difference families, triangle-partitions of $\binom{n}{2}$

See Section 3.9 of Schoen [8] for a preliminary version of some of the research in this Section; see also Schoen and McK Shorb [9].

Let \mathcal{O}^{p} denote p copies of Oval \mathcal{O}, in particular $\{2 n\}^{p}$ denotes p copies of the regular $2 n$-gon $\{2 n\}$.

Definition 6.1 An Oval-partition of $\{2 n\}^{p}$ is a partition of the rhombs
from $\{2 n\}^{p}$ into $q\left(n, k_{i}\right)$-Ovals, \mathcal{O}_{i}, for various $q \geq 1$ and various $k_{i} \geq 2$:

$$
\begin{equation*}
\{2 n\}^{p} \rightarrow \mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{q} \tag{4}
\end{equation*}
$$

Clearly (4) is equivalent to

$$
\begin{equation*}
p \times \operatorname{RIV}(\{2 n\})=\sum_{i=1}^{q} \operatorname{RIV}\left(\mathcal{O}_{i}\right) \tag{5}
\end{equation*}
$$

We focus on $p=1$ and sometimes shorten $\mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{q}$ to $\mathcal{O}_{1} \mathcal{O}_{2} \cdots \mathcal{O}_{q}$.

Remark 6.2 Because the regular $2 n$-gon $\{2 n\}$ is a magic (n, n, n)-Oval then, along the lines of Theorem 5.11, we can prove that in Oval-partition (4) with $p=1$ the total number of 1's in the TAIS's of the Ovals in $\mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{q}$ equals n.

Definitions 6.3 distinct Oval-partition, $\mathcal{O P}(n), \mathcal{D O \mathcal { P }}(n)$
(1) An Oval-partition is distinct if it contains distinct Ovals.
(2) $\mathcal{O P}(n)$ is the total number of Oval-partitions of $\{2 n\}$, for $n \geq 2$; we define $\mathcal{O P}(1)=1$.
(3) $\mathcal{D O P}(n)$ is the total number of distinct Oval-partitions of $\{2 n\}$, for $n \geq 2$; we define $\mathcal{D O P}(1)=1$.

See Table 5 for all Oval-partitions of $\{2 n\}$ and the corresponding trianglepartition of $\binom{n}{2}$ (see Section 6.3), for $n=2,3,4$, and 5 .

n	$\binom{n}{2}$	q	O-p of $\{2 n\}$	Δ-p of $\binom{n}{2}$	$\mathcal{O P}(n)$	Distinct?	$\mathcal{D} \mathcal{O P}(n)$
2	1	1	\mathcal{O}_{1}	1	1	Yes	1
3	3	1	\mathcal{O}_{2}	3	2	Yes	1
3	3	3	\mathcal{O}_{1}^{3}	1^{3}		No	
4	6	1	\mathcal{O}_{4}	6	4	Yes	1
4	6	2	\mathcal{O}_{3}^{2}	3^{2}		No	
4	6	4	$\mathcal{O}_{1}^{2} \mathcal{O}_{2} \mathcal{O}_{3}$	$1^{3} 3$		No	
4	6	6	$\mathcal{O}_{1}^{4} \mathcal{O}_{2}^{2}$	1^{6}		No	
5	10	1	\mathcal{O}_{6}	$[10]$	12	Yes	3
5	10	3	$\mathcal{O}_{1} \mathcal{O}_{4} \mathcal{O}_{5}$	136		Yes	
5	10	3	$\mathcal{O}_{2} \mathcal{O}_{3} \mathcal{O}_{5}$	136		Yes	
5	10	4	$\mathcal{O}_{1} \mathcal{O}_{3} \mathcal{O}_{4}^{2}$	13^{3}		No	
5	10	4	$\mathcal{O}_{2} \mathcal{O}_{3}^{2} \mathcal{O}_{4}$	13^{3}		No	
5	10	5	$\mathcal{O}_{1}^{2} \mathcal{O}_{2}^{2} \mathcal{O}_{5}$	$1^{4} 6$		No	
5	10	6	$\mathcal{O}_{1}^{3} \mathcal{O}_{2} \mathcal{O}_{4}^{2}$	$1^{4} 3^{2}$		No	
5	10	6	$\mathcal{O}_{1}^{2} \mathcal{O}_{2}^{2} \mathcal{O}_{3} \mathcal{O}_{4}$	$1^{4} 3^{2}$		No	
5	10	6	$\mathcal{O}_{1} \mathcal{O}_{2}^{3} \mathcal{O}_{3}^{2}$	$1^{4} 3^{2}$		No	
5	10	8	$\mathcal{O}_{1}^{4} \mathcal{O}_{2}^{3} \mathcal{O}_{4}$	$1^{7} 3$		No	
5	10	8	$\mathcal{O}_{1}^{3} \mathcal{O}_{2}^{4} \mathcal{O}_{3}$	$1^{7} 3$		No	
5	10	10	$\mathcal{O}_{1}^{5} \mathcal{O}_{2}^{5}$	1^{10}		No	

Table 5: All Oval-partitions (O-p) of $\{2 n\}$ and the corresponding trianglepartition $\left(\Delta\right.$-p) of $\binom{n}{2}$ (see Section 6.3); the values of $\mathcal{O P}(n)$ and $\mathcal{D O P}(n)$, for $2 \leq n \leq 5$. The Oval numbering \mathcal{O}_{i} refers to Table 2.

Example $6.4 n=5$. See Fig. 7. As an example with $n=5$, we check Equation (5) for the Oval-partition $\mathcal{O}_{1} \mathcal{O}_{3} \mathcal{O}_{4}^{2}$ of $\{10\}$ from Table 5:

$$
(5,5)=(1,0)+(2,1)+2(1,2)
$$

Figure 7: The Oval-partition $\mathcal{O}_{1} \mathcal{O}_{3} \mathcal{O}_{4}^{2}$ of $\{10\}$.
Observe that the total number of 1's in the TAIS's of the Ovals in the above Oval-partition equals $n=5$, in agreement with Remark 6.2.

See Table $2, n=5$. In total there are $6(5, k)$-Ovals: $\left\{\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}, \mathcal{O}_{4}, \mathcal{O}_{5}, \mathcal{O}_{6}\right\}$. Let $\operatorname{RIV}(5)=\left\{\operatorname{RIV}\left(\mathcal{O}_{1}\right), \operatorname{RIV}\left(\mathcal{O}_{2}\right), \operatorname{RIV}\left(\mathcal{O}_{3}\right), \operatorname{RIV}\left(\mathcal{O}_{4}\right), \operatorname{RIV}\left(\mathcal{O}_{5}\right), \operatorname{RIV}\left(\mathcal{O}_{6}\right)\right\}=$ $\{(1,0),(0,1),(2,1),(1,2),(3,3),(5,5)\}$. Then to find all Oval-partitions of $\{10\}$ is equivalent to finding all sums of elements of $\mathcal{R} \mathcal{I} \mathcal{V}(5)$ which are equal to $\operatorname{RIV}(\{10\})=(5,5)$, where elements can be used more than once.

Remark 6.5 Similarly, to find all Oval-partitions of $\{2 n\}$ is equivalent to finding all sums of elements of the multiset of RIV's of all (n, k)-Ovals which are equal to $\operatorname{RIV}(\{2 n\})$, where elements can be used more than once.

The values of $\mathcal{O P}(n)$ and $\mathcal{D O P}(n)$ for $2 \leq n \leq 5$ are given in Table 5, we have also computed $\mathcal{O P}(6)=58, \mathcal{D O P}(6)=7, \mathcal{D O P}(7)=42$, and $\mathcal{D O P}(8)=334$. The sequences $\{\mathcal{O P}(n) \mid n \geq 1\}=\{1,1,2,4,12,58, \ldots\}$ and $\{\mathcal{D O P}(n) \mid n \geq 1\}=\{1,1,1,1,3,7,42,334, \ldots\}$ now appear in [7] as sequences A177921 and A181148 respectively.

We may also think about the Oval-partition $\{2 n\} \rightarrow \mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{q}$ in terms of subsets $S \subseteq \mathbb{Z}_{n}$. From Example 5.12(a) the regular $2 n$-gon $\{2 n\}$ is a magic (n, n, n)-Oval with corresponding (n, n, n)-CDS $D=\{0,1, \ldots, n-1\}$. We modify the proof of Theorem 5.11 to give the following.

Theorem 6.6 The Oval-partition $\{2 n\} \rightarrow \mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{q}$ exists if and only if there exists q subsets $D_{1}, D_{2}, \ldots, D_{q} \subseteq \mathbb{Z}_{n}$ with the property that $\Delta(\{0,1, \ldots, n-1\})=\Delta\left(D_{1}\right) \cup \Delta\left(D_{2}\right) \cup \cdots \cup \Delta\left(D_{q}\right)$.

Example 6.7 $n=5$. See Example 6.4. We have $D=\{0,1,2,3,4\}$ and $\Delta(D)=\left\{1^{5}, 2^{5}, 3^{5}, 4^{5}\right\}$, and subsets of $\mathbb{Z}_{5}: D_{1}=\{0,1\}, D_{2}=\{0,1,2\}$, and $D_{3}=D_{4}=\{0,1,3\}$.

6.1 Homologous Oval-partitions, isopart triples, cyclic difference families

Here we consider Oval-partitions of $\{2 n\}^{p}$ in which the Ovals \mathcal{O}_{i} are (n, k) Ovals, where k is fixed.

Definition 6.8 A homologous Oval-partition of $\{2 n\}^{p}$ is a partition of the rhombs from $\{2 n\}^{p}$ into $q(n, k)$-Ovals, \mathcal{O}_{i}, for a fixed $k \geq 2$:

$$
\{2 n\}^{p} \rightarrow \mathcal{O}_{1} \cup \mathcal{O}_{2} \cup \cdots \cup \mathcal{O}_{q}
$$

Note that the (n, k)-Ovals \mathcal{O}_{i} need not be congruent.
When $p=1$ for a homologous Oval-partition of $\{2 n\}$ to exist we require $\left.\binom{k}{2} \right\rvert\,\binom{ n}{2}$. There is a homologous Oval-partition of $\{2 n\}$ into $q=1(n, n)$-Oval, namely into $\{2 n\}$ itself, and another into $q=\binom{n}{2}(n, 2)$-Ovals, namely into the $\binom{n}{2}$ rhombs of $\{2 n\}$. We consider these two partitions as trivial, and so in the following restrict ourselves to $2 \leq q \leq\binom{ n}{2}-1$.

Definitions $6.9 \quad[(n, k), q]$ isopart triple, realizable
(1) The ordered triple $[(n, k), q]$ is an isopart triple if

$$
\binom{n}{2}=q\binom{k}{2} \quad \text { for some } \quad 2 \leq q \leq\binom{ n}{2}-1
$$

so $k \geq 3$.
(2) The isopart triple $[(n, k), q]$ is realizable if there exists a homologous Oval-partition of $\{2 n\}$ into q (not necessarily congruent) (n, k)-Ovals.

Example 6.10
(a) $[(n, k), q]=[(4,3), 2]$. See Table 2. The smallest isopart triple which is realizable is $[(4,3), 2]$. The relevant homologous Oval-partition is $\{8\} \rightarrow$ $\mathcal{O}_{3}^{2}=\mathcal{O}\left(\left[\begin{array}{lll}1 & 1 & 2\end{array}\right]\right)^{2}$.
(b) $[(n, k), q]=[(6,3), 5]$. See Table 2. The smallest isopart triple which is not realizable is $[(6,3), 5]$.

Suppose there is a homologous Oval-partition

$$
\{12\} \rightarrow \mathcal{O}_{4}^{q_{1}} \cup \mathcal{O}_{5}^{q_{2}} \cup \mathcal{O}_{6}^{q_{3}}
$$

where each $q_{i} \geq 0$. Then the system of equations containing the equation $q_{1}+q_{2}+q_{3}=5$ together with the RIV Equations (5):

$$
(6,6,3)=q_{1}(2,1,0)+q_{2}(1,1,1)+q_{3}(0,3,0)
$$

must have a solution in the non-negative integers. That is, the system

$$
q_{1}+q_{2}+q_{3}=5,2 q_{1}+q_{2}=6, q_{1}+q_{2}+3 q_{3}=6, q_{2}=3
$$

must have a solution in the non-negative integers, a contradiction. Hence the isopart triple $[(6,3), 5]$ is not realizable.

See Table 6 for all isopart triples $[(n, k), q]$ for $2 \leq n \leq 16$. All are realizable except $[(\mathbf{6}, \mathbf{3}), \mathbf{5}]$ and $[(\mathbf{1 0}, \mathbf{3}), \mathbf{1 5}]$.

[n, k), q]	Example of a homologous Oval-partition realizing [($n, k), q]$
[(4, 3), 2]	$\mathcal{O}\left(\left[\begin{array}{lll}1 & 1 & 2\end{array}\right)^{2}\right.$ (magic)
$[(6,3), 5]$	Not realizable
$[(7,3), 7]$	$\mathcal{O}\left(\left[\begin{array}{lll}1 & 4\end{array}\right]\right)^{7}$ (magic, see Table 4 row (7, 3, 1), and Example 6.19(b))
$[(9,3), 12]$	$\mathcal{O}\left(\left[\begin{array}{llllll}1 & 1 & 7\end{array}\right)^{3} \mathcal{O}\left(\left[\begin{array}{llllll}1 & 4 & 4\end{array}\right)^{3} \mathcal{O}\left(\left[\begin{array}{llll}2 & 5\end{array}\right]\right)^{3} \mathcal{O}\left(\left[\begin{array}{llll}3 & 3 & 3\end{array}\right]\right)^{3}\right.\right.$
$[(9,4), 6]$	$\mathcal{O}\left(\left[\begin{array}{lllll}1 & 1 & 2 & 5\end{array}\right]\right)^{3} \mathcal{O}\left(\left[\begin{array}{llllll}1 & 3 & 2 & 3\end{array}\right]\right)^{3}$
[(10, 3), 15]	Not realizable
[(10, 6), 3]	$\mathcal{O}\left(\left[\begin{array}{llllllll}1 & 1 & 1 & 3 & 3\end{array}\right) \mathcal{O}\left(\left[\begin{array}{lllllllll}1 & 2 & 1 & 1 & 4\end{array}\right) \mathcal{O}\left(\left[\begin{array}{lllllll}1 & 1 & 2 & 2 & 2\end{array}\right) \quad(\right.\right.\right.$ see $\S 3.9$ p. 22 of [8] and Fig. 8)
[(12, 3), 22]	$\mathcal{O}\left(\left[\begin{array}{lll}1 & 2\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{llll}1 & 8\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{lll}1 & 7\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{lll}2 & 4\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{lll}2 & 5\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{lll}3 & 3\end{array}\right]\right)^{2}$
$[(12,4), 11]$	$\mathcal{O}\left(\left[\begin{array}{llll}1 & 1 & 3 & 7\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llllll}1 & 2 & 1 & 8\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llll}1 & 2 & 4 & 5\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{lllll}1 & 2 & 5 & 4\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llllll}1 & 2 & 2 & 7\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{lllll}1 & 3 & 1 & 7\end{array}\right]\right)$
	$\mathcal{O}\left(\left[\begin{array}{lllll}1 & 4 & 1 & 6\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llllll}1 & 4 & 2 & 5\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llllll}2 & 2 & 6\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llllll}2 & 2 & 3 & 5\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{llllll}3 & 3 & 3 & 3\end{array}\right]\right)$
[(13, 3), 26]	$\mathcal{O}\left(\left[\begin{array}{lll}1 & 9\end{array}\right]\right)^{13} \mathcal{O}\left(\left[\begin{array}{lll}2 & 6\end{array}\right]\right)^{13}$
[(13,4), 13]	$\mathcal{O}\left(\left[\begin{array}{llll}1 & 6 & 4\end{array}\right]\right)^{13}$ (magic, see Table 4 row ($\left.13,4,1\right)$)
$[(15,3), 35]$	$\mathcal{O}\left(\left[\begin{array}{lll}1 & 1 & 13\end{array}\right]\right)^{5} \mathcal{O}\left(\left[\begin{array}{lll}1 & 7 & 7\end{array}\right)^{5} \mathcal{O}\left(\left[\begin{array}{lllll}2 & 11\end{array}\right]\right)^{5} \mathcal{O}\left(\left[\begin{array}{lll}3 & 3 & 9\end{array}\right)^{5} \mathcal{O}\left(\left[\begin{array}{lll}3 & 6 & 6\end{array}\right]\right)^{5} \mathcal{O}\left(\left[\begin{array}{lllll}4 & 4 & 7\end{array}\right]\right)^{5} \mathcal{O}\left(\left[\begin{array}{llll}5 & 5 & 5\end{array}\right]\right)^{5}\right.\right.$
$[(15,6), 7]$	
$[(15,7), 5]$	$\mathcal{O}([1121325])^{5}$ (magic, see Table 4 row ($15,7,3$), and Example 6.19(c))
[(16, 3), 40]	$\mathcal{O}\left(\left[\begin{array}{llll}1 & 13\end{array}\right]\right)^{8} \mathcal{O}\left(\left[\begin{array}{lll}1 & 7\end{array}\right]\right)^{8} \mathcal{O}\left(\left[\begin{array}{llll}2 & 4 & 10\end{array}\right]\right)^{8} \mathcal{O}\left(\left[\begin{array}{lll}3 & 4\end{array}\right]\right)^{8} \mathcal{O}\left(\left[\begin{array}{llll}5 & 5\end{array}\right]\right)^{8}$
[(16, 4), 20]	See $\S 3.9$ p. 23 of [8]
[(16,5), 12]	See Example 6.11
[(16, 6), 8]	$\mathcal{O}\left(\left[\begin{array}{lllllllll}1 & 1 & 2 & 1 & 6\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{llllllll}1 & 2 & 2 & 3\end{array}\right]\right)^{4}$ (see Example 6.20)

Table 6: All isopart triples $[(n, k), q]$ for $2 \leq n \leq 16$, and an example of a homologous Oval-partition realizing the triple. Triples $[(\mathbf{6}, \mathbf{3}), 5]$ and $[(\mathbf{1 0}, \mathbf{3}), \mathbf{1 5}]$ are not realizable.

Figure 8: The homologous Oval-partition of $\{20\}$ for isopart triple $[(10,6), 3]$ from Table 6.

Example $6.11 \quad(n, k)=(16,5)$. Isopart triple $[(16,5), 12]$. See $\S 3.9$ p. 24 of [8]. Here each of the $12(16,5)$-Ovals are distinct, i.e., incongruent. The Table below gives the TAIS's and RIV's of these 12 Ovals.

TAIS	RIV
$\left[\begin{array}{llllll}1 & 1 & 1 & 3 & 10\end{array}\right]$	$(3,2,2,1,1,1,0,0)$
[129913	$(2,1,2,2,1,1,1,0)$
$\left[\begin{array}{llllll}1 & 5 & 2 & 3 & 5\end{array}\right.$	$(1,1,1,0,3,2,1,1)$
$\left[\begin{array}{llllll}1 & 4 & 3 & 2 & 6\end{array}\right.$	$(1,1,1,1,2,1,2,1)$
[12517	$(2,1,1,0,1,1,2,2)$
	$(0,3,1,2,1,1,2,0)$
$\left[\begin{array}{llllll}2 & 2 & 3 & 2 & 7\end{array}\right.$	$(0,3,1,1,2,0,3,0)$
$\left[\begin{array}{llllll}1 & 2 & 3 & 6 & 4\end{array}\right.$	$(1,1,2,1,2,2,1,0)$
$\left[\begin{array}{llllll}1 & 3 & 1 & 3 & 8\end{array}\right.$	$(2,0,2,3,1,0,1,1)$
$\left[\begin{array}{llllll}1 & 1 & 3 & 3 & 8\end{array}\right.$	$(2,1,2,1,1,1,1,1)$
$\left[\begin{array}{llllll}2 & 4 & 2 & 4 & 4\end{array}\right.$	$(0,2,0,3,0,4,0,1)$
[13 35116	$(2,0,1,1,1,2,2,1)$
	(16,16,16,16,16,16,16, 8)

Homologous Oval-partitions are closely related to another class of combinatorial objects, (cf., Theorem 6.6):

Definition 6.12 A (n, k, λ)-cyclic difference family - (n, k, λ) - $\mathrm{CDF}-$ is a collection of $q k$-subsets $D_{1}, D_{2}, \ldots, D_{q} \subseteq \mathbb{Z}_{n}$ with the property that
$\Delta\left(D_{1}\right) \cup \Delta\left(D_{2}\right) \cup \cdots \cup \Delta\left(D_{q}\right)$ contains every non-zero element of \mathbb{Z}_{n} exactly λ times.

Remark 6.13 See Equation (3). In a (n, k, λ)-CDF we have

$$
\lambda(n-1)=q k(k-1),
$$

hence $q=\frac{\lambda(n-1)}{k(k-1)}$ is an integer.
From Definition 6.8 of a homologous Oval-partition of $\{2 n\}$ and Definition 6.12 of a (n, k, λ)-CDF and Theorem 6.6 we have the following result.

Corollary 6.14 There exists a homologous Oval-partition of $\{2 n\}$ into q (n, k)-Ovals if and only if there exists a $(n, k, n)-C D F$.

Clearly, by taking unions of CDF's, there exists a (n, k, n)-CDF if and only if there exists a collection of $\left(n, k, \lambda_{i}\right)$-CDF's with $\sum_{i} \lambda_{i}=n$. Hence, another main result follows.

Theorem 6.15 There exists a homologous Oval-partition of $\{2 n\}$ into q (n, k)-Ovals (i.e., isopart triple $[(n, k), q]$ is realizable) if and only if there exists a collection of $\left(n, k, \lambda_{i}\right)-C D F$'s with $\sum_{i} \lambda_{i}=n$.

Example 6.16

(a) $(n, k)=(9,4)$. See Example 1.6(a) p. 470 of [3] for the $(9,4,3)$-CDF with $D_{1}=\{0,1,2,4\}$ and $D_{2}=\{0,3,4,7\}$. Using 3 copies of this CDF we produce the following homologous Oval-partition of $\{18\}$ into $6(9,4)$-Ovals: $\mathcal{O}\left(\alpha\left(D_{1}\right)\right)^{3} \mathcal{O}\left(\alpha\left(D_{2}\right)\right)^{3}=\mathcal{O}\left(\left[\begin{array}{llll}1 & 1 & 2 & 5\end{array}\right]\right)^{3} \mathcal{O}\left(\left[\begin{array}{llll}1 & 3 & 2 & 3\end{array}\right]\right)^{3}$. This realizes isopart triple $[(9,4), 6]$ with the same partition as given in Table 6.
(b) $(n, k)=(16,3)$. Conversely, we may take a partition which realizes an isopart triple from Table 6 and produce a CDF. For example, the $5(16,3)$ Ovals from row $[(16,3), 40]: \mathcal{O}\left(\left[\begin{array}{lll}1 & 13\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{ll}1 & 7\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{lll}2 & 10\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{lll}3 & 9\end{array}\right]\right) \mathcal{O}\left(\left[\begin{array}{lll}5 & 6\end{array}\right]\right)$ produce a $(16,3,2)$-CDF with $D_{1}=\{0,1,3\}, D_{2}=\{0,1,8\}, D_{3}=\{0,2,6\}$, $D_{4}=\{0,3,7\}$, and $D_{5}=\{0,5,10\}$ which is not (u, z)-equivalent to the $(16,3,2)$-CDF in Examples 16.13, p. 394 of Colbourn and Dinitz [4].
(c) $(n, k)=(6,3)$. From Table 6 we see that isopart triple $[(\mathbf{6}, \mathbf{3}), \mathbf{5}]$ is not realizable, so, from Theorem 6.15, there does not exist a $(6,3,6)$-CDF nor a $(6,3,2)$-CDF; see Table II.2.29, p. 61 of [4].
(d) $(n, k)=(10,3)$. Similarly, isopart triple $[(\mathbf{1 0}, \mathbf{3}), \mathbf{1 5}]$ is not realizable, so there does not exist a $(10,3,10)$-CDF nor a $(10,3,2)$-CDF; see Table II.2.29, p. 61 of [4] again.

6.2 Magic Oval-partitions

Recall that in a (n, k, λ)-CDS we have $\lambda(n-1)=k(k-1)$.
As mentioned in Section 1 this research was partially motivated by Question (iii) on p. 10 of Schoen [8].

Fix $n \geq 2$, for which integers p and q can the rhombs contained in p copies of $\{2 n\}$ be partitioned to tile q congruent Ovals?

Definition 6.17 A magic Oval-partition of $\{2 n\}^{p}$ is a partition of the rhombs contained in $\{2 n\}^{p}$ into q congruent (n, k)-Ovals, \mathcal{O} :

$$
\begin{equation*}
\{2 n\}^{p} \rightarrow \mathcal{O}^{q} \tag{6}
\end{equation*}
$$

We now show that if such a magic Oval-partition of $\{2 n\}^{p}$ exists, then \mathcal{O} is magic.

Theorem 6.18 The partition $\{2 n\}^{p} \rightarrow \mathcal{O}^{q}$ exists if and only if there exists a $\left(n, k, \frac{p n}{q}\right)-C D S$, (\mathcal{O} will then be a magic $\left(n, k, \frac{p n}{q}\right)$-Oval).

Proof. For odd n. Necessity: suppose that such a partition (6) exists. Consider ρ_{h}, the rhomb of $\mathrm{SRI}_{2 n}$ with principle index h, for any fixed $h=$ $1,2, \ldots, \frac{n-1}{2}$. It appears $p n$ times on the left in partition (6) and $q \lambda_{h}$ times on the right, i.e., it appears $\lambda_{h}=\frac{p n}{q}$ times in \mathcal{O}. Thus λ_{h} is independent of h, and so \mathcal{O} is a magic $\left(n, k, \frac{p \eta}{q}\right)$-Oval, (for some suitable k satisfying $\left.k(k-1)=\frac{p n}{q}(n-1)\right)$.
Sufficiency: conversely given a magic $\left(n, k, \frac{p n}{q}\right)$-Oval \mathcal{O} it contains $\frac{p n}{q}$ copies of each rhomb ρ_{h}. So \mathcal{O}^{q} contains $p n$ copies of each ρ_{h}, but this is exactly the number of copies of ρ_{h} in $\{2 n\}^{p}$.

For even n. The proof is similar to the above, but we consider the nonsquare rhombs ρ_{h} for $h=1,2, \ldots, \frac{n}{2}-1$, and the square rhomb $\rho_{\frac{n}{2}}$ as separate cases.

We can find a partition where p and q are the smallest by considering:

$$
\frac{p}{q}=\frac{\lambda}{n}=\frac{\lambda^{*}}{n^{*}}
$$

where $\operatorname{gcd}\left(\lambda^{*}, n^{*}\right)=1$. This gives the partition:

$$
\{2 n\}^{\lambda^{*}} \rightarrow \mathcal{O}^{n^{*}}
$$

Any other partition with the same \mathcal{O} is a 'multiple' of this one.
Note that if $\lambda^{*}=1$ and $2 \leq n^{*} \leq\binom{ n}{2}-1$ then $\left[(n, k), n^{*}\right]$ is a realizable isopart triple.

Example 6.19

(a) See Examples 5.12(a) and (b). Oval $\{2 n\}^{\prime}$ is a magic ($n, n-1, n-2$)Oval obtained from the regular $2 n$-gon $\{2 n\}$ by removing its right-hand strip of rhombs. For odd n we have $\frac{\lambda}{n}=\frac{n-2}{n}=\frac{\lambda^{*}}{n^{*}}$, so the smallest magic Ovalpartition is

$$
\{2 n\}^{n-2} \rightarrow\{2 n\}^{\prime n}
$$

For even $n=2 m$ the smallest magic Oval-partition is

$$
\{2 n\}^{m-1} \rightarrow\{2 n\}^{\prime m}
$$

(b) See Example 5.12(c). Oval $\mathcal{O}\left(\left[\begin{array}{lll}1 & 2 & 4\end{array}\right]\right)$ is a magic (7,3,1)-Oval with RIV $(1,1,1)$. Now $\frac{\lambda}{n}=\frac{1}{7}=\frac{\lambda^{*}}{n^{*}}$, so we have the following magic Oval-partition

$$
\{14\}^{1} \rightarrow \mathcal{O}\left(\left[\begin{array}{lll}
1 & 2 & 4
\end{array}\right]\right)^{7}
$$

The decomposition of $1 \times \operatorname{RIV}(\{14\})$ is $1 \times(7,7,7) \rightarrow 7 \times(1,1,1)$, and the relevant realizable isopart triple is $[(7,3), 7]$; see Table 6.
(c) $(n, k)=(15,7)$. See Example 5.12(d). Oval $\mathcal{O}\left(\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 3\end{array} 25\right]\right)$ is a magic $(15,7,3)$-Oval. Here $\frac{\lambda}{n}=\frac{3}{15}=\frac{1}{5}$ so $\lambda^{*}=1$ and $n^{*}=5$, this gives

$$
\{30\}^{1} \rightarrow \mathcal{O}\left(\left[\begin{array}{lllllll}
1 & 1 & 2 & 1 & 3 & 2 & 5
\end{array}\right]\right)^{5} .
$$

The RIV decomposition is $1 \times(15,15,15,15,15,15,15) \rightarrow 5 \times(3,3,3,3,3,3,3)$ and $[(15,7), 5]$ is the corresponding realizable isopart triple.
(d) $(n, k)=(11,5)$. The $(11,5)$-Oval $\mathcal{O}([11432])$ is a magic $(11,5,2)$-Oval. Here $\frac{\lambda}{n}=\frac{2}{11}$ so $\lambda^{*}=2$ and $n^{*}=11$. This gives us the following magic Oval-partition where $p \neq 1$:

$$
\{22\}^{2} \rightarrow \mathcal{O}\left(\left[\begin{array}{lllll}
1 & 1 & 4 & 3 & 2
\end{array}\right]\right)^{11}
$$

The RIV decomposition is $2 \times(11,11,11,11,11) \rightarrow 11 \times(2,2,2,2,2)$.
Example $6.20(n, k)=(16,6)$. From Example 5.21 there does not exist a magic $(16,6,2)$-Oval, i.e., there does not exist a $(16,6)$-Oval with RIV $(2,2,2,2,2,2,2,1)$. Now $\operatorname{RIV}(\{16\})=(16,16,16,16,16,16,16,8)$, so $\{16\} \nrightarrow$
\mathcal{O}^{8} where \mathcal{O} is a fixed $(16,6)$-Oval. In row $[(16,6), 8]$ of Table 6 we gave the homologous Oval-partition

$$
\{16\} \rightarrow \mathcal{O}\left(\left[\begin{array}{llllll}
1 & 1 & 2 & 1 & 5 & 6
\end{array}\right]\right)^{4} \mathcal{O}\left(\left[\begin{array}{llllll}
1 & 5 & 2 & 2 & 3 & 3
\end{array}\right]\right)^{4}
$$

with RIV decomposition
$(16,16,16,16,16,16,16,8)=4(3,2,2,2,2,2,1,1)+4(1,2,2,2,2,2,3,1)$.
We now show that for every homologous Oval-partition $\{16\} \rightarrow \mathcal{O}_{1}^{q_{1}} \mathcal{O}_{2}^{q_{2}}$ into exactly 2 incongruent $(16,6)$-Ovals \mathcal{O}_{1} and \mathcal{O}_{2}, we have $q_{1}=q_{2}=4$.

Suppose $q_{1}=1$ and $q_{2}=7$. Let $\operatorname{RIV}\left(\mathcal{O}_{1}\right)=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8}\right)$ and $\operatorname{RIV}\left(\mathcal{O}_{2}\right)=\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}\right)$. Then
$(16,16,16,16,16,16,16,8)$

$$
=\left(\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}, \lambda_{5}, \lambda_{6}, \lambda_{7}, \lambda_{8}\right)+7\left(\mu_{1}, \mu_{2}, \mu_{3}, \mu_{4}, \mu_{5}, \mu_{6}, \mu_{7}, \mu_{8}\right)
$$

and $\lambda_{h}+7 \mu_{h}=16$ for $h=1,2, \ldots, 7$. Hence for a fixed $h=1,2, \ldots, 7$ we have either $\lambda_{h}=\mu_{h}=2$, or $\lambda_{h}=9$ and $\mu_{h}=1$, or $\lambda_{h}=16$ and $\mu_{h}=0$. In particular $\lambda_{h} \geq 2$ for every $h=1,2, \ldots, 7$. Now \mathcal{O}_{1} is a $(16,6)$-Oval so $\sum_{h=1}^{8} \lambda_{h}=\binom{6}{2}=15$. Thus if $\lambda_{h}=2$ for every $h=1,2, \ldots, 7$ then $\lambda_{8}=1$ and \mathcal{O}_{1} is a magic (16,6,2)-Oval, a contradiction. Hence for some h with $h=1,2, \ldots, 7$ we must have $\lambda_{h}=9$ or $\lambda_{h}=16$, so $\sum_{h=1}^{7} \lambda_{h} \geq 6 \times 2+9=21$. But $\sum_{h=1}^{7} \lambda_{h} \leq 15$, a contradiction. Hence there is no homologous Ovalpartition $\{16\} \rightarrow \mathcal{O}_{1}^{1} \mathcal{O}_{2}^{7}$. Similarly, the other possible homologous Ovalpartitions $\{16\} \rightarrow \mathcal{O}_{1}^{2} \mathcal{O}_{2}^{6}$ or $\{16\} \rightarrow \mathcal{O}_{1}^{3} \mathcal{O}_{2}^{5}$ do not exist. Hence the only homologous Oval-partition $\{16\} \rightarrow \mathcal{O}_{1}^{q_{1}} \mathcal{O}_{2}^{q_{2}}$ has $q_{1}=q_{2}=4$; an explicit example is given above.

6.3 Triangular-partitions of $\binom{n}{2}$

Recall the triangular numbers: $\left\{\binom{n}{2}, n \geq 2\right\}=\{1,3,6,10,15,21,28, \ldots\}$.
Definitions 6.21 Triangular-partition (Δ-partition) of $\binom{n}{2}$, realizable
(1) A triangular-partition (Δ-partition) of $\binom{n}{2}$ is an integer partition of $\binom{n}{2}$ with each part a triangular number.
(2) A Δ-partition of $\binom{n}{2}$ with q parts in which the i-th part is $\binom{k_{i}}{2}$ is realizable if there exists an Oval-partition of $\{2 n\}$ into q Ovals \mathcal{O}_{i} in which \mathcal{O}_{i} is a $\left(n, k_{i}\right)$-Oval, for each $i=1,2, \ldots, q$.

Remark 6.22 The Δ-partition of $\binom{n}{2}$ corresponding to isopart triple $[(n, k), q]$ is $\binom{k}{2}^{q}$.
Table 7 lists all Δ-partitions of $\binom{n}{2}$ for $n=2,3, \ldots, 8$. For a fixed n the Δ-partitions are given with increasing q, and then in lexicographic order for constant q. The Δ-partition $\mathbf{3}^{\mathbf{5}}$ of $\binom{6}{2}=15$ is the only Δ-partition in Table 7 which is not realizable; see Example $6.10(\mathrm{~b})$, and row $[(\mathbf{6}, \mathbf{3}), 5]$ of Table 6.

n	$\binom{n}{2}$	Δ-partitions of ($\left.\begin{array}{l}n \\ 2\end{array}\right)$
2	1	1
3	3	3, 1^{3}
4	6	$6,3^{2}, 1^{3} 3,1^{6}$
5	10	[10], 136, $13^{3}, 1^{4} 6,1^{4} 3^{2}, 1^{7} 3,1^{10}$
6	15	$\begin{aligned} & {[15], 36^{2}, 1^{2} 3[10], 3^{3} 6,1^{3} 6^{2}, 3^{5}, 1^{5}[10], 1^{3} 3^{2} 6,1^{3} 3^{4}, 1^{6} 36,} \\ & 1^{6} 3^{3}, 1^{9} 6,1^{9} 3^{2}, 1^{12} 3,1^{15} \end{aligned}$
7	21	$\begin{aligned} & {[21], 6[15], 1[10]^{2}, 3^{2}[15], 36^{3}, 1^{3} 3[15], 1^{2} 36[10], 3^{3} 6^{2}, 1^{3} 6^{3},} \\ & 1^{2} 3^{3}[10], 3^{5} 6,1^{6}[15], 1^{5} 6[10], 1^{3} 3^{2} 6^{2}, 3^{7}, 1^{5} 3^{2}[10], 1^{3} 3^{4} 6, \\ & 1^{6} 36^{2}, 1^{3} 3^{6}, 1^{8} 3[10], 1^{6} 3^{3} 6,1^{9} 6^{2}, 1^{6} 3^{5}, 1^{11}[10], 1^{9} 3^{2} 6,1^{9} 3^{4}, \\ & 1^{12} 36,1^{12} 3^{3}, 1^{15} 6,1^{15} 3^{2}, 1^{18} 3,1^{21} \end{aligned}$
8	28	$[28], 16[21], 3[10][15], 13^{2}[21], 16^{2}[15], 6^{3}[10], 1^{3}[10][15]$, $1^{2} 6[10]^{2}, 13^{2} 6[15], 3^{2} 6^{2}[10], 1^{4} 3[21], 1^{2} 3^{2}[10]^{2}, 13^{4}[15]$, $136^{4}, 3^{4} 6[10], 1^{4} 36[15], 1^{3} 36^{2}[10], 13^{3} 6^{3}, 3^{6}[10], 1^{7}[21]$, $1^{5} 3[10]^{2}, 1^{4} 3^{3}[15], 1^{4} 6^{4}, 1^{3} 3^{3} 6[10], 13^{5} 6^{2}, 1^{7} 6[15], 1^{6} 6^{2}[10]$, $1^{4} 3^{2} 6^{3}, 1^{3} 3^{5}[10], 13^{7} 6,1^{8}[10]^{2}, 1^{7} 3^{2}[15], 1^{6} 3^{2} 6[10], 1^{4} 3^{4} 6^{2}$, $13^{9}, 1^{7} 36^{3}, 1^{6} 3^{4}[10], 1^{4} 3^{6} 6,1^{10} 3[15], 1^{9} 36[10], 1^{7} 3^{3} 6^{2}, 1^{4} 3^{8}$, $1^{10} 6^{3}, 1^{9} 3^{3}[10], 1^{7} 3^{5} 6,1^{13}[15], 1^{12} 6[10], 1^{10} 3^{2} 6^{2}, 1^{7} 3^{7}$, $1^{12} 3^{2}[10], 1^{10} 3^{4} 6,1^{13} 36^{2}, 1^{10} 3^{6}, 1^{15} 3[10], 1^{13} 3^{3} 6,1^{16} 6^{2}, 1^{13} 3^{5}$, $1^{18}[10], 1^{16} 3^{2} 6,1^{16} 3^{4}, 1^{19} 36,1^{19} 3^{3}, 1^{22} 6,1^{22} 3^{2}, 1^{25} 3,1^{28}$

Table 7: All Δ-partitions of $\binom{n}{2}$ for $2 \leq n \leq 8$. All are realizable except $\mathbf{3}^{\mathbf{5}}$, for $n=6$.

Example 6.23 $2 \leq n \leq 6$. See Table 5 for realizations of all Δ-partitions of $\binom{n}{2}$ for $2 \leq n \leq 5$. See Table 8 for all Δ-partitions of $\binom{6}{2}=15$ and, except for $\mathbf{3}^{5}$, an Oval-partition of $\{12\}$ which realizes it. The Δ-partition $\mathbf{3}^{5}$ is not realizable. The Oval numbering \mathcal{O}_{i} refers to Table 2.

Δ-p of $\binom{6}{2}$	O-p of $\{12\}$	Δ-p of $\binom{6}{2}$	O-p of $\{12\}$	Δ-p of $\binom{6}{2}$	O-p of $\{12\}$
$[15]$	\mathcal{O}_{11}	3^{5}	Not realizable	$1^{6} 3^{3}$	$\mathcal{O}_{2}^{3} \mathcal{O}_{3}^{3} \mathcal{O}_{4}^{3}$
36^{2}	$\mathcal{O}_{4} \mathcal{O}_{8} \mathcal{O}_{9}$	$1^{5}[10]$	$\mathcal{O}_{1}^{2} \mathcal{O}_{2}^{2} \mathcal{O}_{3} \mathcal{O}_{10}$	$1^{9} 6$	$\mathcal{O}_{1}^{3} \mathcal{O}_{2}^{4} \mathcal{O}_{3}^{2} \mathcal{O}_{7}$
$1^{2} 3[10]$	$\mathcal{O}_{1} \mathcal{O}_{2} \mathcal{O}_{5} \mathcal{O}_{10}$	$1^{3} 3^{2} 6$	$\mathcal{O}_{2} \mathcal{O}_{3}^{2} \mathcal{O}_{4}^{2} \mathcal{O}_{8}$	$1^{9} 3^{2}$	$\mathcal{O}_{1}^{2} \mathcal{O}_{2}^{4} \mathcal{O}_{3}^{3} \mathcal{O}_{4}^{2}$
$3^{3} 6$	$\mathcal{O}_{4} \mathcal{O}_{5}^{2} \mathcal{O}_{8}$	$1^{3} 3^{4}$	$\mathcal{O}_{3}^{3} \mathcal{O}_{4}^{3} \mathcal{O}_{6}$	$1^{12} 3$	$\mathcal{O}_{1}^{4} \mathcal{O}_{5}^{5} \mathcal{O}_{3}^{3} \mathcal{O}_{4}$
$1^{3} 6^{2}$	$\mathcal{O}_{2}^{2} \mathcal{O}_{3} \mathcal{O}_{7}^{2}$	$1^{6} 36$	$\mathcal{O}_{1} \mathcal{O}_{2}^{3} \mathcal{O}_{3}^{2} \mathcal{O}_{4} \mathcal{O}_{7}$	1^{15}	$\mathcal{O}_{1}^{6} \mathcal{O}_{2}^{6} \mathcal{O}_{3}^{3}$

Table 8: All Δ-partitions (Δ-p) of $\binom{6}{2}=15$ and, except for $\mathbf{3}^{\mathbf{5}}$, an Ovalpartition (O-p) of $\{12\}$ which realizes it.

We have extended our results on Δ-partitions of $\binom{n}{2}$ up to $n=10$.
Example 6.24 For $n=2,3, \ldots, 10$ all Δ-partitions of $\binom{n}{2}$ are realizable except $\mathbf{3}^{\mathbf{5}}$ for $n=6$ (see Examples 6.10(b) and 6.16(c)), and $\mathbf{3}^{15}, \mathbf{3}^{\mathbf{8}}[\mathbf{2 1}], \mathbf{3}^{\mathbf{5}}[\mathbf{1 0}]^{\mathbf{3}}, \mathbf{3}^{\mathbf{3}}[\mathbf{3 6}]$, and $\mathbf{3}[\mathbf{2 1}]^{2}$ for $n=10$. The unrealizable Δ-partitions for $n=10$ were shown to be unrealizable along the lines of Example 6.10(b) using MAPLE; see also Example 6.16(d).

$7 u$-equivalent Ovals

In this Section we explain why 2 incongruent (n, k)-Ovals can have RIV's that are permutations of each other. For example, see Table $2 n=7$, there are 4 incongruent $(7,3)$-Ovals: $\left\{\mathcal{O}_{4}, \mathcal{O}_{5}, \mathcal{O}_{6}, \mathcal{O}_{7}\right\}$, but 3 of them: $\left\{\mathcal{O}_{4}, \mathcal{O}_{6}, \mathcal{O}_{7}\right\}$ have RIV's that are permutations of $(2,1,0)$.

Recall the operations α and β from Definitions 2.8, and the function r from Equation (2). Recall also that $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ where $0 \leq s_{1}<$ $s_{2}<\cdots<s_{k}$ is a k-subset of \mathbb{Z}_{n} with elements in increasing order. For $u \in U(n)$, when we form $u S=\left\{u s_{1}, u s_{2}, \ldots, u s_{k}\right\}$ we will always rearrange the elements of $u S$ in increasing order also, so that we may apply α to $u S$.

Further, we let $\left[\left\lfloor\frac{n}{2}\right\rfloor\right]=\left\{1,2, \ldots,\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Lemma 7.1 Let principal index h occur λ_{h} times in $\operatorname{OIT}(\alpha(S))=r(\delta(S))$. Then for any $u \in U(n)$ principal index uh occurs λ_{h} times in $\operatorname{OIT}(\alpha(u S))=$ $r(\delta(u S))$.

Proof. Let principal index $u h$ occur $\lambda_{u h}$ times in $\operatorname{OIT}(\alpha(u S))=r(\delta(u S))$. We must show that $\lambda_{h}=\lambda_{u h}$.

First we show $\lambda_{h} \leq \lambda_{u h}$: principal index h occurs λ_{h} times in $\operatorname{OIT}(\alpha(S))=$ $r(\delta(S))$, so there are λ_{h} pairs $\left\{s_{j}, s_{i}\right\}$ where $1 \leq i<j \leq k$ for which $s_{j}-$ $s_{i} \in\{h,-h\}$. Consider $u S=\left\{u s_{1}, u s_{2}, \ldots, u s_{k}\right\}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ where $0 \leq v_{1}<v_{2}<\cdots<v_{k}$. Suppose pair $\left\{s_{j}, s_{i}\right\}$ satisfies $s_{j}-s_{i} \in\{h,-h\}$ with $s_{j}-s_{i}=h$. Then $u s_{j}-u s_{i}=u h$, i.e., $v_{\ell}-v_{\ell^{\prime}}=u h$ where $v_{\ell}=u s_{j}$ and $v_{\ell^{\prime}}=u s_{i}$. If $\ell>\ell^{\prime}$ then pair $\left\{v_{\ell}, v_{\ell^{\prime}}\right\}$ satisfies $v_{\ell}-v_{\ell^{\prime}}=u h$ and so $v_{\ell}-v_{\ell^{\prime}} \in\{u h,-u h\}$ and $1 \leq \ell^{\prime}<\ell \leq k$, and if $\ell<\ell^{\prime}$ then pair $\left\{v_{\ell^{\prime}}, v_{\ell}\right\}$ satisfies $v_{\ell^{\prime}}-v_{\ell}=-u h$ and so again $v_{\ell^{\prime}}-v_{\ell} \in\{u h,-u h\}$ and $1 \leq \ell<\ell^{\prime} \leq k$. Thus, in either case, a pair $\left\{s_{j}, s_{i}\right\}$ for which $s_{j}-s_{i}=h$ where $1 \leq i<j \leq k$ gives rise to a pair $\left\{v_{a}, v_{b}\right\}$ for which $v_{a}-v_{b} \in\{u h,-u h\}$ and $1 \leq a<b \leq k$. Similarly if $s_{j}-s_{i}=-h$. Thus $\lambda_{h} \leq \lambda_{u h}$.

To show that $\lambda_{h} \geq \lambda_{u h}$, i.e., $\lambda_{u h} \leq \lambda_{h}$ we start with $V=u S=$ $\left\{u s_{1}, u s_{2}, \ldots, u s_{k}\right\}=\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ and argue as above with u replaced by u^{-1}.

The above two paragraphs give $\lambda_{h}=\lambda_{u h}$ as required.

Definitions $7.2 \quad u \mathcal{O}$, permutation P_{u}
Let \mathcal{O} be an (n, k)-Oval with TAIS T, and let $u \in U(n)$.
(1) $u \mathcal{O}$ is the (n, k)-Oval with TAIS $\alpha(u \beta(T))$.
(2) Permutation P_{u} is the permutation of $\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$ given by $P_{u}(h)=r(u h)$, for every $h \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$ and $u \in U(n)$.

Theorem 7.3 Let \mathcal{O} be an (n, k)-Oval and let $u \in U(n)$. Then $\operatorname{RIV}(u \mathcal{O})=$ $P_{u}(\operatorname{RIV}(\mathcal{O}))$.

Proof. For each $h \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$ let the h-th entry of $\operatorname{RIV}(\mathcal{O})$ be λ_{h} then, from Lemma 7.1, the $u h$-th entry of $\operatorname{RIV}(u \mathcal{O})$ is also λ_{h}. Hence $\operatorname{RIV}(u \mathcal{O})$ is a permutation of $\operatorname{RIV}(\mathcal{O})$ where, for each $h \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$, the h-th entry (of $\operatorname{RIV}(\mathcal{O})$) is moved to the $u h$-th entry (of $\operatorname{RIV}(u \mathcal{O})$), i.e., is moved by the application of permutation P_{u}. Thus the result.

Example 7.4

(a) For every $n \geq 2$ we have $-1 \in U(n)$ and P_{-1} is the identity permutation of $\left[\left\lfloor\frac{n}{2}\right\rfloor\right]$. Hence $\operatorname{RIV}(-\mathcal{O})=\operatorname{RIV}(\mathcal{O})$. Confirming this, see Lemma 3.2(i), we have $\operatorname{TAIS}(-\mathcal{O}) \equiv{ }_{\text {cyc }} \operatorname{TAIS}(\mathcal{O})$ and hence $\operatorname{RIV}(-\mathcal{O})=\operatorname{RIV}(\mathcal{O})$.
(b) $(n, k)=(15,6)$. See Example 2.5. For the $(15,6)$-Oval \mathcal{X} with TAIS $T=\left[\begin{array}{lllll}4 & 3 & 2 & 1 & 4\end{array}\right]$ we have $X=\beta(T)=\{0,4,7,9,10,14\}$. Unit $2 \in U(15)$ gives permutation $P_{2}=(1247)(36)(5)$ of $[7]$. Now $2 X=\{0,3,5,8,13,14\}$, and so $2 \mathcal{X}=\mathcal{O}\left(\left[\begin{array}{llllll}3 & 2 & 3 & 1 & 1\end{array}\right]\right)$. We check: $\operatorname{RIV}(2 \mathcal{X})=P_{2}(\operatorname{RIV}(\mathcal{X}))=$ $P_{2}(2,1,2,2,4,2,2)=(2,2,2,1,4,2,2)$, as required by Theorem 7.3.
(c) $(n, k)=(16,6)$. We show how we used Theorem 7.3 in Example 6.20. In Example 6.20 it was required to find $2(16,6)$-Ovals \mathcal{O}_{1} and \mathcal{O}_{2} for which $\operatorname{RIV}\left(\mathcal{O}_{1}\right)+\operatorname{RIV}\left(\mathcal{O}_{2}\right)=(4,4,4,4,4,4,4,2)$. From Example 5.21 we had a $(16,6)$-Oval $\mathcal{O}=\mathcal{O}\left(\left[\begin{array}{lllll}1 & 1 & 2 & 1 & 5\end{array}\right]\right)$ with $\operatorname{RIV}(\mathcal{O})=(3,2,2,2,2,2,1,1)$. We observed that $(4,4,4,4,4,4,4,2)-\operatorname{RIV}(\mathcal{O})=(1,2,2,2,2,2,3,1)$ is a permutation of $\operatorname{RIV}(\mathcal{O})$. Further, unit $7 \in U(16)$ gives permutation $P_{7}=$ $(17)(35)(2)(4)(6)(8)$ of [8], and $P_{7}(\operatorname{RIV}(\mathcal{O}))=(1,2,2,2,2,2,3,1)$. Then letting $\mathcal{O}_{1}=\mathcal{O}$ and $\mathcal{O}_{2}=7 \mathcal{O}=\mathcal{O}\left(\left[\begin{array}{llll}1 & 5 & 2 & 2\end{array} 33\right]\right)$ gave the required Ovals.

Definition 7.5 Two (n, k)-Ovals \mathcal{O}_{1} and \mathcal{O}_{2} are u-equivalent, $\mathcal{O}_{1} \equiv{ }_{u} \mathcal{O}_{2}$, if there is a $u \in U(n)$ such that $\mathcal{O}_{1}=u \mathcal{O}_{2}$.

It is clear that u-equivalence is an equivalence relation on $\mathcal{O}_{\mathrm{c}}^{*}(n, k)$, the set of (n, k)-Ovals up to congruency.

Definitions 7.6 $\mathcal{O}_{c, \equiv_{u}}^{*}(n, k), \mathcal{O}_{c, \equiv_{u}}(n, k)$
(1) $\mathcal{O}_{\mathrm{c}, \equiv_{u}}^{*}(n, k)$ is the set of equivalence classes of \equiv_{u} in $\mathcal{O}_{\mathrm{c}}^{*}(n, k)$.
(2) $\mathcal{O}_{\mathrm{c}, \equiv_{u}}(n, k)=\left|\mathcal{O}_{\mathrm{c}, \equiv_{u}}^{*}(n, k)\right|$ is the number of equivalence classes of \equiv_{u} in $\mathcal{O}_{\mathrm{c}}^{*}(n, k)$.

Example 7.7 $(n, k)=(7,3)$. See Table 2, $n=7$. Here $\mathcal{O}_{4}=2 \mathcal{O}_{6}=4 \mathcal{O}_{7}$, and $\mathcal{O}_{5}=u \mathcal{O}_{5}$ for every $u \in U(7)$. Hence there are $\mathcal{O}_{c, \equiv_{u}}(7,3)=2 \equiv_{u^{-}}$ equivalence classes in $\mathcal{O}_{\mathrm{c}}^{*}(7,3)$, namely $\left[\mathcal{O}_{4}\right]=\left\{\mathcal{O}_{4}, \mathcal{O}_{6}, \mathcal{O}_{7}\right\}$ and $\left[\mathcal{O}_{5}\right]=\left\{\mathcal{O}_{5}\right\}$. We have $\mathcal{O}_{c, \equiv_{u}}^{*}(7,3)=\left\{\left[\mathcal{O}_{4}\right],\left[\mathcal{O}_{5}\right]\right\}$. We say that there are $2(7,3)$-Ovals up to u-equivalence, namely Ovals \mathcal{O}_{4} and \mathcal{O}_{5}; see Table 9 .

n	k	$\mathcal{O}_{c, \equiv_{u}}(n, k)$	$\mathcal{O}_{c, E_{u}}^{*}(n, k)$
2	2	1	\mathcal{O}_{1}
3	2	1	\mathcal{O}_{1}
3	3	1	\mathcal{O}_{2}
4	2	2	$\mathcal{O}_{1}, \mathcal{O}_{2}$
4	3	1	\mathcal{O}_{3}
4	4	1	\mathcal{O}_{4}
5	2	1	\mathcal{O}_{1}
5	3	1	\mathcal{O}_{3}
5	4	1	\mathcal{O}_{5}
5	5	1	\mathcal{O}_{6}
6	2	3	$\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{3}$
6	3	3	$\mathcal{O}_{4}, \mathcal{O}_{5}, \mathcal{O}_{6}$
6	4	3	$\mathcal{O}_{7}, \mathcal{O}_{8}, \mathcal{O}_{9}$
6	5	1	\mathcal{O}_{10}
6	6	1	\mathcal{O}_{11}
7	2	1	\mathcal{O}_{1}
7	3	2	$\mathcal{O}_{4}, \mathcal{O}_{5}$
7	4	2	$\mathcal{O}_{8}, \mathcal{O}_{9}$
7	5	1	\mathcal{O}_{12}
7	6	1	\mathcal{O}_{15}
7	7	1	\mathcal{O}_{16}

n	k	$\mathcal{O}_{\mathrm{c}, \equiv_{u}}(n, k)$	$\mathcal{O}_{c,, \equiv u}^{*}(n, k)$
8	2	3	$\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{4}$
8	3	4	$\mathcal{O}_{5}, \mathcal{O}_{6}, \mathcal{O}_{7}, \mathcal{O}_{8}$
8	4	6	$\mathcal{O}_{10}, \mathcal{O}_{11}, \mathcal{O}_{12}, \mathcal{O}_{13}, \mathcal{O}_{16}, \mathcal{O}_{17}$
8	5	4	$\mathcal{O}_{18}, \mathcal{O}_{19}, \mathcal{O}_{20}, \mathcal{O}_{21}$
8	6	3	$\mathcal{O}_{23}, \mathcal{O}_{24}, \mathcal{O}_{26}$
8	7	1	\mathcal{O}_{27}
8	8	1	\mathcal{O}_{28}
9	2	2	$\mathcal{O}_{1}, \mathcal{O}_{3}$
9	3	3	$\mathcal{O}_{5}, \mathcal{O}_{6}, \mathcal{O}_{11}$
9	4	4	$\mathcal{O}_{12}, \mathcal{O}_{13}, \mathcal{O}_{15}, \mathcal{O}_{17}$
9	5	4	$\mathcal{O}_{22}, \mathcal{O}_{23}, \mathcal{O}_{24}, \mathcal{O}_{29}$
9	6	3	$\mathcal{O}_{32}, \mathcal{O}_{33}, \mathcal{O}_{38}$
9	7	2	$\mathcal{O}_{32}, \mathcal{O}_{41}$
9	8	1	\mathcal{O}_{43}
9	9	1	\mathcal{O}_{44}
10	2	3	$\mathcal{O}_{1}, \mathcal{O}_{2}, \mathcal{O}_{5}$
10	3	4	$\mathcal{O}_{6}, \mathcal{O}_{7}, \mathcal{O}_{9}, \mathcal{O}_{10}$
10	4	9	$\mathcal{O}_{14}, \mathcal{O}_{15}, \mathcal{O}_{16}, \mathcal{O}_{17}, \mathcal{O}_{18}, \mathcal{O}_{19}, \mathcal{O}_{22}, \mathcal{O}_{26}, \mathcal{O}_{27}$
10	5	9	$\mathcal{O}_{30}, \mathcal{O}_{31}, \mathcal{O}_{32}, \mathcal{O}_{33}, \mathcal{O}_{34}, \mathcal{O}_{36}, \mathcal{O}_{37}, \mathcal{O}_{38}, \mathcal{O}_{45}$
10	6	9	$\mathcal{O}_{46}, \mathcal{O}_{47}, \mathcal{O}_{48}, \mathcal{O}_{49}, \mathcal{O}_{50}, \mathcal{O}_{51}, \mathcal{O}_{53}, \mathcal{O}_{57}, \mathcal{O}_{58}$
10	7	4	$\mathcal{O}_{62}, \mathcal{O}_{63}, \mathcal{O}_{65}, \mathcal{O}_{66}$
10	8	3	$\mathcal{O}_{70}, \mathcal{O}_{71}, \mathcal{O}_{74}$
10	9	1	\mathcal{O}_{75}
10	10	1	\mathcal{O}_{76}

Table 9: All (n, k)-Ovals up to u-equivalence for $2 \leq n \leq 10$. The equivalence class $\left[\mathcal{O}_{i}\right]$ is denoted by \mathcal{O}_{i}; see Example 7.7.

Acknowledgements We thank the referees for comments that improved this paper.

References

[1] W.Ball, H.Coxeter. Mathematical Recreations and Essays, 13-th ed., Dover, 1999.
[2] L.Baumert. Cyclic Difference Sets, Lecture Notes in Mathematics \#182. Springer, 1971.
[3] T.Beth, D.Jungnickel, H.Lenz. Design Theory, vol.1, 2-nd ed., Encyclopedia of Mathematics and its Applications \#69, Cambridge Univ. Press, 1999.
[4] C.Colbourn, J.Dinitz, (Eds.), Handbook of Combinatorial Designs, 2-nd ed., Chapman \& Hall/CRC, 2007.
[5] M.Hall., Jr. A Survey of Difference Sets, Proc. Amer. Math. Soc. 7 (1956) 975-986.
[6] J.McSorley. Enumerating k-compositions of n with hereditary and full properties, (in preparation).
[7] Online Encyclopedia of Integer Sequences, published electronically at http://oeis.org/.
[8] A.Schoen. ROMBIX, Supplementary manual, 1994. Available electronically at http://schoengeometry.com/.
[9] A.Schoen, A. McK Shorb. Partitioning s regular $2 n$-gons $\{2 n\}$ into t congruent Oval polygons $G(n, g)$, Abstracts of the American Mathematical Society. 15, (January 1994), 111.
[10] J.van Lint, R. Wilson. A Course in Combinatorics, Cambridge Univ. Press, Cambridge, 1992.

