Rhombic tilings of (n, k)-Ovals, (n, k, λ) -cyclic difference sets, and related topics

John P. McSorley^{*}, Alan H. Schoen Department of Mathematics Mailcode 4408 Southern Illinois University Carbondale, IL 62901-4408 mcsorley60@hotmail.com alan_schoen@frontier.com * Corresponding author

Abstract

Each fixed integer *n* has associated with it $\lfloor \frac{n}{2} \rfloor$ rhombs: $\rho_1, \rho_2, \ldots, \rho_{\lfloor \frac{n}{2} \rfloor}$, where, for each $1 \leq h \leq \lfloor \frac{n}{2} \rfloor$, rhomb ρ_h is a parallelogram with all sides of unit length and with smaller face angle equal to $h \times \frac{\pi}{n}$ radians.

An Oval is a centro-symmetric convex polygon all of whose sides are of unit length, and each of whose turning angles equals $\ell \times \frac{\pi}{n}$ for some positive integer ℓ . An (n,k)-Oval is an Oval with 2k sides tiled with rhombs $\rho_1, \rho_2, \ldots, \rho_{\lfloor \frac{n}{2} \rfloor}$; it is defined by its Turning Angle Index Sequence, a k-composition of n. For any fixed pair (n,k) we count and generate all (n,k)-Ovals up to translations and rotations, and, using multipliers, we count and generate all (n,k)-Ovals up to congruency. For odd n if an (n,k)-Oval contains a fixed number λ of each type of rhomb $\rho_1, \rho_2, \ldots, \rho_{\lfloor \frac{n}{2} \rfloor}$ then it is called a magic (n,k,λ) -Oval. We prove that a magic (n,k,λ) -Oval is equivalent to a (n,k,λ) -Cyclic Difference Set. For even n we prove a similar result. Using tables of Cyclic Difference Sets we find all magic (n,k,λ) -Ovals up to congruency for $n \leq 40$.

Many related topics including lists of (n, k)-Ovals, partitions of the regular 2*n*-gon into Ovals, Cyclic Difference Families, partitions of triangle numbers, *u*-equivalence of (n, k)-Ovals, etc., are also considered.

Keywords: rhomb; tiling; polygon; oval; cyclic difference set; multiplier.

1 Introduction

An (n, k)-Oval is a centro-symmetric convex polygon all of whose sides are of unit length, and which is tiled by rhombs; see p.141 of Ball and Coxeter [1] and Section 3.1 of Schoen [8]. In this paper we investigate (n, k)-Ovals; it appears that this is the first significant piece of research concerning (n, k)-Ovals to be published in the mathematical literature. A preliminary version of some of this research first appeared in Schoen [8]. See Fig. 1 for an example of a (15, 6)-Oval.

Figure 1: A (15, 6)-Oval, \mathcal{X} , its TAIS and RIV.

In Section 2 of this paper we define an (n, k)-Oval using its Turning Angle Index Sequence (TAIS); we count all (n, k)-Ovals equivalent up to translations and rotations. We introduce the concept of a multiplier for an (n, k)-Oval and show how to generate all (n, k)-Ovals using multipliers.

In Section 3 we show the geometrical meaning of multiplier -1 for an (n, k)-Oval. We count those (n, k)-Ovals with multiplier -1, and those without multiplier -1. We define congruency for (n, k)-Ovals and count (n, k)-Ovals up to congruency.

In Section 4 we define the Rhombic Inventory Vector (RIV) of an (n, k)-Oval. This vector contains the number of each type of rhomb that an (n, k)-Oval contains. For each $2 \le n \le 10$ we list all (n, k)-Ovals up to congruency, and compute their RIVs.

In Section 5 we study magic (n, k, λ) -Ovals. For odd n a magic (n, k, λ) -Oval contains a fixed number $\lambda \geq 1$ of each type of rhomb $\rho_1, \rho_2, \ldots, \rho_{\lfloor \frac{n}{2} \rfloor}$; there is a similar definition for even n. We prove that a magic (n, k, λ) -Oval is equivalent to a (n, k, λ) -Cyclic Difference Set. Using tables of Cyclic Difference Sets we find all non-trivial magic (n, k, λ) -Ovals up to congruency for $n \leq 40$.

In Section 6 the rhombs of the regular 2n-gon are partitioned into Ovals. Cyclic Difference Families are introduced and are shown to be equivalent to various Oval partitions; we also consider relevant integer partitions of the triangular number $\binom{n}{2}$.

In Section 7 we define *u*-equivalence for (n, k)-Ovals. The RIV's of two *u*-equivalent (n, k)-Ovals are closely related to each other. For each $2 \le n \le 10$ we list all (n, k)-Ovals up to *u*-equivalence.

2 (n, k)-Ovals, TAIS, the number of (n, k)-Ovals, multipliers, generating all (n, k)-Ovals

Each fixed integer $n \ge 2$ has associated with it $\lfloor \frac{n}{2} \rfloor$ rhombs: $\rho_1, \rho_2, \ldots, \rho_{\lfloor \frac{n}{2} \rfloor}$. For each $1 \le h \le \lfloor \frac{n}{2} \rfloor$ rhomb ρ_h is a parallelogram with all sides of unit length and with smaller face angle equal to $h \times \frac{\pi}{n}$ radians; h is the *principal index* of the rhomb. The index of an adjacent face angle is n - h. The 7 rhombs for n = 15 are shown in Fig. 2. **Definitions 2.1** Centro-symmetric, turning angle, Oval

- (1) A polygon is *centro-symmetric* if it is unchanged by a rotation of π radians (half a circle).
- (2) The *turning angle* at a vertex of a polygon is the supplement of the interior angle at that vertex.
- (3) An *Oval* is a centro-symmetric convex polygon all of whose sides are of unit length, and each of whose turning angles equals $\ell \times \frac{\pi}{n}$ for some positive integer ℓ .

Every Oval necessarily has an even number of sides, which are arranged in k parallel pairs.

Definitions 2.2 (n, k)-Oval, Turning Angle Index Sequence – TAIS

- (1) An (n,k)-Oval is an Oval with 2k sides; it is described by the pair (n,k) and by its
- (2) Turning Angle Index Sequence (TAIS), a list of the turning angle indices for any k consecutive vertices.

We denote an arbitrary (n, k)-Oval by \mathcal{O} and specify a *stem* vertex of \mathcal{O} ; the TAIS of \mathcal{O} is then the list of turning angle indices at the k consecutive vertices taken in a counter-clockwise direction starting from the first vertex after the stem vertex.

Remark 2.3 The TAIS T of an (n, k)-Oval is simply a k-composition of n, i.e., an ordered list of k positive integers that sum to n: $T = [t_1 \ t_2 \ \cdots \ t_k]$ with each $t_i \ge 1$ and $\sum_{i=1}^k t_i = n$.

Figure 2: The 7 rhombs, and their principal indices, corresponding to n = 15.

Example 2.4 The regular 2*n*-gon, $\{2n\}$, is an (n, n)-Oval with TAIS= $\underbrace{[1 \ 1 \ \cdots \ 1]}_{n}$. See Fig. 5 for a picture of the regular 12-gon, $\{12\}$.

Example 2.5 (n,k) = (15,6). In Fig. 3(a) we show the (15,6)-Oval \mathcal{X} with TAIS $T = [4 \ 3 \ 2 \ 1 \ 4 \ 1]$. We write $\mathcal{X} = \mathcal{O}(T) = \mathcal{O}([4 \ 3 \ 2 \ 1 \ 4 \ 1])$. In (b) the turning angle index at each vertex of \mathcal{X} is shown, as well as all indices of the $\binom{6}{2} = 15$ rhombs in \mathcal{X} . Note that the indices along the straight line at an 'external' vertex sum to n = 15, and the indices around an 'internal' vertex sum to 2n = 30.

Figure 3: See Fig. 1. The (15, 6)-Oval \mathcal{X} with TAIS $T = [4 \ 3 \ 2 \ 1 \ 4 \ 1]$.

Let $S = \{s_1, s_2, \ldots, s_k\}$ where $0 \leq s_1 < s_2 < \cdots < s_k$ be a k-subset of \mathbb{Z}_n with increasing elements. Throughout this paper the elements of S will always be written in increasing order.

Let U(n) denote the group of units modulo n, *i.e.*, the multiplicative group of elements relatively prime to n.

Definitions 2.6 uS+z, z-equivalent and \equiv_z , cyclically-equivalent and \equiv_{cvc}

- (1) $uS + z = \{us_1 + z, us_2 + z, \dots, us_k + z\} \subseteq \mathbb{Z}_n$ for $u \in U(n)$ and $z \in \mathbb{Z}_n$.
- (2) Two k-subsets S and S' of \mathbb{Z}_n are z-equivalent, $S \equiv_z S'$, if there exists $z \in \mathbb{Z}_n$ such that S = S' + z.
- (3) Two TAIS's T and T' are cyclically-equivalent, $T \equiv_{cyc} T'$, if T' is a cyclic permutation of T.

Remark 2.7 As an example of (3) above:

 $[t_1 \ t_2 \ t_3 \ t_4] \equiv_{\text{cyc}} [t_4 \ t_1 \ t_2 \ t_3] \equiv_{\text{cyc}} [t_3 \ t_4 \ t_1 \ t_2] \equiv_{\text{cyc}} [t_2 \ t_3 \ t_4 \ t_1].$

Sometimes we use = in place of \equiv_z or \equiv_{cyc} for convenience.

Let $\mathcal{S}^*(n,k)$ denote the set of all k-subsets $S = \{s_1, s_2, \ldots, s_k\} \subseteq \mathbb{Z}_n$ where $0 \leq s_1 < s_2 < \cdots < s_k$. Then \equiv_z is an equivalence relation on $\mathcal{S}^*(n,k)$. We denote the set of equivalences classes of \equiv_z by $\mathcal{S}^*_{\equiv_z}(n,k)$. In an equivalence class $[S]_{\equiv_z}$ or [S] we often use as representative the lowest member of [S] in lexicographic ordering.

Let $\mathcal{T}^*(n,k)$ denote the set of all k-compositions of n, *i.e.*, the set of TAIS T for all (n,k)-Ovals. Then \equiv_{cyc} is an equivalence relation on $\mathcal{T}^*(n,k)$. We denote the set of equivalences classes of \equiv_{cyc} by $\mathcal{T}^*_{\equiv_{\text{cyc}}}(n,k)$, and a typical equivalences class by $[T]_{\equiv_{\text{cyc}}}$ or [T].

Theorem 2.12 below gives a bijection between the sets $\mathcal{S}^*_{\equiv_z}(n,k)$ and $\mathcal{T}^*_{\equiv_{\text{cvc}}}(n,k)$.

Definitions 2.8 $\alpha(S)$ and $\mathcal{O}(\alpha(S))$ or $\mathcal{O}(T)$, $\beta(T)$ Let $S = \{s_1, s_2, \dots, s_k\} \subseteq \mathbb{Z}_n$ where $0 \le s_1 < s_2 < \dots < s_k$. (1) $\alpha(S)$ is the ordered k-tuple

$$\alpha(S) = [s_2 - s_1, s_3 - s_2, \dots, s_k - s_{k-1}, s_1 - s_k],$$

(note that $s_1 - s_k$ will be negative, it must be replaced with $n - s_1 + s_k$). Then $\mathcal{O}(\alpha(S)) = \mathcal{O}(T)$ is the (n, k)-Oval with TAIS $\alpha(S) = T$.

Let $T = [t_1 \ t_2 \cdots t_k]$ be the TAIS of an (n, k)-Oval.

(2) $\beta(T)$ is the increasing k-subset of \mathbb{Z}_n

$$\beta(T) = \beta([t_1 \ t_2 \cdots t_k]) = \{0, t_1, t_1 + t_2, \dots, t_1 + t_2 + \dots + t_{k-1}\}.$$

Remark 2.9 See similar definitions on p.221 of Beth, Jungnickel, and Lenz [3].

Example 2.10 (n, k) = (15, 6). For the (15, 6)-Oval \mathcal{X} of Example 2.5 with TAIS $T = [4 \ 3 \ 2 \ 1 \ 4 \ 1]$ we have $X = S = \beta(T) = \{0, 4, 7, 9, 10, 14\}$, then $\alpha(X) = T$.

Compare the following Theorem with Lemma 9.8, p.221 of [3].

Theorem 2.11 Let S and S' be k-subsets of \mathbb{Z}_n . Then $S \equiv_z S'$ if and only if $\alpha(S) \equiv_{\text{cyc}} \alpha(S')$.

Proof. Necessity: as usual let $S = \{s_1, s_2, \ldots, s_k\}$ where $0 \le s_1 < s_2 < \ldots < s_k$ and $\alpha(S) = [s_2 - s_1, \ldots, s_k - s_{k-1}, s_1 - s_k]$. Suppose $S \equiv_z S'$ then there exists $z \in \mathbb{Z}_n$ with

$$S' = S + z = \{s_1 + z, s_2 + z, \dots, s_k + z\}$$

= $\{s_i + z, s_{i+1} + z, \dots, s_k + z, s_1 + z, s_2 + z, \dots, s_{i-1} + z\}$

where $0 \leq s_i + z < s_{i+1} + z < \ldots < s_{i-1} + z$ is an increasing sequence for some $i = 1, 2, \ldots, k$. So

$$\alpha(S') = [s_{i+1} - s_i, \dots, s_1 - s_k, s_2 - s_1, \dots, s_{i-1} - s_{i-2}, s_i - s_{i-1}]$$

$$\equiv_{\text{cyc}} [s_2 - s_1, \dots, s_{i-1} - s_{i-2}, s_i - s_{i-1}, s_{i+1} - s_i, \dots, s_1 - s_k]$$

$$= \alpha(S), \text{ as required.}$$

Sufficiency: if $\alpha(S) \equiv_{\text{cyc}} \alpha(S')$ then $\alpha(S')$ is a cyclic permutation of $\alpha(S)$. Without loss of generality let $\alpha(S) = [t_1 t_2 \cdots t_k]$ and $\alpha(S') = [t_i t_{i+1} \cdots t_k t_1 \cdots t_{i-1}]$ for some $i = 1, 2, \ldots, k$. Then $\beta(\alpha(S)) = \{0, t_1, t_1 + t_2, \ldots, t_1 + \cdots + t_{k-1}\}$ and

$$\beta(\alpha(S')) = \{0, t_i, t_i + t_{i+1}, \dots, t_i + \dots + t_k + t_1 + \dots + t_{i-2}\}$$
$$= \beta(\alpha(S)) + (t_i + \dots + t_k)$$
$$\equiv_z \beta(\alpha(S)).$$

So $\beta(\alpha(S')) \equiv_z \beta(\alpha(S))$, but from Definitions 2.8 we have $\beta(\alpha(S)) = S - s_1 \equiv_z S$ for any S, and so $S \equiv_z S'$ as required.

Theorem 2.12 Let $\alpha_{\equiv} : \mathcal{S}^*_{\equiv_z}(n,k) \leftrightarrow \mathcal{T}^*_{\equiv_{\text{cyc}}}(n,k)$ be given by $\alpha_{\equiv}([S]) \leftrightarrow [\alpha(S)]$. Then α_{\equiv} is a bijection, and $|\mathcal{S}^*_{\equiv_z}(n,k)| = |\mathcal{T}^*_{\equiv_{\text{cyc}}}(n,k)|$.

Remark 2.13 Geometrically speaking, if two TAIS's T and T' are cyclicallyequivalent, then the Ovals $\mathcal{O}(T)$ and $\mathcal{O}(T')$ can be 'moved' to one another in the plane using translations and rotations, a reflection is not required; we write $\mathcal{O}(T) = \mathcal{O}(T')$. The converse is also true. Thus $T \equiv_{cyc} T'$ if and only if $\mathcal{O}(T) = \mathcal{O}(T')$.

Definitions 2.14 $\mathcal{O}^*(n,k), \mathcal{O}(n,k)$

- (1) $\mathcal{O}^*(n,k)$ is the set of (n,k)-Ovals equivalent up to translations and rotations.
- (2) $\mathcal{O}(n,k) = |\mathcal{O}^*(n,k)|$ is the number of (n,k)-Ovals equivalent up to translations and rotations.

Each Oval in $\mathcal{O}^*(n,k)$ has associated with it an equivalence class [T] in $\mathcal{T}^*_{\equiv_{cyc}}(n,k)$, and conversely each equivalence class [T] in $\mathcal{T}^*_{\equiv_{cyc}}(n,k)$ gives an Oval $\mathcal{O}(T)$ in $\mathcal{O}^*(n,k)$. So $\mathcal{O}(n,k) = |\mathcal{T}^*_{\equiv_{cyc}}(n,k)|$. This function is well-known to be the number of necklaces of size n with k white and n - k black beads; for an explicit calculation of $\mathcal{O}(n,k)$ see p.468 of Van Lint and Wilson [10]. Thus, letting gcd(n,k) denote the greatest common divisor of n and k, and $\phi(x)$ denote Euler's totient function, we have the following.

Theorem 2.15 For $n \ge 2$ and $k \ge 2$, the number of (n, k)-Ovals is

$$\mathcal{O}(n,k) = \frac{1}{n} \sum_{d | \gcd(n,k)} \phi(d) \binom{\frac{n}{d}}{\frac{k}{d}}.$$
 (1)

2.1 Multipliers, generating all (n, k)-Ovals

We wish to generate all Ovals in $\mathcal{O}^*(n, k)$. To do this we find a representative of each equivalence class [S] in $\mathcal{S}^*_{\equiv_z}(n, k)$ and then use Theorem 2.12 to find a representative of each equivalence class [T] in $\mathcal{T}^*_{\equiv_{cyc}}(n, k)$.

Definitions 2.16 multiplier m and mult(S), mult (\mathcal{O}) Let S be a k-subset of \mathbb{Z}_n :

(1) $m \in U(n)$ is a multiplier of S if $S \equiv_z mS$, *i.e.*, if there exists $z \in \mathbb{Z}_n$ with S = mS + z. The set of multipliers of S is mult(S).

Let $\mathcal{O}(T)$ be a (n, k)-Oval with TAIS T:

(2) $m \in U(n)$ is a multiplier of $\mathcal{O}(T)$ if m is a multiplier of $S = \beta(T)$. The set of multipliers of $\mathcal{O}(T)$ is $\operatorname{mult}(\mathcal{O}(T)) = \operatorname{mult}(S)$.

Remark 2.17 See Chapter VI of [3] for examples of how multipliers are used in the theory of Cyclic Difference Sets; see also Section 5 of this paper. The set mult(S) is a subgroup of U(n), and if $S \equiv_z S'$ then mult(S) = mult(S'). Let T and T' be two different TAIS of an (n, k)-Oval \mathcal{O} . Then $T \equiv_{\text{cyc}} T'$ and so $\beta(T) \equiv_z \beta(T')$ by Theorem 2.11, and then mult($\beta(T)$) = mult($\beta(T')$). Hence mult(\mathcal{O}) is independent of the TAIS of \mathcal{O} .

Example 2.18 (n,k) = (15,6). For the (15,6)-Oval \mathcal{X} of Examples 2.5 and 2.10 we have $X = \{0, 4, 7, 9, 10, 14\}$ and so $\operatorname{mult}(\mathcal{X}) = \operatorname{mult}(X) = \{1\}$, the trivial group. For an example of a 6-set of \mathbb{Z}_{15} with non-trivial multiplier group consider $Y = \{0, 1, 4, 7, 10, 13\}$, here $\operatorname{mult}(Y) = \{1, 4, 7, 13\}$.

Now $m \in \operatorname{mult}(S)$ if and only if $S \equiv_z mS$. Hence the number of zinequivalent sets in $\{uS : u \in U(n)\}$ equals the index of $\operatorname{mult}(S)$ in U(n), *i.e.*, equals $|U(n) : \operatorname{mult}(S)| = \frac{|U(n)|}{|\operatorname{mult}(S)|}$.

As an example of how to generate all Ovals in $\mathcal{O}^*(n,k)$ we generate all Ovals in $\mathcal{O}^*(7,3)$.

We have $U(7) = \{1, 2, 3, 4, 5, 6\}$ and so |U(7)| = 6.

Start with $A = \{0, 1, 2\}$. So mult $(A) = \{1, -1\}$ and |U(7) : mult<math>(A)| = 3. The 3 cosets of mult(A) in U(7) are mult(A), 2 mult(A), and 3 mult(A). Hence the 3 z-inequivalent sets in $\{uA : u \in U(n)\}$ are $A_1 = A, A_2 = 2A = \{0, 2, 4\}$, and $A_3 = 3A = \{0, 3, 6\} \equiv_z \{0, 1, 4\}$. Then choose $A' = \{0, 1, 3\}$ from $\mathcal{S}^*(7, 3) \setminus ([A_1] \cup [A_2] \cup [A_3])$. We have $\operatorname{mult}(A') = \{1, 2, 4\}$ and $|U(7) : \operatorname{mult}(A')| = 2$. The 2 cosets of $\operatorname{mult}(A')$ in U(7) are $\operatorname{mult}(A')$ and $3 \operatorname{mult}(A')$. Hence the 2 z-inequivalent sets in $\{uA' : u \in U(n)\}$ are $A'_1 = A'$ and $A'_2 = 3A' = \{3, 5, 6\} \equiv_z \{0, 1, 5\}$.

Now $S^*(7,3) \setminus ([A_1] \cup [A_2] \cup [A_3] \cup [A'_1] \cup [A'_2]) = \emptyset$, so we stop. See Example 2.19.

Example 2.19 (n, k) = (7, 3). Equation (1) gives $\mathcal{O}(7, 3) = |\mathcal{T}^*_{\equiv_{cyc}}(7, 3)| = \frac{1}{7}\phi(1)\binom{7}{3} = 5$. Representatives of the 5 equivalence classes in both $\mathcal{S}^*_{\equiv_z}(7, 3)$ and $\mathcal{T}^*_{\equiv_{cyc}}(7, 3)$, and the bijection between them, are given in the table below. The 5 (7, 3)-Ovals up to translations and rotations are $\mathcal{O}^*(7, 3) = \{\mathcal{O}(T_1), \mathcal{O}(T_2), \mathcal{O}(T_3), \mathcal{O}(T_4), \mathcal{O}(T_5)\}$, see Fig. 4 below. We will see that multiplier -1 plays an important role in this paper. We use ' A_i ' for a set with multiplier -1, and ' B_i ' for a set without multiplier -1.

S		T	$\operatorname{mult}(S)$	$\frac{ U(7) }{ \operatorname{mult}(S) }$
$A_1 = \{0, 1, 2\}$	\leftrightarrow	$T_1 = [1 \ 1 \ 5]$	$\{1, -1\}$	3
$A_2 = \{0, 2, 4\}$	\leftrightarrow	$T_2 = [2 \ 2 \ 3]$	$\{1, -1\}$	
$A_3 = \{0, 1, 4\}$	\leftrightarrow	$T_3 = [1 \ 3 \ 3]$	$\{1, -1\}$	
$B_1 = \{0, 1, 3\}$	\leftrightarrow	$T_4 = [1 \ 2 \ 4]$	$\{1, 2, 4\}$	2
$B_2 = \{0, 1, 5\}$	\leftrightarrow	$T_5 = [1 \ 4 \ 2]$	$\{1, 2, 4\}$	

Figure 4: The $\mathcal{O}(7,3) = 5$ (7,3)-Ovals up to translations and rotations. The last 2 form a congruent enantiomorphic pair.

It is clear how to generalize Example 2.19 to generate all Ovals in $\mathcal{O}^*(n, k)$, *i.e.*, all (n, k)-Ovals up to translations and rotations, for an arbitrary (n, k) starting with $A = \{0, 1, \ldots, k-1\}$.

3 Multiplier -1, reversible *T*, congruent Ovals, various counts

In this Section we consider multiplier -1 of an (n, k)-Oval \mathcal{O} . We will return to consideration of multiplier -1 in Section 5.

Let $T = [t_1 \ t_2 \ \cdots \ t_k]$ be a TAIS of an (n, k)-Oval \mathcal{O} .

Definition 3.1 $\stackrel{\leftarrow}{T} = [t_k \ t_{k-1} \cdots \ t_1]$ is the *reverse* of *T*.

Lemma 3.2 Let S and S' be k-subsets of \mathbb{Z}_n . Then

(i) $\alpha(-S) \equiv_{\text{cyc}} \alpha(S)$.

(ii) $S \equiv_z -S'$ if and only if $\alpha(S) \equiv_{cyc} \alpha(S')$.

Proof. (i) Let $S = \{s_1, s_2, \dots, s_k\}$, where $0 \le s_1 < s_2 < \dots < s_k$. Then $-S = \{-s_1, -s_2, \dots, -s_k\} = \{n - s_1, n - s_2, \dots, n - s_k\} = \{n - s_k, n - s_{k-1}, \dots, n - s_2, n - s_1\}$, in increasing order. So $\alpha(-S) = [s_k - s_{k-1}, \dots, s_2 - s_1, s_1 - s_k] \equiv_{cyc} [s_1 - s_k, s_k - s_{k-1}, \dots, s_2 - s_1] = \alpha(S)$.

(ii) Necessity: let $S \equiv_z -S'$ then $\alpha(S) \equiv_{\text{cyc}} \alpha(-S') \equiv_{\text{cyc}} \alpha(S')$ using Theorem 2.11 and then part (i) above.

Sufficiency: let $\alpha(S) \equiv_{\text{cyc}} \alpha(S')$ then $\alpha(S) \equiv_{\text{cyc}} \alpha(-S')$ by part (i) applied to S', and so $S \equiv_z -S'$ by Theorem 2.11.

Definition 3.3 TAIS T is *reversible* if it is cyclically-equivalent to its reverse, *i.e.*, if $T \equiv_{cyc} \overleftarrow{T}$, (equivalently, $T \in [\overrightarrow{T}]$ or $\overleftarrow{T} \in [T]$).

Theorem 3.4 Let S be a k-subset of \mathbb{Z}_n . Then $-1 \in \text{mult}(S)$ if and only if $\alpha(S)$ is reversible.

Proof. Now $-1 \in \text{mult}(S)$ if and only if $S \equiv_z -S$, if and only if $\alpha(S) \equiv_{\text{cyc}} \alpha(S)$, if and only if $\alpha(S)$ is reversible.

Definitions 3.5 $\mathcal{O}(n,k;-1), \mathcal{O}(n,k;\overline{-1})$

- (1) $\mathcal{O}(n,k;-1)$ is the number of (n,k)-Ovals with -1 as a multiplier.
- (2) $\mathcal{O}(n,k;-1)$ is the number of (n,k)-Ovals without -1 as a multiplier.

A *k*-reverse of *n* is a reversible *k*-composition of *n*. In McSorley [6] using Polya Theory we count the number of *k*-reverses of *n* up to cyclic permutation; this number is denoted by $\mathcal{R}_{\equiv}(n,k)$. From Theorem 3.4 above we have $\mathcal{O}(n,k;-1) = \mathcal{R}_{\equiv}(n,k)$.

Theorem 3.6 For $n \ge 2$ and $k \ge 2$, the number of (n, k)-Ovals with -1 as a multiplier is

$$\mathcal{O}(n,k;-1) = \begin{cases} \left(\frac{n-2}{2}\right), & \text{if } n \text{ is even and } k \text{ is odd};\\ \left(\frac{n-1}{2}\right), & \text{if } n \text{ is odd and } k \text{ is odd};\\ \left(\frac{k-1}{2}\right), & \text{if } n \text{ is odd and } k \text{ is odd};\\ \left(\frac{k}{2}\right), & \text{if } n \text{ is even and } k \text{ is even};\\ \left(\frac{n-1}{2}\right), & \text{if } n \text{ is odd and } k \text{ is even}. \end{cases}$$

For a given TAIS T we obtain Oval $\mathcal{O}(\stackrel{\leftarrow}{T})$ from Oval $\mathcal{O}(T)$ by reflecting $\mathcal{O}(T)$ in a straight line that (for simplicity) does not intersect $\mathcal{O}(T)$. We denote the reflection of \mathcal{O} by $\stackrel{\leftarrow}{\mathcal{O}}$.

When Ovals $\mathcal{O}(T)$ and $\mathcal{O}(\tilde{T})$ cannot be moved to one another using only translations and rotations, we say they are *enantiomorphs* of each other. In this case $\mathcal{O}(T) \neq \mathcal{O}(\tilde{T})$ and a reflection is required to move $\mathcal{O}(T)$ to $\mathcal{O}(\tilde{T})$ and vice-versa. (Oval $\mathcal{O}(T)$ is congruent to $\mathcal{O}(\tilde{T})$; see Section 3.1.) These comments and Theorem 3.4 give the following.

Theorem 3.7 Let $\mathcal{O}(T)$ be an (n, k)-Oval.

- (i) $\mathcal{O}(T)$ has multiplier -1 if and only if T is reversible, if and only if $\mathcal{O}(T) = \mathcal{O}(\overleftarrow{T}).$
- (ii) $\mathcal{O}(T)$ does not have multiplier -1 if and only if T is not reversible, if and only if $\mathcal{O}(T) \neq \mathcal{O}(\overleftarrow{T})$. Such Ovals occur in $\{\mathcal{O}(T), \mathcal{O}(\overleftarrow{T})\}$ (congruent) enantiomorphic pairs in $\mathcal{O}^*(n,k)$. (Hence there is an even number of Ovals in $\mathcal{O}^*(n,k)$ without multiplier -1.)

Example 3.8 (n,k) = (7,3). See Example 2.19. $\mathcal{O}^*(7,3) = \{\mathcal{O}(T_1), \mathcal{O}(T_2), \mathcal{O}(T_3), \mathcal{O}(T_4), \mathcal{O}(T_5)\},$ and Theorem 3.6 gives $\mathcal{O}(7,3;-1) = \binom{3}{1} = 3.$

If i = 1, 2, or 3, then $-1 \in \text{mult}(\mathcal{O}(T_i))$ and so $T_i \equiv_{\text{cyc}} \overleftarrow{T_i}$; eg., for i = 1 we have $[1 \ 1 \ 5] \equiv_{\text{cyc}} [5 \ 1 \ 1] (= [1 \ 1 \ 5]).$

If i = 4, or 5, then $-1 \notin \text{mult}(\mathcal{O}(T_i))$ and so $T_i \not\equiv_{\text{cyc}} \overleftarrow{T_i}$; eg., for i = 4 we have $[1 \ 2 \ 4] \not\equiv_{\text{cyc}} [4 \ 2 \ 1] (= [1 \ 2 \ 4]).$

The pair $\{\mathcal{O}(T_4), \mathcal{O}(T_5)\} = \{\mathcal{O}(T_4), \mathcal{O}(\widetilde{T_4})\}$ is a (congruent) enantiomorphic pair referred to in Theorem 3.7(ii).

3.1 Congruent Ovals

Definitions 3.9 congruent and \equiv_c

- (1) Two k-subsets S and S' of \mathbb{Z}_n are congruent, $S \equiv_c S'$, if $S \equiv_z S'$ or $S \equiv_z -S'$.
- (2) Two TAIS T and T' are congruent, $T \equiv_{c} T'$, if $T \equiv_{cyc} T'$ or $T \equiv_{cyc} \overline{T'}$.
- (3) Two (n, k)-Ovals \mathcal{O} and \mathcal{O}' are *congruent*, $\mathcal{O} \equiv_{c} \mathcal{O}'$, if $\mathcal{O} = \mathcal{O}'$ or $\mathcal{O} = \mathcal{O}'$, *i.e.*, if \mathcal{O} can be moved to \mathcal{O}' by a sequence of translations, rotations, or reflections, (isometries).

Then, from Theorem 2.11 and Lemma 3.2, we have the following.

Theorem 3.10 Let S and S' be k-subsets of \mathbb{Z}_n . Then $S \equiv_c S'$ if and only if $\alpha(S) \equiv_c \alpha(S')$, if and only if $\mathcal{O}(\alpha(S)) \equiv_c \mathcal{O}(\alpha(S'))$.

Definition 3.11 $Mult(S) = mult(S) \cup -mult(S).$

Remark 3.12 It is straightforward to show that Mult(S) is a subgroup of U(n). If $-1 \in mult(S)$ then Mult(S) = mult(S), and if $-1 \notin mult(S)$ then |Mult(S)| = 2 |mult(S)|.

Definitions 3.13 $\mathcal{O}_{c}^{*}(n,k), \mathcal{O}_{c}(n,k)$

- (1) $\mathcal{O}_{c}^{*}(n,k)$ is the set of (n,k)-Ovals up to congruency.
- (2) $\mathcal{O}_{c}(n,k) = |\mathcal{O}_{c}^{*}(n,k)|$ is the number of (n,k)-Ovals up to congruency.

In order to generate the set $\mathcal{O}_{c}^{*}(n,k)$ for an arbitrary (n,k) we may use the procedure in Section 2.1 to find $\mathcal{O}^{*}(n,k)$ and then combine congruent enantiomorphic pairs of Ovals; see Theorem 3.7(ii). Alternatively, we may use this procedure with the group mult(S) replaced by Mult(S).

Example 3.14 (n, k) = (7, 3). See Examples 2.19 and 3.8.

To find $\mathcal{O}_{c}^{*}(7,3)$ using the first method mentioned above we start with $\mathcal{O}^{*}(7,3) = \{\mathcal{O}(T_1), \mathcal{O}(T_2), \mathcal{O}(T_3), \mathcal{O}(T_4), \mathcal{O}(\overleftarrow{T_4})\}$ and combine the last 2 Ovals into a single congruency class to give $\mathcal{O}_{c}^{*}(7,3) = \{\mathcal{O}(T_1), \mathcal{O}(T_2), \mathcal{O}(T_3), \mathcal{O}(T_4)\}$.

Using the second method, the procedure of Section 2.1 with mult(S) replaced by Mult(S) gives the following table:

S		T	$\operatorname{Mult}(S)$	$\frac{ U(7) }{ \operatorname{Mult}(S) }$
$A_1 = \{0, 1, 2\}$	\leftrightarrow	$T_1 = [1 \ 1 \ 5]$	$\{1, -1\}$	3
$A_2 = \{0, 2, 4\}$	\leftrightarrow	$T_2 = [2 \ 2 \ 3]$	$\{1, -1\}$	
$A_3 = \{0, 1, 4\}$	\leftrightarrow	$T_3 = [1 \ 3 \ 3]$	$\{1, -1\}$	
$B_1 = \{0, 1, 3\}$	\leftrightarrow	$T_4 = [1 \ 2 \ 4]$	U(7)	1

This also gives $\mathcal{O}_{c}^{*}(7,3) = \{\mathcal{O}(T_1), \mathcal{O}(T_2), \mathcal{O}(T_3), \mathcal{O}(T_4)\},$ the set of all (7,3)-Ovals up to congruency.

- **3.2** $\mathcal{O}_{c}(n,k)$, $\mathcal{O}_{c}(n,k;-1)$, and $\mathcal{O}_{c}(n,k;\overline{-1})$ Definitions **3.15** $\mathcal{O}_{c}(n,k;-1)$, $\mathcal{O}_{c}(n,k;\overline{-1})$
- (1) $\mathcal{O}_{c}(n,k;-1)$ is the number of (n,k)-Ovals with -1 as a multiplier, up to congruency.
- (2) $\mathcal{O}_{c}(n,k;\overline{-1})$ is the number of (n,k)-Ovals without -1 as a multiplier, up to congruency.

Lemma 3.16

$$\mathcal{O}_{c}(n,k) = \frac{1}{2} \Big(\mathcal{O}(n,k) + \mathcal{O}(n,k;-1) \Big).$$

Proof.

$$\begin{aligned} \mathcal{O}_{c}(n,k) &= \mathcal{O}_{c}(n,k;-1) + \mathcal{O}_{c}(n,k;-1) \\ &= \mathcal{O}(n,k;-1) + \frac{1}{2}\mathcal{O}(n,k;-1) \\ &= \mathcal{O}(n,k;-1) + \frac{1}{2}(\mathcal{O}(n,k) - \mathcal{O}(n,k;-1)) \\ &= \frac{1}{2}(\mathcal{O}(n,k) + \mathcal{O}(n,k;-1)). \end{aligned}$$

At the second line we use $\mathcal{O}(n,k;-1) = \mathcal{O}_{c}(n,k;-1)$ because if \mathcal{O} and \mathcal{O}' both have -1 as a multiplier then, from Definitions 3.9(3) and Theorem 3.7(i), we have $\mathcal{O} = \mathcal{O}'$ if and only if $\mathcal{O} \equiv_{c} \mathcal{O}'$. And $\mathcal{O}_{c}(n,k;-1) = \frac{1}{2}\mathcal{O}(n,k;-1)$ comes directly from Theorem 3.7(ii).

Recall that $\mathcal{O}(n,k)$ is given explicitly in Equation (1).

Theorem 3.17 For $n \ge 2$ and $k \ge 2$, the number of (n, k)-Ovals up to congruency is

$$\mathcal{O}_{\rm c}(n,k) = \begin{cases} \frac{1}{2} \Big(\mathcal{O}(n,k) + \Big(\frac{n-2}{k-1}\Big) \Big), & \text{if } n \text{ is even and } k \text{ is odd;} \\ \frac{1}{2} \Big(\mathcal{O}(n,k) + \Big(\frac{n-2}{k-1}\Big) \Big), & \text{if } n \text{ is odd and } k \text{ is odd;} \\ \frac{1}{2} \Big(\mathcal{O}(n,k) + \Big(\frac{n}{2}\Big) \Big), & \text{if } n \text{ is even and } k \text{ is even;} \\ \frac{1}{2} \Big(\mathcal{O}(n,k) + \Big(\frac{n-1}{2}\Big) \Big), & \text{if } n \text{ is odd and } k \text{ is even;} \end{cases}$$

Theorem 3.6 now gives the following.

Theorem 3.18 For $n \ge 2$ and $k \ge 2$, the number of (n, k)-Ovals without -1 as a multiplier up to congruency is

$$\mathcal{O}_{c}(n,k;\overline{-1}) = \begin{cases} \frac{1}{2} \Big(\mathcal{O}(n,k) - \Big(\frac{n-2}{k-1}\Big) \Big), & \text{if } n \text{ is even and } k \text{ is odd;} \\ \frac{1}{2} \Big(\mathcal{O}(n,k) - \Big(\frac{n-1}{2}\Big) \Big), & \text{if } n \text{ is odd and } k \text{ is odd;} \\ \frac{1}{2} \Big(\mathcal{O}(n,k) - \Big(\frac{n}{2}\Big) \Big), & \text{if } n \text{ is even and } k \text{ is even;} \\ \frac{1}{2} \Big(\mathcal{O}(n,k) - \Big(\frac{n-1}{2}\Big) \Big), & \text{if } n \text{ is odd and } k \text{ is even;} \end{cases}$$

$n \setminus k$	2	3	4	5	6	7	8	9	10	$\mathcal{O}_{\rm c}(n)$
2	1									1
3	1	1								2
4	2	1	1							4
5	2	2	1	1						6
6	3	3	3	1	1					11
7	3	4	4	3	1	1				16
8	4	5	8	5	4	1	1			28
9	4	7	10	10	7	4	1	1		44
10	5	8	16	16	16	8	5	1	1	76
÷	:	÷	÷	:	÷	:	:	÷	÷	÷

(a) $\mathcal{O}_{\rm c}(n,k)$

$n \backslash k$	2	3	4	5	6	7	8	9	10	$\mathcal{O}_{\rm c}(n;-1)$	$n \backslash k$	2	3	4	5	6	7	8	9	10	$\mathcal{O}_{\rm c}(n; \overline{-1})$
2	1									1	2	0									0
3	1	1								2	3	0	0								0
4	2	1	1							4	4	0	0	0							0
5	2	2	1	1						6	5	0	0	0	0						0
6	3	2	3	1	1					10	6	0	1	0	0	0					1
7	3	3	3	3	1	1				14	7	0	1	1	0	0	0				2
8	4	3	6	3	4	1	1			22	8	0	2	2	2	0	0	0			6
9	4	4	6	6	4	4	1	1		30	9	0	3	4	4	3	0	0	0		14
10	5	4	10	6	10	4	5	1	1	46	10	0	4	6	10	6	4	0	0	0	30
:	÷	÷	÷	÷	÷	÷	÷	÷	:		÷	÷	÷	÷	÷	÷	÷	÷	÷	:	÷
	•					(b)	\mathcal{O}	$P_{\rm c}(n)$	n, k;	-1)		•				((c)	\mathcal{O}_{c}	(n)	, k; -	-1)

Table 1: Values of $\mathcal{O}_{c}(n,k)$, $\mathcal{O}_{c}(n,k;-1)$, and $\mathcal{O}_{c}(n,k;-1)$ for $2 \leq k \leq n \leq 10$, and of $\mathcal{O}_{c}(n)$, $\mathcal{O}_{c}(n;-1)$, and $\mathcal{O}_{c}(n;-1)$ for $2 \leq n \leq 10$.

See Table 1(a). The triangle of values of $\mathcal{O}_{c}(n, k)$ when read row-by-row gives sequence A052307 in the Online Encyclopedia of Integer Sequences [7].

See Table 1(b). The triangle of values of $\mathcal{O}_{c}(n, k; -1) = \mathcal{O}(n, k; -1)$ (see Theorem 3.6) is equal to the triangle of sequence A119963 in [7] (with the first two columns of 1's removed). So $\mathcal{O}_{c}(n, k; -1)$ gives the *first* combinatorial interpretation of sequence A119963 in [7]. Thus (ignoring the first two columns of 1's) the (n, k) term in the triangle of sequence A119963 is the number of (n, k)-Ovals with -1 as a multiplier, up to congruency. For the sequence of row sums of the triangle of sequence A119963 see sequence A029744, and the comment 'Necklaces with n beads that are the same when turned over'.

See Table 1(c). When the triangle of values of $\mathcal{O}_{c}(n, k; -1)$ is read row-byrow we obtain a new sequence, see sequence A180472 in [7]. For the sequence of row sums of this triangle see sequence A059076: 'Number of orientable necklaces with *n* beads and two colors; *i.e.*, turning over the necklace does not leave it unchanged'.

Example 3.19 (n, k) = (7, 3). From Example 3.14 the number of (7, 3)-Ovals up to congruency is 4. Theorem 3.17 gives $\mathcal{O}_{c}(7, 3) = \frac{1}{2}(\mathcal{O}(7, 3) + \binom{3}{1}) = \frac{1}{2}(5+3) = 4$, also. Of these 4 Ovals, 3 have -1 as a multiplier, and 1 does not. Theorem 3.6 gives $\mathcal{O}_{c}(7, 3; -1) = \binom{3}{1} = 3$, and Theorem 3.18 gives $\mathcal{O}_{c}(7, 3; \overline{-1}) = \frac{1}{2}(\mathcal{O}(7, 3) - \binom{3}{1}) = \frac{1}{2}(5-3) = 1$. Thus all counts for (n, k) = (7, 3) from Example 3.14 are confirmed.

4 Rhombic Inventory Vector, all (n, k)-Ovals for $n \le 10$

We use \subseteq_{m} to denote containment in multisets. For example, if multiset $M = \{1, 1, 1, 2, 3, 3, 4, 4, 4\}$ then $L = \{1, 1, 1, 2, 4, 4\} \subseteq_{\mathrm{m}} M$ but $L' = \{1, 1, 1, 2, 2\} \not\subseteq_{\mathrm{m}} M$. We say that L is a multisubset of M. Further, we replace $\underbrace{a, a, \ldots, a}_{k}$ by a^{b} , so $M = \{1^{3}, 2^{1}, 3^{2}, 4^{4}\}$.

On p.141 of Ball and Coxeter [1] it is proved that every (n, k)-Oval \mathcal{O} , with $2 \leq k \leq n$, can be tiled by a multiset of $\binom{k}{2}$ rhombs chosen from $\rho_1, \rho_2, \ldots, \rho_{\lfloor \frac{n}{2} \rfloor}$.

The regular 2*n*-gon, $\{2n\}$, is an (n, n)-Oval with TAIS= $[\underbrace{1 \ 1 \ \cdots \ 1}]$.

Definition 4.1 The Standard Rhombic Inventory, SRI_{2n} , is the multiset of $\binom{n}{2}$ rhombs that tile $\{2n\}$.

There are $\lfloor \frac{n}{2} \rfloor$ different shapes of rhombs in SRI_{2n}; see Section 2. When n is odd, SRI_{2n} contains n copies of each of the $\frac{n-1}{2} = \lfloor \frac{n}{2} \rfloor$ shapes of rhomb,

 $\rho_1, \rho_2, \ldots, \rho_{\frac{n-1}{2}}$. When *n* is even, SRI_{2n} contains *n* copies of each of the $\frac{n}{2} - 1$ non-square rhombs, $\rho_1, \rho_2, \ldots, \rho_{\frac{n}{2}-1}$, but only $\frac{n}{2}$ copies of the square $\rho_{\frac{n}{2}}$.

For a fixed (n, k)-Oval \mathcal{O} let λ_h equal the number of rhombs in \mathcal{O} with principal index h.

Definition 4.2 The *Rhombic Inventory Vector* (RIV) of Oval \mathcal{O} , RIV(\mathcal{O}), is the vector $(\lambda_1, \lambda_2, \ldots, \lambda_{\lfloor \frac{n}{2} \rfloor})$ of length $\lfloor \frac{n}{2} \rfloor$.

The sum of the components in RIV(\mathcal{O}) equals $\binom{k}{2}$.

Example 4.3 (n, k) = (15, 6). See Figs. 1 and 3. The (15, 6)-Oval \mathcal{X} is tiled by $\binom{6}{2} = 15$ rhombs. The rhomb ρ_4 occurs twice in \mathcal{X} , so $\lambda_4 = 2$. We have $\operatorname{RIV}(\mathcal{X}) = (2, 1, 2, 2, 4, 2, 2)$.

The RIV of an (n, k)-Oval can be derived from its TAIS by constructing its Oval Index Triangle, (OIT). The construction of an OIT is described below for our (15, 6)-Oval \mathcal{X} .

First we define the function $r : \mathbb{Z}_n \setminus \{0\} \mapsto \mathbb{Z}_n \setminus \{0\}$:

$$r(a) = \begin{cases} a & \text{if } a \le \lfloor \frac{n}{2} \rfloor, \\ -a \text{ or } n-a & \text{if } a > \lfloor \frac{n}{2} \rfloor. \end{cases}$$
(2)

We extend the definition of r to multisets M as follows: $r(M) = \{r(a) \mid a \in M\}$.

The TAIS for \mathcal{X} is $[4\ 3\ 2\ 1\ 4\ 1]$. To compute RIV (\mathcal{X}) :

- (i) Delete the last turning angle index from the TAIS, thereby obtaining the sequence of indices for the upper interior face angles of the rhombs in the *receptacle* the cluster of k 1 rhombs that are incident on the stem vertex of the Oval. ('Receptacle' is the term used by botanists to denote the part of a plant that holds the fruit.) We call this sequence the 'truncated TAIS'. The truncated TAIS for \mathcal{X} is [4 3 2 1 4].
- (ii) The first row of the OIT equals the truncated TAIS. Below each pair of consecutive indices in the first row enter their sum in the second row:

(iii) Let $h_{i,j}$ denote the index in row *i* and position *j* of the triangle, where $i \ge 3$, and j = 1, 2, ..., k-i, counting from the left. Now the indices at each interior vertex of an (n, k)-Oval sum to 2n, so simple trigonometry gives:

$$h_{i+1,j} = h_{i,j} + h_{i,j+1} - h_{i-1,j+1}.$$

See the left-hand triangle in (iv) below.

(iv) Apply function r to the indices of the left-hand triangle, *i.e.*, replace index $h > \lfloor \frac{n}{2} \rfloor$ by n - h. The OIT is now complete.

4 3 2 1 4		4 3 2 1 4
$7 \ 5 \ 3 \ 5$		7 5 3 5
$9 \ 6 \ 7$	\xrightarrow{r}	$6 \ 6 \ 7$
10 10		$5 \ 5$
14		1
		OIT

(v) Now count the frequency of each principal index in the OIT to obtain $RIV(\mathcal{X}) = (2, 1, 2, 2, 4, 2, 2)$, as above.

Recall the definition of $\alpha(S)$ from Definitions 2.8(1).

Definitions 4.4 $\delta(S)$, $OIT(\alpha(S))$ or OIT(T)Let $S = \{s_1, s_2, \dots, s_k\} \subseteq \mathbb{Z}_n$.

- (1) $\delta(S) = \{s_j s_i : 1 \le i < j \le k\}$ is a multiset of non-zero differences of S. Note that $|\delta(S)| = \binom{k}{2}$.
- (2) $OIT(\alpha(S)) = OIT(T)$ is the multiset of indices in the OIT with first row $[s_2 s_1, s_3 s_2, \dots, s_k s_{k-1}]$, the truncation of $\alpha(S) = T$.

Lemma 4.5 Let $S = \{s_1, s_2, \ldots, s_k\} \subseteq \mathbb{Z}_n$. Then $OIT(\alpha(S)) = r(\delta(S))$.

Proof. Consider the triangle formed previously with $h_{i,j}$ as the index in row *i* and position *j*, counting from the left, and let *H* denote the multiset of all such $h_{i,j}$.

We show for i = 1, 2, ..., k-1, and j = 1, 2, ..., k-i that $h_{i,j} = s_{i+j} - s_j \in \delta(S)$, *i.e.*, that the indices in row *i* of this triangle are the difference of two s's $\in S$ whose subscripts differ by *i*.

By definition of the triangle this is clearly true for i = 1, 2. Assume that the hypothesis is true for rows $1, 2, \ldots, i$. Then, for $i \ge 3$:

$$h_{i+1,j} = h_{i,j} + h_{i,j+1} - h_{i-1,j+1}$$

= $(s_{i+j} - s_j) + (s_{i+(j+1)} - s_{j+1}) - (s_{(i-1)+(j+1)} - s_{j+1})$
= $s_{(i+1)+j} - s_j \in \delta(S),$

using strong induction at the second line. Hence the induction goes through, and $H \subseteq_{\mathrm{m}} \delta(S)$, but $|H| = \binom{k}{2} = |\delta(S)|$, and so $H = \delta(S)$. Now apply r to both sides of this equation to give the result.

Example 4.6 (n,k) = (15,6). Our (15,6)-Oval \mathcal{X} has TAIS $T = [4\ 3\ 2\ 1\ 4\ 1]$. So $X = \beta(T) = \{0,4,7,9,10,14\}$, giving $\delta(X) = \{1^1, 2^1, 3^2, 4^2, 5^2, 6^1, 7^2, 9^1, 10^2, 14^1\}$, and $r(\delta(X)) = \{1^2, 2^1, 3^2, 4^2, 5^4, 6^2, 7^2\}$. So RIV $(\mathcal{X}) = (2, 1, 2, 2, 4, 2, 2)$, as above.

Remark 4.7 It is straightforward to show that the multiset OIT(T) doesn't depend on how we truncated T to form the first row of the OIT.

4.1 All (n, k)-Ovals and their RIV's for $n \le 10$

In Tables 2 and 3 below we list and number all (n, k)-Ovals up to congruence, and their RIV's, for $2 \le n \le 10$. We refer to these Ovals by their numbers in later Sections.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
		$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} \mathcal{O}_8 & 4 & [1 \ 1 \ 1 \ 1 \ 4] & (3, 2, 1) \\ \mathcal{O}_9 & 4 & [1 \ 1 \ 2 \ 3] & (2, 2, 2) \\ \mathcal{O}_{10} & 4 & [1 \ 2 \ 1 \ 3] & (2, 1, 3) \\ \mathcal{O}_{11} & 4 & [1 \ 2 \ 2 \ 2] & (1, 3, 2) \\ \mathcal{O}_{12} & 5 & [1 \ 1 \ 1 \ 1 \ 3] & (4, 3, 3) \\ \mathcal{O}_{13} & 5 & [1 \ 1 \ 2 \ 2] & (3, 4, 3) \\ \mathcal{O}_{14} & 5 & [1 \ 1 \ 2 \ 1 \ 2] & (3, 3, 4) \\ \mathcal{O}_{15} & 6 & [1 \ 1 \ 1 \ 1 \ 1 \ 2] & (5, 5, 5) \\ \mathcal{O}_{16} & 7 & [1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 $
$\frac{ 0 }{n} = 5$	$\frac{[\mathcal{O}_{11} \mid 0 \mid [1 \ 1 \ 1 \ 1 \ 1 \mid] \mid (0, \ 0, \ 3)]}{n = 6}$	$\frac{ \mathcal{O}_{16} (l 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1$

Table 2: All (n, k)-Ovals up to congruence and their RIV's for $2 \le n \le 7$.

5 Magic Ovals, cyclic difference sets, multiplier -1, all magic (n, k, λ) -Ovals for $n \le 40$

Recall $S = \{s_1, s_2, \ldots, s_k\} \subseteq \mathbb{Z}_n$, and $r : \mathbb{Z}_n \setminus \{0\} \mapsto \mathbb{Z}_n \setminus \{0\}$ from Equation (2), and $\delta(S)$ from Definitions 4.4(1); let M be a multiset with elements from $\mathbb{Z}_n \setminus \{0\}$. We need two more definitions.

Definitions 5.1 $f_M(a), \Delta(S)$

(1) $f_M(a)$ is the frequency of $a \in M$.

(2) $\Delta(S) = \delta(S) \cup -\delta(S)$ is the multiset of non-zero differences of S.

				\mathcal{O}_i	k TAIS	RIV
	\mathcal{O}_i k	TAIS	RIV	\mathcal{O}_1	$\begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$	(1, 0, 0, 0, 0)
	$\mathcal{O}_1 = 2$	[1 8]	(1, 0, 0, 0)	\mathcal{O}_3^2		(0, 1, 0, 0, 0) (0, 0, 1, 0, 0)
	O_2^1 2	$\begin{bmatrix} 2 & 7 \end{bmatrix}$	(0, 1, 0, 0)	\mathcal{O}_4	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(0, 0, 0, 1, 0) (0, 0, 0, 0, 1)
	O_{2}^{2} $\frac{2}{2}$	3 6	(0, 1, 0, 0)	\mathcal{O}_6	3 [1 1 8]	(2, 1, 0, 0, 0)
	O_{1}^{3} O_{2}^{2}		(0, 0, 1, 0)	\mathcal{O}_7	$\begin{array}{cccc} 3 & [1 & 2 & 7] \\ 3 & [1 & 3 & 6] \end{array}$	(1, 1, 1, 0, 0) (1, 0, 1, 1, 0)
	$O_4 2$		(0, 0, 0, 1)	\mathcal{O}_9^8	3 145	(1, 0, 1, 1, 1)
	O_5 3		(2, 1, 0, 0)	\mathcal{O}_{10} \mathcal{O}_{11}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0, 2, 0, 1, 0) (0, 1, 1, 0, 1)
	$O_6 3$		(1, 1, 1, 0)	\mathcal{O}_{12}^{11}	3 2 4 4	(0, 1, 0, 2, 0)
	O_7 3		(1, 0, 1, 1)	O_{13} O_{14}	3 3 3 4 4 1 1 1 7	(0, 0, 2, 1, 0) (3, 2, 1, 0, 0)
	\mathcal{O}_8 3	[1 4 4]	(1, 0, 0, 2)	\mathcal{O}_{15}^{14}	$\begin{bmatrix} 1 & 1 & 2 & 6 \\ 1 & 1 & 2 & 5 \end{bmatrix}$	(2, 2, 1, 1, 1, 0)
	\mathcal{O}_9 3	[2 2 5]	(0, 2, 0, 1)	\mathcal{O}_{17}^{16}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(2, 1, 1, 1, 1) (2, 1, 0, 2, 1)
	\mathcal{O}_{10} 3	[2 3 4]	(0, 1, 1, 1)	\mathcal{O}_{18}	$\begin{array}{cccc} 4 & [1 \ 2 \ 1 \ 6] \\ 4 & [1 \ 2 \ 2 \ 5] \end{array}$	(2, 1, 2, 1, 0) (1, 2, 1, 1, 1)
	\mathcal{O}_{11} 3	$[3 \ 3 \ 3]$	(0, 0, 3, 0)	\mathcal{O}_{20}^{19}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 2, 1, 1, 1) (1, 1, 2, 1, 1)
	O_{12} 4	$[1\ 1\ 1\ 6]$	(3, 2, 1, 0)	\mathcal{O}_{21} \mathcal{O}_{22}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(1, 1, 2, 2, 0) (1, 2, 2, 0, 1)
	\mathcal{O}_{13}^{12} 4	11125	(2, 2, 1, 1)	\mathcal{O}_{23}^{22}	4 1315	(2, 0, 1, 2, 1)
	\mathcal{O}_{14}^{13} 4		(2, 1, 1, 2)	\mathcal{O}_{24}^{24}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1, 1, 1, 1, 2, 1) (1, 0, 3, 2, 0)
	\mathcal{O}_{15}^{14}		(2, 1, 2, 1)	\mathcal{O}_{26}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2, 0, 0, 2, 2) (0, 3, 0, 3, 0)
O_i k TAIS RIV	\mathcal{O}_{16}^{10} 4		(1, 2, 1, 2)	\mathcal{O}_{28}^{27}	$\begin{array}{c} 1 \\ 4 \\ 2 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	(0, 2, 2, 1, 1)
\mathcal{O}_1 2 [1 7] (1, 0, 0, 0)	O_{17}^{10} 4		(1, 1, 3, 1)	$O_{29} = O_{30}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(0, 2, 2, 0, 2) (4, 3, 2, 1, 0)
\mathcal{O}_2^{-1} 2 2 2 6 0. 1, 0, 0	\mathcal{O}_{19} 4		(1, 2, 2, 1)	\mathcal{O}_{31}	5 11125	(3, 3, 2, 1, 1)
\mathcal{O}_{3}^{-} 2 3 5 0.0, 1, 0	O_{10}^{10} 4		(2, 0, 1, 3)	O_{32}^{0}	5 112154 5 11215	(3, 2, 2, 2, 1) (3, 2, 2, 2, 1)
\mathcal{O}_{4} 2 4 4 $(0, 0, 0, 1)$	\mathcal{O}_{20} 4		(1, 1, 2, 2)	\mathcal{O}_{34}	$\begin{bmatrix} 5 & 1 \ 1 & 2 & 2 & 4 \\ 5 & 1 & 1 & 2 & 3 & 3 \end{bmatrix}$	(2, 3, 1, 3, 1) (2, 2, 3, 2, 1)
O_{-} 3 [1 1 6] (2 1 0 0)	\mathcal{O}_{20} 4		(1, 1, 2, 2) (0, 3, 1, 2)	O_{36}^{35}	5 1 1 2 4 2	(2, 3, 2, 3, 0)
\mathcal{O}_{c}^{5} 3 1 2 5 (1 1 1 0	\mathcal{O}_{21} 1		(0, 0, 1, 2) (4 3 2 1)	\mathcal{O}_{38}^{37}	$\begin{bmatrix} 1 & 1 & 3 & 1 & 4 \\ 5 & \begin{bmatrix} 1 & 1 & 3 & 2 & 3 \end{bmatrix}$	(3, 1, 1, 3, 2) (2, 2, 2, 2, 2, 2)
O_{7} 3 1 3 4 (1 0 1 1)	$O_{22} = 5$		(4, 0, 2, 1) (2, 2, 2, 2)	\mathcal{O}_{39}	5 [1 2 1 2 4] 5 [1 2 1 3 3]	(2, 2, 3, 2, 1) (2, 1, 4, 3, 0)
O_2 3 2 2 4 (1, 0, 1, 1)	$O_{23} = 5$		(3, 3, 2, 2) (3, 2, 3, 2)	\mathcal{O}_{41}^{40}	5 1 2 2 2 3	(1, 3, 2, 3, 1)
O_{2} $[3]$ $[2]$ $[2]$ $[3]$ $[0]$ $[2]$ $[0]$ $[0]$ $[2]$ $[0]$ $[0]$ $[1]$ $[0]$ $[1]$ $[0]$ $[1]$ $[0]$ $[1$	$O_{24} = 5$		(3, 2, 3, 2) (2, 2, 3, 2)	$\mathcal{O}_{42} \\ \mathcal{O}_{43}$	5 1 2 2 3 2 5 1 2 2 1 4	(1, 3, 3, 1, 2) (2, 2, 2, 2, 2, 2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$O_{25} = 5$	$\begin{bmatrix} 1 & 1 & 2 & 1 & 4 \\ 1 & 1 & 2 & 2 & 2 \end{bmatrix}$	(3, 2, 2, 3) (2, 2, 2, 3)	\mathcal{O}_{44}	$\begin{bmatrix} 1 & 2 & 3 & 1 & 3 \\ 5 & 2 & 2 & 2 & 2 \end{bmatrix}$	(2, 1, 3, 3, 1) (0, 5, 0, 5, 0)
\mathcal{O}_{10} 4 1 1 2 4 (3, 2, 1, 0)	$O_{26} = 5$		(2, 3, 2, 3)	O_{46}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(5, 4, 3, 2, 1)
O_{11} 4 1 1 2 4 (2, 2, 1, 1) O_{11} 4 (1 1 2 2) (2, 1 0 1)	$O_{27} = 5$		(2, 3, 3, 2) (2, 1, 2, 4)	\mathcal{O}_{47} \mathcal{O}_{48}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(4, 4, 3, 3, 1) (4, 3, 4, 3, 1)
O_{12} 4 1 1 3 3 (2, 1, 2, 1)	O_{28} 5		(3, 1, 2, 4)	O_{49}^{48}	$\begin{array}{c} 6 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 3 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	(4, 3, 3, 3, 3, 2)
O_{13} 4 1 2 1 4 (2, 1, 2, 1)	$O_{29} = 5$		(2, 2, 4, 2)	\mathcal{O}_{50} \mathcal{O}_{51}	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(3, 4, 3, 3, 2) (3, 4, 4, 2, 2)
O_{14} 4 1 2 2 3 (1, 2, 2, 1)	$U_{30} = 5$		(2, 2, 3, 3)	\mathcal{O}_{52}	$\begin{bmatrix} 1 & 1 & 1 & 3 & 1 & 3 \\ 6 & 1 & 1 & 2 & 1 & 1 & 4 \end{bmatrix}$	(4, 2, 3, 4, 2) (4, 3, 2, 4, 2)
O_{15} 4 1 2 3 2 (1, 2, 3, 0)	O_{31} 5		(1, 4, 2, 3)	O_{54}^{53}	$\begin{array}{c} 6 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 1 \\ 2 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3 \\ 3$	(3, 3, 4, 3, 2)
O_{16} 4 1 3 1 3 (2, 0, 2, 2)	\mathcal{O}_{32} 6		(5, 4, 3, 3)	\mathcal{O}_{55} \mathcal{O}_{56}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3, 3, 4, 4, 1) (3, 3, 3, 3, 4, 2)
O_{17} 4 [2 2 2 2] (0, 4, 0, 2)	O_{33} 6	$[1\ 1\ 1\ 1\ 2\ 3]$	(4, 4, 4, 3)	\mathcal{O}_{57}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2, 5, 2, 5, 1) (4, 2, 2, 4, 3)
\mathcal{O}_{18} 5 [1 1 1 1 4] (4, 3, 2, 1)	O_{34} 6	$[1\ 1\ 1\ 2\ 1\ 3]$	(4, 3, 4, 4)	O_{59}^{58}	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(3, 2, 5, 4, 1)
\mathcal{O}_{19} [5 [1 1 1 2 3] [(3, 3, 3, 1)]	$O_{35} = 6$	[111222]	(3, 5, 3, 4)	$\mathcal{O}_{60} \\ \mathcal{O}_{61}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(2, 4, 4, 3, 2) (2, 4, 4, 2, 3)
\mathcal{O}_{20} [5 [1 1 2 1 3] [(3, 2, 3, 2)]	O_{36} 6	$[1\ 1\ 2\ 1\ 1\ 3]$	(4, 3, 3, 5)	\mathcal{O}_{62}	7 [1111114]	(6, 5, 4, 4, 2)
\mathcal{O}_{21} [5] [1 1 2 2 2] [(2, 4, 2, 2)]	$O_{37} = 6$		(3, 4, 4, 4)	O_{64}^{0}	$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 2 & 3 \\ 1 & 1 & 1 & 1 & 2 & 1 & 3 \end{bmatrix}$	(5, 5, 5, 5, 4, 2) (5, 4, 5, 5, 2)
$\mathcal{O}_{22} [5] [1 \ 2 \ 1 \ 2 \ 2] [(2, 3, 4, 1)]$	O_{38} 6	$[1 \ 2 \ 1 \ 2 \ 1 \ 2]$	(3, 3, 6, 3)	\mathcal{O}_{65}	$\begin{bmatrix} 7 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$	(4, 6, 4, 5, 2) (5, 4, 4, 5, 3)
\mathcal{O}_{23} 6 [1 1 1 1 1 3] (5, 4, 4, 2)	\mathcal{O}_{39} 7	$[1\ 1\ 1\ 1\ 1\ 3]$	$(\overline{6, 5, 5, 5})$	\mathcal{O}_{67}^{66}	7 1 1 1 2 1 2 2	(4, 5, 5, 4, 3)
\mathcal{O}_{24} [6] [1 1 1 1 2 2] [(4, 5, 4, 2)]	\mathcal{O}_{40} 7	$[1\ 1\ 1\ 1\ 1\ 2\ 2]$	(5, 6, 5, 5)	$\frac{O_{68}}{O_{69}}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(4, 5, 4, 6, 2) (4, 4, 6, 5, 2)
\mathcal{O}_{25} [6 [1 1 1 2 1 2] (4, 4, 5, 2)	\mathcal{O}_{41} 7	[1111212]	(5, 5, 6, 5)	\mathcal{O}_{70}	$\begin{array}{c c}8 & 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	(7, 6, 6, 6, 3) (6, 7, 6, 6, 3)
\mathcal{O}_{26} [6] [1 1 2 1 1 2] [(4, 4, 4, 3)]	\mathcal{O}_{42} 7	[1112112]	(5, 5, 5, 6)	\mathcal{O}_{72}^{71}		(6, 6, 7, 6, 3)
\mathcal{O}_{27} 7 [1 1 1 1 1 2] (6, 6, 6, 3)	\mathcal{O}_{43} 8		(7, 7, 7, 7)	\mathcal{O}_{73} \mathcal{O}_{74}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(6, 6, 6, 7, 3) (6, 6, 6, 6, 6, 4)
\mathcal{O}_{28} 8 [1 1 1 1 1 1 1] (8. 8. 8. 4)	\mathcal{O}_{AA} 9		(9, 9, 9, 9)	\mathcal{O}_{75}	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(8, 8, 8, 8, 8, 4)
n = 8		n = 9	1 1 1 - 1 - 1	C 76	n = 10	(10, 10, 10, 10, 0)

Table 3: All (n, k)-Ovals up to congruence and their RIV's for $8 \le n \le 10$.

Note that $-\delta(S) = \{s_i - s_j : 1 \le i < j \le k\}$, and $|-\delta(S)| = |\delta(S)| = {k \choose 2}$, and $|\Delta(S)| = k(k-1)$.

Lemma 5.2 Let M be a multiset with elements from $\mathbb{Z}_n \setminus \{0\}$. Then r(M) = r(-M).

Proof. Let *n* be even. Consider an occurrence of $a \in M$.

Suppose $a \leq \lfloor \frac{n}{2} \rfloor$. First, if $a = \frac{n}{2}$ then $r(a) = \frac{n}{2}$. Now $-a = \frac{n}{2} \in -M$ and $r(-a) = \frac{n}{2}$ also. Thus element $\frac{n}{2} \in M$ 'contributes' the same element $\frac{n}{2}$ to both multisets r(M) and r(-M). Second, if $a < \lfloor \frac{n}{2} \rfloor$ then r(a) = a. Now $-a \in -M$ satisfies $-a > \lfloor \frac{n}{2} \rfloor$ so r(-a) = -(-a) = a. So, again, element $a \in M$ contributes the same element a to both r(M) and r(-M).

Suppose $a > \lfloor \frac{n}{2} \rfloor$. Then r(a) = -a. Now $-a \in -M$ satisfies $-a < \lfloor \frac{n}{2} \rfloor \le \lfloor \frac{n}{2} \rfloor$ so r(-a) = -a. Thus, element $a \in M$ contributes the same element -a to both r(M) and r(-M).

In conclusion, any occurrence of $a \in M$ contributes the same element to both multisets r(M) and r(-M). Thus r(M) = r(-M). The proof for odd n is similar.

Definition 5.3 The Short Frequency Vector (SFV) of r(M) is the vector $(f_{r(M)}(1), f_{r(M)}(2), \ldots, f_{r(M)}(\lfloor \frac{n}{2} \rfloor))$ of length $\lfloor \frac{n}{2} \rfloor$.

Remark 5.4 From Lemma 4.5 we have $\operatorname{RIV}(\mathcal{O}(\alpha(S))) = \operatorname{SFV}(r(\delta(S)))$.

Example 5.5 (n, k) = (15, 6). See Example 4.6. Here $X = \{0, 4, 7, 9, 10, 14\}$ $\subseteq \mathbb{Z}_{15}$ and $\delta(X) = \{1^1, 2^1, 3^2, 4^2, 5^2, 6^1, 7^2, 9^1, 10^2, 14^1\}$, and $r(\delta(X)) = \{1^2, 2^1, 3^2, 4^2, 5^4, 6^2, 7^2\}$. So RIV $(\mathcal{O}(\alpha(X))) = \text{SFV}(r(\delta(X))) = (2, 1, 2, 2, 4, 2, 2)$.

Lemma 5.6 Let $S \subseteq \mathbb{Z}_n$. Then $SFV(r(\Delta(S))) = 2 \times SFV(r(\delta(S)))$.

Proof. Now $\Delta(S) = \delta(S) \cup -\delta(S)$, and so $r(\Delta(S)) = r(\delta(S)) \cup -r(\delta(S)) = r(\delta(S)) \cup r(\delta(S))$ using Lemma 5.2. Hence for any $a \in r(\delta(S))$ we have $f_{r(\Delta(S))}(a) = 2 \times f_{r(\delta(S))}(a)$, and so the result.

Example 5.7 (n, k) = (15, 6). See Example 5.5. Again, $X = \{0, 4, 7, 9, 10, 14\}$ $\subseteq \mathbb{Z}_{15}$ and $\Delta(X) = \{1^2, 2^2, 3^4, 4^4, 5^4, 6^2, 7^4, 9^2, 10^4, 14^2\}$, and $r(\Delta(X)) = \{1^4, 2^2, 3^4, 4^4, 5^8, 6^4, 7^4\}$. So SFV $(r(\Delta(X))) = (4, 2, 4, 4, 8, 4, 4) = 2 \times (2, 1, 2, 2, 4, 2, 2) = 2 \times$ SFV $(r(\delta(X)))$.

5.1 Magic Ovals and cyclic difference sets

Definition 5.8 A (n, k, λ) -cyclic difference set $-(n, k, \lambda)$ -CDS - is a k-subset $D \subseteq \mathbb{Z}_n$ with the property that $\Delta(D)$ contains every non-zero element of \mathbb{Z}_n exactly λ times.

In a (n, k, λ) -CDS straightforward counting gives:

$$\lambda(n-1) = k(k-1),\tag{3}$$

this shows that λ is even if n is even.

Example 5.9 (n,k) = (7,3). $D = \{0,1,3\}$ is a (7,3,1)-CDS. We have $\delta(D) = \{1,3,2\}$ and $-\delta(D) = \{-1,-3,-2\} = \{6,4,5\}$, giving $\Delta(D) = \{1^1,2^1,3^1,4^1,5^1,6^1\}$.

Recall that, when n is odd, there are n copies of each of the $\lfloor \frac{n}{2} \rfloor$ distinct rhombs in SRI_{2n}, *i.e.*, RIV($\{2n\}$) = (n, n, ..., n, n), and, when n is even, there are n copies of each of the $\frac{n}{2} - 1$ non-square rhombs in SRI_{2n}, but only $\frac{n}{2}$ copies of the square, *i.e.*, RIV($\{2n\}$) = $(n, n, ..., n, \frac{n}{2})$.

Definition 5.10 A magic (n, k, λ) -Oval is, for odd n, an (n, k)-Oval that contains exactly λ copies of each of the $\lfloor \frac{n}{2} \rfloor$ distinct rhombs of SRI_{2n}, *i.e.*, that has RIV= $(\lambda, \lambda, \ldots, \lambda, \lambda)$, and is, for even n, an (n, k)-Oval that contains exactly λ copies of each of the $\frac{n}{2} - 1$ non-square rhombs in SRI_{2n}, but only $\frac{\lambda}{2}$ copies of the square, *i.e.*, that has RIV= $(\lambda, \lambda, \ldots, \lambda, \frac{\lambda}{2})$.

The following Theorem 5.11 is a main result, it proves equivalence of a magic (n, k, λ) -Oval and a (n, k, λ) -CDS.

Theorem 5.11 Let $S = \{s_1, s_2, \ldots, s_k\} \subseteq \mathbb{Z}_n$. Then $\mathcal{O}(\alpha(S))$ is a magic (n, k, λ) -Oval if and only if S is a (n, k, λ) -CDS. Moreover, λ is equal to the number of 1's in TAIS $\alpha(S)$.

Proof. Necessity: let $\mathcal{O}(\alpha(S))$ be a magic (n, k, λ) -Oval.

For odd *n*: for each $h = 1, 2, ..., \lfloor \frac{n}{2} \rfloor$, there are λ occurrences of *h* in OIT($\alpha(S)$) so, by the proof of Lemma 4.5, the multiset $\delta(S)$ contains λ occurrences from $\{h, n - h\}$. Suppose *h* occurs λ' times in $\delta(S)$ then n - h will occur $\lambda - \lambda'$ times in $\delta(S)$, so *h* will occur $\lambda - \lambda'$ times in $-\delta(S)$. Hence *h* will occur exactly λ times in $\Delta(S) = \delta(S) \cup -\delta(S)$. For $h = \lfloor \frac{n}{2} \rfloor +$

 $1, \lfloor \frac{n}{2} \rfloor + 2, \ldots, n-1$, we argue in a similar way with h replaced by n-h to conclude that these h also occur λ times in $\Delta(S)$. Now $\Delta(S)$ is the multiset of differences defined by S; hence S is a cyclic difference set with repetition number λ , *i.e.*, S is a (n, k, λ) -CDS.

For even n: arguing as above each $h \neq \frac{n}{2}$ occurs λ times in $\Delta(S)$. Also $h = \frac{n}{2}$ occurs $\frac{\lambda}{2}$ times in OIT($\alpha(S)$), *i.e.*, $\frac{\lambda}{2}$ times in $r(\delta(S))$ and so $\frac{\lambda}{2}$ times in $\delta(S)$, and thus λ times in $\Delta(S)$ using Lemma 5.6. Hence, for even n also, S is a (n, k, λ) -CDS.

Sufficiency: let $S = \{s_1, s_2, \ldots, s_k\}$ be a (n, k, λ) -CDS. So, for odd n, we have SFV $(r(\Delta(S))) = (2\lambda, 2\lambda, \ldots, 2\lambda, 2\lambda)$, and, for even n, we have SFV $(r(\Delta(S))) = (2\lambda, 2\lambda, \ldots, 2\lambda, \lambda)$. Hence, from Lemma 5.6, for odd n, we have SFV $(r(\delta(S))) = (\lambda, \lambda, \ldots, \lambda, \lambda)$, and, for even n, we have SFV $(r(\delta(S))) = (\lambda, \lambda, \ldots, \lambda, \frac{\lambda}{2})$. But RIV $(\mathcal{O}(\alpha(S))) =$ SFV $(r(\delta(S)))$ and so $\mathcal{O}(\alpha(S))$ is a magic (n, k, λ) -Oval.

Let μ be the number of 1's in TAIS $\alpha(S) = [s_2 - s_1, s_3 - s_2, \cdots, s_k - s_{k-1}, s_1 - s_k]$. Recall that the elements in $S = \{s_1, s_2, \ldots, s_k\}$ are in increasing order and satisfy $0 \leq s_1 < s_2 < \cdots < s_k$. There are λ 1's in $\Delta(S)$; hence there are λ solutions to $s_j - s_i \equiv 1 \pmod{n}$, where $i, j \in \{1, 2, \ldots, k\}$, $i \neq j$. Now if $s_j - s_i = 1$ or -(n-1) then j = i+1 for $1 \leq i \leq k-1$, or j = 1 and i = k (respectively), and thus $s_j - s_i$ is an element of $\alpha(S)$. Hence $\mu \geq \lambda$. Conversely, because there are μ 1's in the TAIS $\alpha(S)$ and every element of this TAIS is also an element of $\Delta(S)$, then $\mu \leq \lambda$. Hence $\lambda = \mu$. \Box

Example 5.12

(a) The regular 2*n*-gon $\{2n\}$ has TAIS= $\underbrace{[1\ 1\ \cdots\ 1]}_{n}$, which contains *n* 1's. It is a magic (n, n, n)-Oval with corresponding (n, n, n)-CDS $D = \{0, 1, \dots, n-1\}$. For odd *n* we have RIV($\{2n\}$) = (n, n, \dots, n, n) , and for even *n* RIV($\{2n\}$) = (n, n, \dots, n, n) .

(b) If we remove the right-hand strip of rhombs in $\{2n\}$ we produce a magic (n, n - 1, n - 2)-Oval $\{2n\}'$ with TAIS= $\underbrace{[1 \ 1 \ \cdots \ 1 \ 2]}_{n-1}$, containing n - 2 1's. For odd n we have RIV($\{2n\}'$) = $(n - 2, n - 2, \dots, n - 2, n - 2)$, and, for even n, we have RIV($\{2n\}'$) = $(n - 2, n - 2, \dots, n - 2, \frac{n-2}{2})$. The corresponding (n, n - 1, n - 2)-CDS is $D' = \{0, 1, \dots, n - 2\}$. See Fig. 5 for an example with n = 12.

If we remove another strip of rhombs we obtain an (n, n-2)-Oval but only

Figure 5: The regular 12-gon $\{12\}$, and the magic (6, 5, 4)-Oval $\{12\}'$ obtained by removing the right-hand strip of rhombs from $\{12\}$.

non-integer values of λ result from Equation (3), and so such an Oval is not magic.

(c) (n, k) = (7, 3). See Example 5.9. The set $D = \{0, 1, 3\}$ is a (7, 3, 1)-CDS, and so $\mathcal{O}(\alpha(D))$ is a magic (7, 3, 1)-Oval with TAIS $\alpha(D) = [1 \ 2 \ 4]$, which contains one 1. The OIT for $\mathcal{O}(\alpha(D))$ is $\begin{array}{c}1 \ 2\\3\end{array}$ and so RIV $(\mathcal{O}(\alpha(D))) = (1, 1, 1)$. See the fourth (7, 3)-Oval in Fig. 4.

(d) (n, k) = (15, 7). See Fig. 6. The set $D = \{0, 1, 2, 4, 5, 8, 10\}$ is a (15, 7, 3)-CDS. We have $\alpha(D) = [1\ 1\ 2\ 1\ 3\ 2\ 5]$, which contains 3 1's, and the (15, 7)-Oval $\mathcal{O}(\alpha(D))$ is a magic (15, 7, 3)-Oval with OIT

Figure 6: The magic (15, 7, 3)-Oval $\mathcal{O}([1\ 1\ 2\ 1\ 3\ 2\ 5])$.

Remark 5.13 The CDS's D and D' in Examples 5.12(a) and (b) above are usually considered to be 'trivial' CDS; see p.298 of [3]. We ignore the other two trivial CDS, namely \emptyset and $\{s_i\}$, because $k \ge 2$. Thus non-trivial magic (n, k, λ) -Ovals have $2 \le k \le n - 2$.

Both these trivial CDS's have $\operatorname{mult}(D) = \operatorname{mult}(D') = U(n)$, so both have -1 as a multiplier. Let D be a non-trivial (n, k, λ) -CDS. Then it is combinatorial folklore that -1 is not a multiplier of D; see the discussion on p.60 of Baumert [2]. Thus -1 is not a multiplier of the non-trivial magic (n, k, λ) -Oval $\mathcal{O}(\alpha(D))$. Then Theorem 3.7(ii) gives Theorem 5.14 below which is a geometrical interpretation of this fact.

Theorem 5.14 Let $\mathcal{O}(\alpha(D))$ be a non-trivial magic (n, k, λ) -Oval. Then -1 is not a multiplier of $\mathcal{O}(\alpha(D))$, so $\mathcal{O}(\alpha(D)) \neq \mathcal{O}(\alpha(-D))$ and $\{\mathcal{O}(\alpha(D)), \mathcal{O}(\alpha(-D))\}$ is a congruent enantiomorphic pair in $\mathcal{O}^*(n, k)$.

Example 5.15 (n, k) = (7, 3). See Examples 3.8 and 5.12(c). The (7, 3)-Oval $\mathcal{O}(\alpha(\mathcal{D}))$ with $D = \{0, 1, 3\}$ is a non-trivial magic (7, 3, 1)-Oval, so $-1 \notin$ mult $(\mathcal{O}(\alpha(\mathcal{D})))$ and $\{\mathcal{O}(\alpha(D)), \mathcal{O}(\alpha(-D))\}$ is a congruent enantiomorphic pair in $\mathcal{O}^*(7, 3)$.

To the end of this Section we assume our CDS's are non-trivial.

Definition 5.16 A (n, k, λ) -CDS is *planar* if $\lambda = 1$.

We now give a new proof that -1 is not a multiplier of a planar CDS.

Theorem 5.17 Let D be a planar (n, k, 1)-CDS with $k \ge 3$. Then $-1 \notin \text{mult}(D)$.

Proof. Let $T = \alpha(D) = [t_1 \ t_2 \ \cdots \ t_k]$ be the TAIS of $\mathcal{O}(\alpha(D))$. Then $\mathcal{O}(\alpha(D))$ is a magic (n, k, 1)-Oval. Suppose that two parts of T are equal, say $t_i = t_j = h$ for $1 \le i < j \le k$ and $1 \le h \le \lfloor \frac{n}{2} \rfloor$. Now form $\operatorname{OIT}(T)$ using any truncated TAIS containing both t_i and t_j , this is possible because $k \ge 3$. Then $\operatorname{OIT}(T)$ will contain at least 2 copies of rhomb ρ_h , *i.e.*, $\lambda_h \ge 2$ in $\operatorname{RIV}(\mathcal{O}(\alpha(D)))$, a contradiction because $\lambda = \lambda_h = 1$. So the k parts of $T = [t_1 \ t_2 \ \cdots \ t_k]$ are distinct.

Suppose that T is reversible, so $T \equiv_{cyc} T$ where $T = [t_k \ t_{k-1} \cdots \ t_1]$. Now, because the parts of T are distinct, we have $T \equiv_{cyc} [t_1 \ t_k \cdots \ t_2] = [t_1 \ t_2 \cdots \ t_k]$, so $t_k = t_2$, a contradiction. Hence T is not reversible, and, by Theorem 3.4, we have $-1 \notin \text{mult}(D)$.

5.2 All magic (n, k, λ) -Ovals, $n \leq 40$

See p.2 of Baumert [2].

Definition 5.18 Two k-subsets S and S' of \mathbb{Z}_n are (u,z)-equivalent, $S \equiv_{u,z} S'$, if there exists $u \in U(n)$ and $z \in \mathbb{Z}_n$ such that S = uS' + z.

Table 6.1, p.150 of [2] contains a complete list of the 74 (n, k, λ) triples with $k \leq 100$ for which a (n, k, λ) -CDS exists, with at least one example of such a CDS for each triple.

Moreover, for the 12 (n, k, λ) triples with $n \leq 40$, see our Table 4 below, the (n, k, λ) -CDS examples in Table 6.1 of [2] are all the examples up to (u, z)-equivalence. To confirm this statement for these 12 triples see Hall [5]. As a double-check for the 8 triples: (7, 3, 1), (13, 4, 1), (15, 7, 3), (19, 9, 4), (21, 5, 1), (23, 11, 5), (31, 6, 1), and (37, 9, 2) see the explicit examples on pp.306–308 and p.327 of [3]. The remaining 4 triples: (11, 5, 2), (31, 15, 7), (35, 17, 8), and (40, 13, 4) were also double-checked by the authors using computer searches and Theorem 2.9 on p.306 of [3]. Amongst these 12 triples, for just one triple, namely (31, 15, 7), there is more than one inequivalent (n, k, λ) -CDS: there are two inequivalent (31, 15, 7)-CDS's, these are labelled '31A' and '31B' in Table 6.1 of [2], and 'A' and 'B' in our Table 4.

We stopped at n = 40 in our Table 4 to indicate that magic (n, k, λ) -Ovals with n even can occur.

Remark 5.19 Now $-1 \notin \text{mult}(D)$; hence $\text{Mult}(D) = \text{mult}(D) \cup -\text{mult}(D)$ and |Mult(D)| = 2 |mult(D)| from Definition 3.11 and Remark 3.12.

Example 5.20 (n, k) = (13, 4). The unique (13, 4, 1)-CDS up to (u, z)-equivalence is $D = \{0, 1, 3, 9\}$.

We have $\operatorname{mult}(D) = \{1, 3, 9\}$ and $\operatorname{Mult}(D) = \{1, 3, 4, 9, 10, 12\}$. Now |U(13)| = 12 so $|U(13) : \operatorname{Mult}(D)| = 2$. A set of 2 coset representatives for $\operatorname{Mult}(D)$ in U(13) is $\{1, 2\}$. Then the 2 incongruent (13, 4, 1)-CDS's that are each (u, z)-equivalent to D are D and $2D = \{0, 2, 5, 6\} \equiv_{z} \{0, 1, 8, 10\}$, with corresponding TAIS's $[1\ 2\ 6\ 4]$ and $[1\ 3\ 2\ 7]$ respectively. Thus there are 2 magic (13, 4, 1)-Ovals up to congruency; see our Table 4.

A similar procedure applied to each (n, k, λ) -CDS of Table 6.1 of [2] for $n \leq 40$ produces our Table 4.

Example 5.21 (n, k) = (16, 6). There does not exist a (16, 6, 2)-CDS; see Example 14.20(a) on p.425 of [3]. So there does not exist a magic (16, 6, 2)-Oval, *i.e.*, a (16, 6)-Oval with RIV (2, 2, 2, 2, 2, 2, 2, 1). Consider the (16, 6)-Oval $\mathcal{O} = \mathcal{O}([1\ 1\ 2\ 1\ 5\ 6])$. Then RIV $(\mathcal{O}) = (3, 2, 2, 2, 2, 2, 1, 1)$ which is the 'closest' that the RIV with $\lambda_8 = 1$ of a (16, 6)-Oval can be to (2, 2, 2, 2, 2, 2, 2, 2, 1), *i.e.*, Oval \mathcal{O} is the 'closest' that a (16, 6)-Oval with one square rhomb can be to a magic (16, 6, 2)-Oval. Oval \mathcal{O} has $\lambda_1 = 3$ (instead of $\lambda_1 = 2$ for a magic (16, 6, 2)-Oval), and $\lambda_7 = 1$ (instead of $\lambda_7 = 2$). Alternatively, $S = \beta([1\ 1\ 2\ 1\ 5\ 6]) = \{0, 1, 2, 4, 5, 10\}$ is the 'closest' that a 6-subset S' of \mathbb{Z}_{16} with the frequencies of 1 and 15 are 3 (instead of 2), and the frequencies of 7 and 9 are 1 (instead of 2).

(n,k,λ)	D	TAIS
(7, 3, 1)	$\{0, 1, 3\}$	$[1 \ 2 \ 4]$
(11, 5, 2)	$\{0, 1, 2, 6, 9\}$	$[1\ 1\ 4\ 3\ 2]$
(13, 4, 1)	$\{0, 1, 3, 9\}$	$[1 \ 2 \ 6 \ 4]$
		$[1 \ 3 \ 2 \ 7]$
(15, 7, 3)	$\{0, 1, 2, 4, 5, 8, 10\}$	$[1\ 1\ 2\ 1\ 3\ 2\ 5]$
(19, 9, 4)	$\{0, 1, 2, 3, 5, 7, 12, 13, 16\}$	$[1\ 1\ 1\ 2\ 2\ 5\ 1\ 3\ 3]$
(21, 5, 1)	$\{0, 1, 6, 8, 18\}$	[1 5 2 10 3]
(23, 11, 5)	$\{0, 1, 2, 3, 5, 7, 8, 11, 12, 15, 17\}$	$[1\ 1\ 1\ 2\ 2\ 1\ 3\ 1\ 3\ 2\ 6]$
(31, 6, 1)	$\{0, 1, 3, 8, 12, 18\}$	$[1 \ 2 \ 5 \ 4 \ 6 \ 13]$
		$[1 \ 3 \ 6 \ 2 \ 5 \ 14]$
		[1 5 12 4 7 2]
		$[1\ 7\ 3\ 2\ 4\ 14]$
		$[1 \ 10 \ 8 \ 7 \ 2 \ 3]$
(31, 15, 7)–A	$\{0, 1, 2, 3, 5, 7, 11, 14, 15, 16, 22, 23, 26, 28, 29\}$	$[1\ 1\ 1\ 2\ 2\ 4\ 3\ 1\ 1\ 6\ 1\ 3\ 2\ 1\ 2]$
		$[1\ 1\ 1\ 3\ 1\ 2\ 1\ 6\ 4\ 1\ 1\ 2\ 2\ 3\ 2]$
		$[1\ 1\ 1\ 4\ 1\ 3\ 6\ 2\ 1\ 1\ 2\ 1\ 2\ 3]$
(31, 15, 7)–B	$\{0, 1, 2, 3, 7, 9, 11, 12, 13, 18, 21, 25, 26, 28, 29\}$	$[1\ 1\ 1\ 4\ 2\ 2\ 1\ 1\ 5\ 3\ 4\ 1\ 2\ 1\ 2]$
(35, 17, 8)	$\{0, 1, 2, 3, 5, 6, 10, 16, 17, 18, 22, 24, 25, 27, 28, 31, 33\}$	$[1\ 1\ 1\ 2\ 1\ 4\ 6\ 1\ 1\ 4\ 2\ 1\ 2\ 1\ 3\ 2\ 2]$
(37, 9, 2)	$\{0, 1, 3, 7, 17, 24, 25, 29, 35\}$	$[1 \ 2 \ 4 \ 10 \ 7 \ 1 \ 4 \ 6 \ 2]$
		$[1\ 3\ 2\ 4\ 5\ 2\ 1\ 7\ 12]$
(40, 13, 4)	$\{0, 1, 2, 4, 5, 8, 13, 14, 17, 19, 24, 26, 34\}$	$\begin{bmatrix} 1 \ 1 \ 2 \ 1 \ 3 \ 5 \ 1 \ 3 \ 2 \ 5 \ 2 \ 8 \ 6 \end{bmatrix}$
		$[1\ 1\ 7\ 1\ 3\ 2\ 1\ 2\ 2\ 4\ 6\ 7\ 3]$

Table 4: All non-trivial (n, k, λ) -CDS's (up to (u, z)-equivalence) and the corresponding TAIS's of all non-trivial magic (n, k, λ) -Ovals (up to congruency) for $n \leq 40$ and $2 \leq k \leq \lfloor \frac{n}{2} \rfloor$.

6 Oval-partitions of $\{2n\}^p$, cyclic difference families, triangle-partitions of $\binom{n}{2}$

See Section 3.9 of Schoen [8] for a preliminary version of some of the research in this Section; see also Schoen and McK Shorb [9].

Let \mathcal{O}^p denote p copies of Oval \mathcal{O} , in particular $\{2n\}^p$ denotes p copies of the regular 2n-gon $\{2n\}$.

Definition 6.1 An Oval-partition of $\{2n\}^p$ is a partition of the rhombs

from $\{2n\}^p$ into q (n, k_i) -Ovals, \mathcal{O}_i , for various $q \ge 1$ and various $k_i \ge 2$:

$$\{2n\}^p \to \mathcal{O}_1 \cup \mathcal{O}_2 \cup \dots \cup \mathcal{O}_q.$$
(4)

Clearly (4) is equivalent to

$$p \times \operatorname{RIV}(\{2n\}) = \sum_{i=1}^{q} \operatorname{RIV}(\mathcal{O}_i).$$
 (5)

We focus on p = 1 and sometimes shorten $\mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_q$ to $\mathcal{O}_1 \mathcal{O}_2 \cdots \mathcal{O}_q$.

Remark 6.2 Because the regular 2n-gon $\{2n\}$ is a magic (n, n, n)-Oval then, along the lines of Theorem 5.11, we can prove that in Oval-partition (4) with p = 1 the total number of 1's in the TAIS's of the Ovals in $\mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_q$ equals n.

Definitions 6.3 distinct Oval-partition, $\mathcal{OP}(n)$, $\mathcal{DOP}(n)$

- (1) An Oval-partition is *distinct* if it contains distinct Ovals.
- (2) $\mathcal{OP}(n)$ is the total number of Oval-partitions of $\{2n\}$, for $n \geq 2$; we define $\mathcal{OP}(1) = 1$.
- (3) $\mathcal{DOP}(n)$ is the total number of distinct Oval-partitions of $\{2n\}$, for $n \geq 2$; we define $\mathcal{DOP}(1) = 1$.

See Table 5 for all Oval-partitions of $\{2n\}$ and the corresponding trianglepartition of $\binom{n}{2}$ (see Section 6.3), for n = 2, 3, 4, and 5.

n	$\binom{n}{2}$	q	O-p of $\{2n\}$	Δ -p of $\binom{n}{2}$	$\mathcal{OP}(n)$	Distinct?	$\mathcal{DOP}(n)$
2	1	1	\mathcal{O}_1	1	1	Yes	1
3	3	1	\mathcal{O}_2	3	2	Yes	1
3	3	3	\mathcal{O}_1^3	1^{3}		No	
4	6	1	\mathcal{O}_4	6	4	Yes	1
4	6	2	\mathcal{O}_3^2	3^{2}		No	
4	6	4	$\mathcal{O}_1^2\mathcal{O}_2\mathcal{O}_3$	$1^{3}3$		No	
4	6	6	$\mathcal{O}_1^4 \mathcal{O}_2^2$	1^{6}		No	
5	10	1	\mathcal{O}_6	[10]	12	Yes	3
5	10	3	$\mathcal{O}_1\mathcal{O}_4\mathcal{O}_5$	136		Yes	
5	10	3	$\mathcal{O}_2\mathcal{O}_3\mathcal{O}_5$	136		Yes	
5	10	4	$\mathcal{O}_1\mathcal{O}_3\mathcal{O}_4^2$	13^{3}		No	
5	10	4	$\mathcal{O}_2\mathcal{O}_3^2\mathcal{O}_4$	13^{3}		No	
5	10	5	$\mathcal{O}_1^2\mathcal{O}_2^2\mathcal{O}_5$	$1^{4}6$		No	
5	10	6	$\mathcal{O}_1^{ar{3}}\mathcal{O}_2^{ar{2}}\mathcal{O}_4^2$	$1^4 3^2$		No	
5	10	6	$\mathcal{O}_1^2\mathcal{O}_2^2\mathcal{O}_3^*\mathcal{O}_4$	$1^{4}3^{2}$		No	
5	10	6	$\mathcal{O}_1^{ar{-}}\mathcal{O}_2^{ar{3}}\mathcal{O}_3^2$	$1^4 3^2$		No	
5	10	8	$\mathcal{O}_1^4\mathcal{O}_2^{ar{3}}\mathcal{O}_4^{ar{3}}$	$1^{7}3$		No	
5	10	8	$\mathcal{O}_1^{\dot{3}}\mathcal{O}_2^{ar{4}}\mathcal{O}_3$	$1^{7}3$		No	
5	10	10	$\mathcal{O}_1^{ar{5}}\mathcal{O}_2^{ar{5}}$	1^{10}		No	

Table 5: All Oval-partitions (O-p) of $\{2n\}$ and the corresponding trianglepartition (Δ -p) of $\binom{n}{2}$ (see Section 6.3); the values of $\mathcal{OP}(n)$ and $\mathcal{DOP}(n)$, for $2 \leq n \leq 5$. The Oval numbering \mathcal{O}_i refers to Table 2.

Example 6.4 n = 5. See Fig. 7. As an example with n = 5, we check Equation (5) for the Oval-partition $\mathcal{O}_1\mathcal{O}_3\mathcal{O}_4^2$ of $\{10\}$ from Table 5:

$$(5,5) = (1,0) + (2,1) + 2(1,2).$$

 $\{10\} \rightarrow \mathcal{O}([1\ 4]) \cup \mathcal{O}([1\ 1\ 3]) \cup \mathcal{O}([1\ 2\ 2]) \cup \mathcal{O}([1\ 2\ 2])$ Figure 7: The Oval-partition $\mathcal{O}_1 \mathcal{O}_3 \mathcal{O}_4^2$ of $\{10\}$.

Observe that the total number of 1's in the TAIS's of the Ovals in the above Oval-partition equals n = 5, in agreement with Remark 6.2.

See Table 2, n = 5. In total there are 6 (5, k)-Ovals: $\{\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3, \mathcal{O}_4, \mathcal{O}_5, \mathcal{O}_6\}$. Let $\mathcal{RIV}(5) = \{\text{RIV}(\mathcal{O}_1), \text{RIV}(\mathcal{O}_2), \text{RIV}(\mathcal{O}_3), \text{RIV}(\mathcal{O}_4), \text{RIV}(\mathcal{O}_5), \text{RIV}(\mathcal{O}_6)\} = \{(1,0), (0,1), (2,1), (1,2), (3,3), (5,5)\}$. Then to find all Oval-partitions of $\{10\}$ is equivalent to finding all sums of elements of $\mathcal{RIV}(5)$ which are equal to $\text{RIV}(\{10\}) = (5,5)$, where elements can be used more than once.

Remark 6.5 Similarly, to find all Oval-partitions of $\{2n\}$ is equivalent to finding all sums of elements of the multiset of RIV's of all (n, k)-Ovals which are equal to RIV($\{2n\}$), where elements can be used more than once.

The values of $\mathcal{OP}(n)$ and $\mathcal{DOP}(n)$ for $2 \le n \le 5$ are given in Table 5, we have also computed $\mathcal{OP}(6) = 58$, $\mathcal{DOP}(6) = 7$, $\mathcal{DOP}(7) = 42$, and $\mathcal{DOP}(8) = 334$. The sequences $\{\mathcal{OP}(n) | n \ge 1\} = \{1, 1, 2, 4, 12, 58, \ldots\}$ and $\{\mathcal{DOP}(n) | n \ge 1\} = \{1, 1, 1, 1, 3, 7, 42, 334, \ldots\}$ now appear in [7] as sequences A177921 and A181148 respectively.

We may also think about the Oval-partition $\{2n\} \to \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_q$ in terms of subsets $S \subseteq \mathbb{Z}_n$. From Example 5.12(a) the regular 2*n*-gon $\{2n\}$ is a magic (n, n, n)-Oval with corresponding (n, n, n)-CDS $D = \{0, 1, \ldots, n-1\}$. We modify the proof of Theorem 5.11 to give the following.

Theorem 6.6 The Oval-partition $\{2n\} \to \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_q$ exists if and only if there exists q subsets $D_1, D_2, \ldots, D_q \subseteq \mathbb{Z}_n$ with the property that $\Delta(\{0, 1, \ldots, n-1\}) = \Delta(D_1) \cup \Delta(D_2) \cup \cdots \cup \Delta(D_q).$ **Example 6.7** n = 5. See Example 6.4. We have $D = \{0, 1, 2, 3, 4\}$ and $\Delta(D) = \{1^5, 2^5, 3^5, 4^5\}$, and subsets of \mathbb{Z}_5 : $D_1 = \{0, 1\}, D_2 = \{0, 1, 2\}$, and $D_3 = D_4 = \{0, 1, 3\}$.

6.1 Homologous Oval-partitions, isopart triples, cyclic difference families

Here we consider Oval-partitions of $\{2n\}^p$ in which the Ovals \mathcal{O}_i are (n, k)-Ovals, where k is fixed.

Definition 6.8 A homologous Oval-partition of $\{2n\}^p$ is a partition of the rhombs from $\{2n\}^p$ into q(n, k)-Ovals, \mathcal{O}_i , for a fixed $k \geq 2$:

$$\{2n\}^p \to \mathcal{O}_1 \cup \mathcal{O}_2 \cup \cdots \cup \mathcal{O}_q.$$

Note that the (n, k)-Ovals \mathcal{O}_i need not be congruent.

When p = 1 for a homologous Oval-partition of $\{2n\}$ to exist we require $\binom{k}{2} \binom{n}{2}$. There is a homologous Oval-partition of $\{2n\}$ into q = 1 (n, n)-Oval, namely into $\{2n\}$ itself, and another into $q = \binom{n}{2}$ (n, 2)-Ovals, namely into the $\binom{n}{2}$ rhombs of $\{2n\}$. We consider these two partitions as trivial, and so in the following restrict ourselves to $2 \le q \le \binom{n}{2} - 1$.

Definitions 6.9 [(n, k), q] isopart triple, realizable

(1) The ordered triple [(n, k), q] is an *isopart triple* if

$$\binom{n}{2} = q \binom{k}{2}$$
 for some $2 \le q \le \binom{n}{2} - 1$,

so $k \geq 3$.

(2) The isopart triple [(n, k), q] is *realizable* if there exists a homologous Oval-partition of $\{2n\}$ into q (not necessarily congruent) (n, k)-Ovals.

Example 6.10

(a) [(n,k),q] = [(4,3),2]. See Table 2. The smallest isopart triple which is realizable is [(4,3),2]. The relevant homologous Oval-partition is $\{8\} \rightarrow \mathcal{O}_3^2 = \mathcal{O}([1\ 1\ 2])^2$. (b) [(n,k),q] = [(6,3),5]. See Table 2. The smallest isopart triple which is not realizable is [(6,3),5].

Suppose there is a homologous Oval-partition

$$\{12\} \to \mathcal{O}_4^{q_1} \cup \mathcal{O}_5^{q_2} \cup \mathcal{O}_6^{q_3}$$

where each $q_i \ge 0$. Then the system of equations containing the equation $q_1 + q_2 + q_3 = 5$ together with the RIV Equations (5):

$$(6, 6, 3) = q_1(2, 1, 0) + q_2(1, 1, 1) + q_3(0, 3, 0)$$

must have a solution in the non-negative integers. That is, the system

$$q_1 + q_2 + q_3 = 5$$
, $2q_1 + q_2 = 6$, $q_1 + q_2 + 3q_3 = 6$, $q_2 = 3$,

must have a solution in the non-negative integers, a contradiction. Hence the isopart triple [(6,3), 5] is not realizable.

See Table 6 for all isopart triples [(n,k),q] for $2 \le n \le 16$. All are realizable except [(6,3),5] and [(10,3),15].

$\left[(n,k),q\right]$	Example of a homologous Oval-partition realizing $[(n, k), q]$
[(4,3),2]	$O([1\ 1\ 2])^2 \text{ (magic)}$
$[({f 6},{f 3}),{f 5}]$	Not realizable
[(7,3),7]	$\mathcal{O}([1\ 2\ 4])^7$ (magic, see Table 4 row (7, 3, 1), and Example 6.19(b))
[(9,3),12]	$\mathcal{O}([1\ 1\ 7])^3 \mathcal{O}([1\ 4\ 4])^3 \mathcal{O}([2\ 2\ 5])^3 \mathcal{O}([3\ 3\ 3])^3$
[(9,4),6]	$\mathcal{O}([1 \ 1 \ 2 \ 5])^3 \mathcal{O}([1 \ 3 \ 2 \ 3])^3$
[(10, 3), 15]	Not realizable
[(10,6),3]	$\mathcal{O}([1\ 1\ 1\ 1\ 3\ 3])\mathcal{O}([1\ 1\ 2\ 1\ 1\ 4])\mathcal{O}([1\ 2\ 1\ 2\ 2\ 2])$ (see §3.9 p.22 of [8] and Fig. 8)
[(12,3),22]	$\mathcal{O}([1\ 2\ 9])^4 \mathcal{O}([1\ 3\ 8])^4 \mathcal{O}([1\ 4\ 7])^4 \mathcal{O}([2\ 4\ 6])^4 \mathcal{O}([2\ 5\ 5])^4 \mathcal{O}([3\ 3\ 6])^2$
[(12,4),11]	$\mathcal{O}([1\ 1\ 3\ 7])\ \mathcal{O}([1\ 2\ 1\ 8])\ \mathcal{O}([1\ 2\ 4\ 5])\ \mathcal{O}([1\ 2\ 5\ 4])\ \mathcal{O}([1\ 2\ 2\ 7])\ \mathcal{O}([1\ 3\ 1\ 7])$
	$\mathcal{O}([1\ 4\ 1\ 6])\ \mathcal{O}([1\ 4\ 2\ 5])\ \mathcal{O}([2\ 2\ 2\ 6])\ \mathcal{O}([2\ 2\ 3\ 5])\ \mathcal{O}([3\ 3\ 3\ 3])$
[(13,3),26]	$\mathcal{O}([1\ 3\ 9])^{13}\mathcal{O}([2\ 5\ 6])^{13}$
[(13,4),13]	$\mathcal{O}([1\ 2\ 6\ 4])^{13}$ (magic, see Table 4 row $(13, 4, 1))$
[(15,3),35]	$\mathcal{O}([1\ 1\ 13])^5 \mathcal{O}([1\ 7\ 7])^5 \mathcal{O}([2\ 2\ 11])^5 \mathcal{O}([3\ 3\ 9])^5 \mathcal{O}([3\ 6\ 6])^5 \mathcal{O}([4\ 4\ 7])^5 \mathcal{O}([5\ 5\ 5])^5$
[(15,6),7]	$\mathcal{O}([1\ 1\ 2\ 1\ 6\ 4])\ \mathcal{O}([1\ 1\ 2\ 3\ 2\ 6])\ \mathcal{O}([1\ 1\ 2\ 3\ 6\ 2])\ \mathcal{O}([1\ 2\ 2\ 7\ 1\ 2])$
	$\mathcal{O}([1\ 2\ 4\ 1\ 2\ 5])\mathcal{O}([1\ 2\ 4\ 1\ 4\ 3])\mathcal{O}([1\ 3\ 2\ 4\ 1\ 4])$
[(15,7),5]	$\mathcal{O}([1\ 1\ 2\ 1\ 3\ 2\ 5])^5$ (magic, see Table 4 row (15,7,3), and Example 6.19(c))
[(16,3),40]	$\mathcal{O}([1\ 2\ 13])^8 \mathcal{O}([1\ 7\ 8])^8 \mathcal{O}([2\ 4\ 10])^8 \mathcal{O}([3\ 4\ 9])^8 \mathcal{O}([5\ 5\ 6])^8$
[(16, 4), 20]	See §3.9 p.23 of [8]
[(16,5),12]	See Example 6.11
[(16, 6), 8]	$\mathcal{O}([1\ 1\ 2\ 1\ 5\ 6])^4 \mathcal{O}([1\ 5\ 2\ 2\ 3\ 3])^4$ (see Example 6.20)

Table 6: All isopart triples [(n,k),q] for $2 \leq n \leq 16$, and an example of a homologous Oval-partition realizing the triple. Triples $[(\mathbf{6},\mathbf{3}),\mathbf{5}]$ and $[(\mathbf{10},\mathbf{3}),\mathbf{15}]$ are not realizable.

Figure 8: The homologous Oval-partition of $\{20\}$ for isopart triple [(10, 6), 3] from Table 6.

Example 6.11 (n,k) = (16,5). Isopart triple [(16,5), 12]. See §3.9 p.24 of [8]. Here each of the 12 (16,5)-Ovals are distinct, *i.e.*, incongruent. The Table below gives the TAIS's and RIV's of these 12 Ovals.

TAIS	RIV
$[1\ 1\ 1\ 3\ 10]$	(3, 2, 2, 1, 1, 1, 0, 0)
$[1 \ 2 \ 9 \ 1 \ 3]$	(2, 1, 2, 2, 1, 1, 1, 0)
$[1\ 5\ 2\ 3\ 5\]$	(1, 1, 1, 1, 0, 3, 2, 1, 1)
$[1\ 4\ 3\ 2\ 6\]$	(1, 1, 1, 1, 1, 2, 1, 2, 1)
$[1\ 2\ 5\ 1\ 7\]$	(2, 1, 1, 0, 1, 1, 2, 2)
$[2 \ 2 \ 2 \ 3 \ 7]$	(0, 3, 1, 2, 1, 1, 2, 0)
$[2 \ 2 \ 3 \ 2 \ 7 \]$	(0, 3, 1, 1, 2, 0, 3, 0)
$[1\ 2\ 3\ 6\ 4\]$	(1, 1, 2, 1, 2, 2, 1, 0)
$[1\ 3\ 1\ 3\ 8\]$	(2, 0, 2, 3, 1, 0, 1, 1)
$[1\ 1\ 3\ 3\ 8\]$	(2, 1, 2, 1, 1, 1, 1, 1)
$[2\ 4\ 2\ 4\ 4\]$	(0, 2, 0, 3, 0, 4, 0, 1)
$[1 \ 3 \ 5 \ 1 \ 6]$	(2, 0, 1, 1, 1, 2, 2, 1)
	(16, 16, 16, 16, 16, 16, 16, 16, 8)

Homologous Oval-partitions are closely related to another class of combinatorial objects, (*cf.*, Theorem 6.6):

Definition 6.12 A (n, k, λ) -cyclic difference family $-(n, k, \lambda)$ -CDF - is a collection of q k-subsets $D_1, D_2, \ldots, D_q \subseteq \mathbb{Z}_n$ with the property that

 $\Delta(D_1) \cup \Delta(D_2) \cup \cdots \cup \Delta(D_q)$ contains every non-zero element of \mathbb{Z}_n exactly λ times.

Remark 6.13 See Equation (3). In a (n, k, λ) -CDF we have

$$\lambda(n-1) = q \, k(k-1).$$

hence $q = \frac{\lambda(n-1)}{k(k-1)}$ is an integer.

From Definition 6.8 of a homologous Oval-partition of $\{2n\}$ and Definition 6.12 of a (n, k, λ) -CDF and Theorem 6.6 we have the following result.

Corollary 6.14 There exists a homologous Oval-partition of $\{2n\}$ into q (n,k)-Ovals if and only if there exists a (n,k,n)-CDF.

Clearly, by taking unions of CDF's, there exists a (n, k, n)-CDF if and only if there exists a collection of (n, k, λ_i) -CDF's with $\sum_i \lambda_i = n$. Hence, another main result follows.

Theorem 6.15 There exists a homologous Oval-partition of $\{2n\}$ into q (n,k)-Ovals (i.e., isopart triple [(n,k),q] is realizable) if and only if there exists a collection of (n,k,λ_i) -CDF's with $\sum_i \lambda_i = n$.

Example 6.16

(a) (n,k) = (9,4). See Example 1.6(a) p.470 of [3] for the (9,4,3)-CDF with $D_1 = \{0,1,2,4\}$ and $D_2 = \{0,3,4,7\}$. Using 3 copies of this CDF we produce the following homologous Oval-partition of $\{18\}$ into 6 (9,4)-Ovals: $\mathcal{O}(\alpha(D_1))^3 \mathcal{O}(\alpha(D_2))^3 = \mathcal{O}([1\ 1\ 2\ 5])^3 \mathcal{O}([1\ 3\ 2\ 3])^3$. This realizes isopart triple [(9,4), 6] with the same partition as given in Table 6.

(b) (n, k) = (16, 3). Conversely, we may take a partition which realizes an isopart triple from Table 6 and produce a CDF. For example, the 5 (16, 3)-Ovals from row [(16, 3), 40]: $\mathcal{O}([1\ 2\ 13]) \mathcal{O}([1\ 7\ 8]) \mathcal{O}([2\ 4\ 10]) \mathcal{O}([3\ 4\ 9]) \mathcal{O}([5\ 5\ 6])$ produce a (16, 3, 2)-CDF with $D_1 = \{0, 1, 3\}, D_2 = \{0, 1, 8\}, D_3 = \{0, 2, 6\},$ $D_4 = \{0, 3, 7\}, \text{ and } D_5 = \{0, 5, 10\}$ which is not (u, z)-equivalent to the (16, 3, 2)-CDF in Examples 16.13, p.394 of Colbourn and Dinitz [4].

(c) (n, k) = (6, 3). From Table 6 we see that isopart triple [(6, 3), 5] is not realizable, so, from Theorem 6.15, there does not exist a (6, 3, 6)-CDF nor a (6, 3, 2)-CDF; see Table II.2.29, p.61 of [4].

(d) (n, k) = (10, 3). Similarly, isopart triple [(10, 3), 15] is not realizable, so there does not exist a (10, 3, 10)-CDF nor a (10, 3, 2)-CDF; see Table II.2.29, p.61 of [4] again.

6.2 Magic Oval-partitions

Recall that in a (n, k, λ) -CDS we have $\lambda(n-1) = k(k-1)$.

As mentioned in Section 1 this research was partially motivated by Question (iii) on p. 10 of Schoen [8].

Fix $n \ge 2$, for which integers p and q can the rhombs contained in p copies of $\{2n\}$ be partitioned to tile q congruent Ovals?

Definition 6.17 A magic Oval-partition of $\{2n\}^p$ is a partition of the rhombs contained in $\{2n\}^p$ into q congruent (n, k)-Ovals, \mathcal{O} :

$$\{2n\}^p \to \mathcal{O}^q. \tag{6}$$

We now show that if such a magic Oval-partition of $\{2n\}^p$ exists, then \mathcal{O} is magic.

Theorem 6.18 The partition $\{2n\}^p \to \mathcal{O}^q$ exists if and only if there exists $a(n,k,\frac{pn}{q})$ -CDS, (\mathcal{O} will then be a magic $(n,k,\frac{pn}{q})$ -Oval).

Proof. For odd *n*. Necessity: suppose that such a partition (6) exists. Consider ρ_h , the rhomb of SRI_{2n} with principle index *h*, for any fixed $h = 1, 2, \ldots, \frac{n-1}{2}$. It appears pn times on the left in partition (6) and $q\lambda_h$ times on the right, *i.e.*, it appears $\lambda_h = \frac{pn}{q}$ times in \mathcal{O} . Thus λ_h is independent of *h*, and so \mathcal{O} is a magic $(n, k, \frac{pn}{q})$ -Oval, (for some suitable *k* satisfying $k(k-1) = \frac{pn}{q}(n-1)$).

Sufficiency: conversely given a magic $(n, k, \frac{pn}{q})$ -Oval \mathcal{O} it contains $\frac{pn}{q}$ copies of each rhomb ρ_h . So \mathcal{O}^q contains pn copies of each ρ_h , but this is exactly the number of copies of ρ_h in $\{2n\}^p$.

For even *n*. The proof is similar to the above, but we consider the non-square rhombs ρ_h for $h = 1, 2, \ldots, \frac{n}{2} - 1$, and the square rhomb $\rho_{\frac{n}{2}}$ as separate cases.

We can find a partition where p and q are the smallest by considering:

$$\frac{p}{q} = \frac{\lambda}{n} = \frac{\lambda^*}{n^*}$$

where $gcd(\lambda^*, n^*) = 1$. This gives the partition:

$$\{2n\}^{\lambda^*} \to \mathcal{O}^{n^*}.$$

Any other partition with the same \mathcal{O} is a 'multiple' of this one.

Note that if $\lambda^* = 1$ and $2 \le n^* \le {n \choose 2} - 1$ then $[(n, k), n^*]$ is a realizable isopart triple.

Example 6.19

(a) See Examples 5.12(a) and (b). Oval $\{2n\}'$ is a magic (n, n - 1, n - 2)-Oval obtained from the regular 2n-gon $\{2n\}$ by removing its right-hand strip of rhombs. For odd n we have $\frac{\lambda}{n} = \frac{n-2}{n} = \frac{\lambda^*}{n^*}$, so the smallest magic Ovalpartition is

$${2n}^{n-2} \to {2n}'^n$$

For even n = 2m the smallest magic Oval-partition is

$${2n}^{m-1} \to {2n}'^{m}$$

(b) See Example 5.12(c). Oval $\mathcal{O}([1\ 2\ 4])$ is a magic (7,3,1)-Oval with RIV (1,1,1). Now $\frac{\lambda}{n} = \frac{1}{7} = \frac{\lambda^*}{n^*}$, so we have the following magic Oval-partition

 $\{14\}^1 \to \mathcal{O}([1\ 2\ 4])^7.$

The decomposition of $1 \times \text{RIV}(\{14\})$ is $1 \times (7,7,7) \rightarrow 7 \times (1,1,1)$, and the relevant realizable isopart triple is [(7,3),7]; see Table 6.

(c) (n, k) = (15, 7). See Example 5.12(d). Oval $\mathcal{O}([1\ 1\ 2\ 1\ 3\ 2\ 5])$ is a magic (15, 7, 3)-Oval. Here $\frac{\lambda}{n} = \frac{3}{15} = \frac{1}{5}$ so $\lambda^* = 1$ and $n^* = 5$, this gives

$$\{30\}^1 \to \mathcal{O}([1\ 1\ 2\ 1\ 3\ 2\ 5])^5.$$

The RIV decomposition is $1 \times (15, 15, 15, 15, 15, 15, 15) \rightarrow 5 \times (3, 3, 3, 3, 3, 3, 3)$ and [(15, 7), 5] is the corresponding realizable isopart triple.

(d) (n, k) = (11, 5). The (11, 5)-Oval $\mathcal{O}([1\ 1\ 4\ 3\ 2])$ is a magic (11, 5, 2)-Oval. Here $\frac{\lambda}{n} = \frac{2}{11}$ so $\lambda^* = 2$ and $n^* = 11$. This gives us the following magic Oval-partition where $p \neq 1$:

$$\{22\}^2 \to \mathcal{O}([1\ 1\ 4\ 3\ 2])^{11}.$$

The RIV decomposition is $2 \times (11, 11, 11, 11, 11) \rightarrow 11 \times (2, 2, 2, 2, 2)$.

Example 6.20 (n, k) = (16, 6). From Example 5.21 there does not exist a magic (16, 6, 2)-Oval, *i.e.*, there does not exist a (16, 6)-Oval with RIV (2, 2, 2, 2, 2, 2, 2, 1). Now RIV $(\{16\}) = (16, 16, 16, 16, 16, 16, 16, 8)$, so $\{16\} \neq 16$

 \mathcal{O}^8 where \mathcal{O} is a fixed (16, 6)-Oval. In row [(16, 6), 8] of Table 6 we gave the homologous Oval-partition

$$\{16\} \rightarrow \mathcal{O}([1\ 1\ 2\ 1\ 5\ 6])^4 \mathcal{O}([1\ 5\ 2\ 2\ 3\ 3])^4,$$

with RIV decomposition

(16, 16, 16, 16, 16, 16, 16, 8) = 4(3, 2, 2, 2, 2, 2, 1, 1) + 4(1, 2, 2, 2, 2, 2, 3, 1).

We now show that for *every* homologous Oval-partition $\{16\} \rightarrow \mathcal{O}_1^{q_1} \mathcal{O}_2^{q_2}$ into exactly 2 incongruent (16, 6)-Ovals \mathcal{O}_1 and \mathcal{O}_2 , we have $q_1 = q_2 = 4$.

Suppose $q_1 = 1$ and $q_2 = 7$. Let $\text{RIV}(\mathcal{O}_1) = (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7, \lambda_8)$ and $\text{RIV}(\mathcal{O}_2) = (\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6, \mu_7, \mu_8)$. Then (16, 16, 16, 16, 16, 16, 8)

 $= (\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5, \lambda_6, \lambda_7, \lambda_8) + 7(\mu_1, \mu_2, \mu_3, \mu_4, \mu_5, \mu_6, \mu_7, \mu_8),$

and $\lambda_h + 7\mu_h = 16$ for h = 1, 2, ..., 7. Hence for a fixed h = 1, 2, ..., 7 we have either $\lambda_h = \mu_h = 2$, or $\lambda_h = 9$ and $\mu_h = 1$, or $\lambda_h = 16$ and $\mu_h = 0$. In particular $\lambda_h \ge 2$ for every h = 1, 2, ..., 7. Now \mathcal{O}_1 is a (16, 6)-Oval so $\sum_{h=1}^{8} \lambda_h = \binom{6}{2} = 15$. Thus if $\lambda_h = 2$ for every h = 1, 2, ..., 7 then $\lambda_8 = 1$ and \mathcal{O}_1 is a magic (16, 6, 2)-Oval, a contradiction. Hence for some h with h = 1, 2, ..., 7 we must have $\lambda_h = 9$ or $\lambda_h = 16$, so $\sum_{h=1}^{7} \lambda_h \ge 6 \times 2 + 9 = 21$. But $\sum_{h=1}^{7} \lambda_h \le 15$, a contradiction. Hence there is no homologous Ovalpartition $\{16\} \rightarrow \mathcal{O}_1^1 \mathcal{O}_2^7$. Similarly, the other possible homologous Ovalpartitions $\{16\} \rightarrow \mathcal{O}_1^2 \mathcal{O}_2^6$ or $\{16\} \rightarrow \mathcal{O}_1^3 \mathcal{O}_2^5$ do not exist. Hence the only homologous Oval-partition $\{16\} \rightarrow \mathcal{O}_1^2 \mathcal{O}_2^6$ or $\{16\} \rightarrow \mathcal{O}_1^{q_1} \mathcal{O}_2^{q_2}$ has $q_1 = q_2 = 4$; an explicit example is given above.

6.3 Triangular-partitions of $\binom{n}{2}$

Recall the triangular numbers: $\{\binom{n}{2}, n \ge 2\} = \{1, 3, 6, 10, 15, 21, 28, \ldots\}.$

Definitions 6.21 Triangular-partition (Δ -partition) of $\binom{n}{2}$, realizable

- (1) A triangular-partition (Δ -partition) of $\binom{n}{2}$ is an integer partition of $\binom{n}{2}$ with each part a triangular number.
- (2) A Δ -partition of $\binom{n}{2}$ with q parts in which the *i*-th part is $\binom{k_i}{2}$ is realizable if there exists an Oval-partition of $\{2n\}$ into q Ovals \mathcal{O}_i in which \mathcal{O}_i is a (n, k_i) -Oval, for each $i = 1, 2, \ldots, q$.

Remark 6.22 The Δ -partition of $\binom{n}{2}$ corresponding to isopart triple [(n,k),q] is $\binom{k}{2}^{q}$.

Table 7 lists all Δ -partitions of $\binom{n}{2}$ for $n = 2, 3, \ldots, 8$. For a fixed n the Δ -partitions are given with increasing q, and then in lexicographic order for constant q. The Δ -partition $\mathbf{3^5}$ of $\binom{6}{2} = 15$ is the only Δ -partition in Table 7 which is not realizable; see Example 6.10(b), and row $[(\mathbf{6}, \mathbf{3}), \mathbf{5}]$ of Table 6.

n	$\binom{n}{2}$	Δ -partitions of $\binom{n}{2}$
2	1	1
3	3	$3, 1^3$
4	6	$6, 3^2, 1^33, 1^6$
5	10	$[10], 136, 13^3, 1^46, 1^43^2, 1^73, 1^{10}$
6	15	$[15], 36^2, 1^23[10], 3^36, 1^36^2, \mathbf{3^5}, 1^5[10], 1^33^26, 1^33^4, 1^636,$
		$1^6 3^3, 1^9 6, 1^9 3^2, 1^{12} 3, 1^{15}$
7	21	$[21], 6[15], 1[10]^2, 3^2[15], 36^3, 1^33[15], 1^236[10], 3^36^2, 1^36^3,$
		$1^{2}3^{3}[10], 3^{5}6, 1^{6}[15], 1^{5}6[10], 1^{3}3^{2}6^{2}, 3^{7}, 1^{5}3^{2}[10], 1^{3}3^{4}6,$
		$1^{6}36^{2}, 1^{3}3^{6}, 1^{8}3[10], 1^{6}3^{3}6, 1^{9}6^{2}, 1^{6}3^{5}, 1^{11}[10], 1^{9}3^{2}6, 1^{9}3^{4},$
		$1^{12}36, 1^{12}3^3, 1^{15}6, 1^{15}3^2, 1^{18}3, 1^{21}$
8	28	$[28], 16[21], 3[10][15], 13^{2}[21], 16^{2}[15], 6^{3}[10], 1^{3}[10][15],$
		$1^{2}6[10]^{2}, 13^{2}6[15], 3^{2}6^{2}[10], 1^{4}3[21], 1^{2}3^{2}[10]^{2}, 13^{4}[15],$
		$136^4, 3^46[10], 1^436[15], 1^336^2[10], 13^36^3, 3^6[10], 1^7[21],$
		$1^53[10]^2$, $1^43^3[15]$, 1^46^4 , $1^33^36[10]$, 13^56^2 , $1^76[15]$, $1^66^2[10]$,
		$1^4 3^2 6^3, 1^3 3^5 [10], 13^7 6, 1^8 [10]^2, 1^7 3^2 [15], 1^6 3^2 6 [10], 1^4 3^4 6^2,$
		$13^9, 1^736^3, 1^63^4[10], 1^43^66, 1^{10}3[15], 1^936[10], 1^73^36^2, 1^43^8,$
		$1^{10}6^3, 1^93^3[10], 1^73^56, 1^{13}[15], 1^{12}6[10], 1^{10}3^26^2, 1^73^7,$
		$1^{12}3^{2}[10], 1^{10}3^{4}6, 1^{13}36^{2}, 1^{10}3^{6}, 1^{15}3[10], 1^{13}3^{3}6, 1^{16}6^{2}, 1^{13}3^{5},$
		$1^{18}[10], 1^{16}3^{2}6, 1^{16}3^{4}, 1^{19}36, 1^{19}3^{3}, 1^{22}6, 1^{22}3^{2}, 1^{25}3, 1^{28}$

Table 7: All Δ -partitions of $\binom{n}{2}$ for $2 \leq n \leq 8$. All are realizable except $\mathbf{3^5}$, for n = 6.

Example 6.23 $2 \le n \le 6$. See Table 5 for realizations of all Δ -partitions of $\binom{n}{2}$ for $2 \le n \le 5$. See Table 8 for all Δ -partitions of $\binom{6}{2} = 15$ and, except for $\mathbf{3^5}$, an Oval-partition of $\{12\}$ which realizes it. The Δ -partition $\mathbf{3^5}$ is not realizable. The Oval numbering \mathcal{O}_i refers to Table 2.

Δ -p of $\binom{6}{2}$	O-p of $\{12\}$	Δ -p of $\binom{6}{2}$	O-p of $\{12\}$	Δ -p of $\binom{6}{2}$	O-p of $\{12\}$
[15]	\mathcal{O}_{11}	3^{5}	Not realizable	$1^{6}3^{3}$	$\mathcal{O}_2^3\mathcal{O}_3^3\mathcal{O}_4^3$
36^{2}	$\mathcal{O}_4\mathcal{O}_8\mathcal{O}_9$	$1^{5}[10]$	$\mathcal{O}_1^2 \mathcal{O}_2^2 \mathcal{O}_3 \mathcal{O}_{10}$	$1^{9}6$	$\mathcal{O}_1^{ar{3}}\mathcal{O}_2^{ar{4}}\mathcal{O}_3^{ar{2}}\mathcal{O}_7$
$1^2 3[10]$	$\mathcal{O}_1\mathcal{O}_2\mathcal{O}_5\mathcal{O}_{10}$	$1^3 3^2 6$	$\mathcal{O}_2\mathcal{O}_3^2\mathcal{O}_4^2\mathcal{O}_8$	$1^{9}3^{2}$	${\cal O}_1^2 {\cal O}_2^4 {\cal O}_3^3 {\cal O}_4^2$
$3^{3}6$	$\mathcal{O}_4\mathcal{O}_5^2\mathcal{O}_8$	$1^{3}3^{4}$	$\mathcal{O}_3^3\mathcal{O}_4^3\mathcal{O}_6^3$	$1^{12}3$	$\mathcal{O}_1^{ar{4}}\mathcal{O}_2^{ar{5}}\mathcal{O}_3^{ar{3}}\mathcal{O}_4^{ar{4}}$
$1^{3}6^{2}$	$\mathcal{O}_2^2\mathcal{O}_3\mathcal{O}_7^2$	$1^{6}36$	$\mathcal{O}_1^{\tilde{3}}\mathcal{O}_2^{\tilde{3}}\mathcal{O}_3^2\mathcal{O}_4\mathcal{O}_7$	1^{15}	$\mathcal{O}_1^{ar 6}\mathcal{O}_2^{ar 6}\mathcal{O}_3^{ar 3}$

Table 8: All Δ -partitions (Δ -p) of $\binom{6}{2} = 15$ and, except for $\mathbf{3^5}$, an Ovalpartition (O-p) of {12} which realizes it.

We have extended our results on Δ -partitions of $\binom{n}{2}$ up to n = 10.

Example 6.24 For n = 2, 3, ..., 10 all Δ -partitions of $\binom{n}{2}$ are realizable except **3**⁵ for n = 6 (see Examples 6.10(b) and 6.16(c)), and **3**¹⁵, **3**⁸[**21**], **3**⁵[**10**]³, **3**³[**36**], and **3**[**21**]² for n = 10. The unrealizable Δ -partitions for n = 10 were shown to be unrealizable along the lines of Example 6.10(b) using MAPLE; see also Example 6.16(d).

7 *u*-equivalent Ovals

In this Section we explain why 2 incongruent (n, k)-Ovals can have RIV's that are permutations of each other. For example, see Table 2 n = 7, there are 4 incongruent (7, 3)-Ovals: $\{\mathcal{O}_4, \mathcal{O}_5, \mathcal{O}_6, \mathcal{O}_7\}$, but 3 of them: $\{\mathcal{O}_4, \mathcal{O}_6, \mathcal{O}_7\}$ have RIV's that are permutations of (2, 1, 0).

Recall the operations α and β from Definitions 2.8, and the function r from Equation (2). Recall also that $S = \{s_1, s_2, \ldots, s_k\}$ where $0 \leq s_1 < s_2 < \cdots < s_k$ is a k-subset of \mathbb{Z}_n with elements in increasing order. For $u \in U(n)$, when we form $uS = \{us_1, us_2, \ldots, us_k\}$ we will always rearrange the elements of uS in increasing order also, so that we may apply α to uS.

Further, we let $\left\lfloor \lfloor \frac{n}{2} \rfloor \right\rfloor = \{1, 2, \dots, \lfloor \frac{n}{2} \rfloor \}.$

Lemma 7.1 Let principal index h occur λ_h times in $OIT(\alpha(S)) = r(\delta(S))$. Then for any $u \in U(n)$ principal index uh occurs λ_h times in $OIT(\alpha(uS)) = r(\delta(uS))$.

Proof. Let principal index uh occur λ_{uh} times in $OIT(\alpha(uS)) = r(\delta(uS))$. We must show that $\lambda_h = \lambda_{uh}$.

First we show $\lambda_h \leq \lambda_{uh}$: principal index h occurs λ_h times in $OIT(\alpha(S)) = r(\delta(S))$, so there are λ_h pairs $\{s_j, s_i\}$ where $1 \leq i < j \leq k$ for which $s_j - s_i \in \{h, -h\}$. Consider $uS = \{us_1, us_2, \ldots, us_k\} = \{v_1, v_2, \ldots, v_k\}$ where $0 \leq v_1 < v_2 < \cdots < v_k$. Suppose pair $\{s_j, s_i\}$ satisfies $s_j - s_i \in \{h, -h\}$ with $s_j - s_i = h$. Then $us_j - us_i = uh$, *i.e.*, $v_\ell - v_{\ell'} = uh$ where $v_\ell = us_j$ and $v_{\ell'} = us_i$. If $\ell > \ell'$ then pair $\{v_\ell, v_{\ell'}\}$ satisfies $v_\ell - v_{\ell'} = uh$ and so $v_\ell - v_{\ell'} \in \{uh, -uh\}$ and $1 \leq \ell' < \ell \leq k$, and if $\ell < \ell'$ then pair $\{v_{\ell'}, v_\ell\}$ satisfies $v_{\ell'} - v_\ell = -uh$ and so again $v_{\ell'} - v_\ell \in \{uh, -uh\}$ and $1 \leq \ell < \ell' \leq k$. Thus, in either case, a pair $\{s_j, s_i\}$ for which $s_j - s_i = h$ where $1 \leq i < j \leq k$ gives rise to a pair $\{v_a, v_b\}$ for which $v_a - v_b \in \{uh, -uh\}$ and $1 \leq a < b \leq k$. Similarly if $s_j - s_i = -h$. Thus $\lambda_h \leq \lambda_{uh}$.

To show that $\lambda_h \geq \lambda_{uh}$, *i.e.*, $\lambda_{uh} \leq \lambda_h$ we start with $V = uS = \{us_1, us_2, \ldots, us_k\} = \{v_1, v_2, \ldots, v_k\}$ and argue as above with u replaced by u^{-1} .

The above two paragraphs give $\lambda_h = \lambda_{uh}$ as required.

Definitions 7.2 $u\mathcal{O}$, permutation P_u

Let \mathcal{O} be an (n, k)-Oval with TAIS T, and let $u \in U(n)$.

- (1) $u\mathcal{O}$ is the (n, k)-Oval with TAIS $\alpha(u\beta(T))$.
- (2) Permutation P_u is the permutation of $\left\lfloor \lfloor \frac{n}{2} \rfloor\right\rfloor$ given by $P_u(h) = r(uh)$, for every $h \in \left\lfloor \lfloor \frac{n}{2} \rfloor\right\rfloor$ and $u \in U(n)$.

Theorem 7.3 Let \mathcal{O} be an (n, k)-Oval and let $u \in U(n)$. Then $\operatorname{RIV}(u\mathcal{O}) = P_u(\operatorname{RIV}(\mathcal{O}))$.

Proof. For each $h \in \lfloor \lfloor \frac{n}{2} \rfloor$ let the *h*-th entry of RIV(\mathcal{O}) be λ_h then, from Lemma 7.1, the *uh*-th entry of RIV($u\mathcal{O}$) is also λ_h . Hence RIV($u\mathcal{O}$) is a permutation of RIV(\mathcal{O}) where, for each $h \in \lfloor \lfloor \frac{n}{2} \rfloor \rfloor$, the *h*-th entry (of RIV(\mathcal{O})) is moved to the *uh*-th entry (of RIV($u\mathcal{O}$)), *i.e.*, is moved by the application of permutation P_u . Thus the result.

Example 7.4

(a) For every $n \ge 2$ we have $-1 \in U(n)$ and P_{-1} is the identity permutation of $[\lfloor \frac{n}{2} \rfloor]$. Hence $\operatorname{RIV}(-\mathcal{O}) = \operatorname{RIV}(\mathcal{O})$. Confirming this, see Lemma 3.2(i), we have $\operatorname{TAIS}(-\mathcal{O}) \equiv_{\operatorname{cyc}} \operatorname{TAIS}(\mathcal{O})$ and hence $\operatorname{RIV}(-\mathcal{O}) = \operatorname{RIV}(\mathcal{O})$.

(b) (n,k) = (15,6). See Example 2.5. For the (15,6)-Oval \mathcal{X} with TAIS $T = [4\ 3\ 2\ 1\ 4\ 1]$ we have $X = \beta(T) = \{0,4,7,9,10,14\}$. Unit $2 \in U(15)$ gives permutation $P_2 = (1\ 2\ 4\ 7)(3\ 6)(5)$ of [7]. Now $2X = \{0,3,5,8,13,14\}$, and so $2\mathcal{X} = \mathcal{O}([3\ 2\ 3\ 5\ 1\ 1])$. We check: $\operatorname{RIV}(2\mathcal{X}) = P_2(\operatorname{RIV}(\mathcal{X})) = P_2(2,1,2,2,4,2,2) = (2,2,2,1,4,2,2)$, as required by Theorem 7.3.

(c) (n, k) = (16, 6). We show how we used Theorem 7.3 in Example 6.20. In Example 6.20 it was required to find 2 (16, 6)-Ovals \mathcal{O}_1 and \mathcal{O}_2 for which RIV (\mathcal{O}_1) + RIV $(\mathcal{O}_2) = (4, 4, 4, 4, 4, 4, 2)$. From Example 5.21 we had a (16, 6)-Oval $\mathcal{O} = \mathcal{O}([1\ 1\ 2\ 1\ 5\ 6])$ with RIV $(\mathcal{O}) = (3, 2, 2, 2, 2, 2, 1, 1)$. We observed that $(4, 4, 4, 4, 4, 4, 2) - \text{RIV}(\mathcal{O}) = (1, 2, 2, 2, 2, 2, 3, 1)$ is a permutation of RIV (\mathcal{O}) . Further, unit $7 \in U(16)$ gives permutation $P_7 = (1\ 7)(3\ 5)(2)(4)(6)(8)$ of [8], and $P_7(\text{RIV}(\mathcal{O})) = (1, 2, 2, 2, 2, 2, 3, 1)$. Then letting $\mathcal{O}_1 = \mathcal{O}$ and $\mathcal{O}_2 = 7\mathcal{O} = \mathcal{O}([1\ 5\ 2\ 2\ 3\ 3])$ gave the required Ovals.

Definition 7.5 Two (n, k)-Ovals \mathcal{O}_1 and \mathcal{O}_2 are *u*-equivalent, $\mathcal{O}_1 \equiv_u \mathcal{O}_2$, if there is a $u \in U(n)$ such that $\mathcal{O}_1 = u\mathcal{O}_2$.

It is clear that *u*-equivalence is an equivalence relation on $\mathcal{O}_{c}^{*}(n,k)$, the set of (n,k)-Ovals up to congruency.

Definitions 7.6 $\mathcal{O}^*_{c,\equiv_u}(n,k), \mathcal{O}_{c,\equiv_u}(n,k)$

- (1) $\mathcal{O}^*_{\mathbf{c},\equiv_u}(n,k)$ is the set of equivalence classes of \equiv_u in $\mathcal{O}^*_{\mathbf{c}}(n,k)$.
- (2) $\mathcal{O}_{c,\equiv_u}(n,k) = |\mathcal{O}^*_{c,\equiv_u}(n,k)|$ is the number of equivalence classes of \equiv_u in $\mathcal{O}^*_{c}(n,k)$.

Example 7.7 (n, k) = (7, 3). See Table 2, n = 7. Here $\mathcal{O}_4 = 2\mathcal{O}_6 = 4\mathcal{O}_7$, and $\mathcal{O}_5 = u\mathcal{O}_5$ for every $u \in U(7)$. Hence there are $\mathcal{O}_{c,\equiv_u}(7,3) = 2 \equiv_{u^-}$ equivalence classes in $\mathcal{O}_c^*(7,3)$, namely $[\mathcal{O}_4] = \{\mathcal{O}_4, \mathcal{O}_6, \mathcal{O}_7\}$ and $[\mathcal{O}_5] = \{\mathcal{O}_5\}$. We have $\mathcal{O}_{c,\equiv_u}^*(7,3) = \{[\mathcal{O}_4], [\mathcal{O}_5]\}$. We say that there are 2 (7,3)-Ovals up to *u*-equivalence, namely Ovals \mathcal{O}_4 and \mathcal{O}_5 ; see Table 9.

					n	k	$\mathcal{O}_{\mathrm{c},\equiv_u}(n,k)$	$\mathcal{O}^*_{\mathrm{c},\equiv_u}(n,k)$
				Γ	8	2	3	$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_4$
n	k	$\mathcal{O}_{c-1}(n,k)$	\mathcal{O}^*_{-} (n,k)		8	3	4	$\mathcal{O}_5, \mathcal{O}_6, \mathcal{O}_7, \mathcal{O}_8$
		- c,≡u (···, ··)	$\mathcal{C}_{c,\equiv_u}(\mathcal{C},\mathcal{C})$		8	4	6	$\mathcal{O}_{10},\mathcal{O}_{11},\mathcal{O}_{12},\mathcal{O}_{13},\mathcal{O}_{16},\mathcal{O}_{17}$
2	2	1	\mathcal{O}_1		8	5	4	$\mathcal{O}_{18},\mathcal{O}_{19},\mathcal{O}_{20},\mathcal{O}_{21}$
3	2	1	\mathcal{O}_1		8	6	3	$\mathcal{O}_{23},\mathcal{O}_{24},\mathcal{O}_{26}$
3	3	1	\mathcal{O}_2		8	7	1	\mathcal{O}_{27}
4	2	2	$\mathcal{O}_1, \mathcal{O}_2$		8	8	1	\mathcal{O}_{28}
4	3	1	\mathcal{O}_3		9	2	2	$\mathcal{O}_1, \mathcal{O}_3$
4	4	1	\mathcal{O}_4		9	3	3	$\mathcal{O}_5, \mathcal{O}_6, \mathcal{O}_{11}$
5	2	1	\mathcal{O}_1		9	4	4	$\mathcal{O}_{12},\mathcal{O}_{13},\mathcal{O}_{15},\mathcal{O}_{17}$
5	3	1	\mathcal{O}_3		9	5	4	$\mathcal{O}_{22},\mathcal{O}_{23},\mathcal{O}_{24},\mathcal{O}_{29}$
5	4	1	\mathcal{O}_5		9	6	3	$\mathcal{O}_{32},\mathcal{O}_{33},\mathcal{O}_{38}$
5	5	1	\mathcal{O}_6		9	7	2	$\mathcal{O}_{39},\mathcal{O}_{41}$
6	2	3	$\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3$		9	8	1	\mathcal{O}_{43}
6	3	3	$\mathcal{O}_4, \mathcal{O}_5, \mathcal{O}_6$		9	9	1	\mathcal{O}_{44}
6	4	3	$\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_9$		10	2	3	$\mathcal{O}_1,\mathcal{O}_2,\mathcal{O}_5$
6	5	1	\mathcal{O}_{10}		10	3	4	$\mathcal{O}_6, \mathcal{O}_7, \mathcal{O}_9, \mathcal{O}_{10}$
6	6	1	\mathcal{O}_{11}^{10}		10	4	9	$\mathcal{O}_{14}, \mathcal{O}_{15}, \mathcal{O}_{16}, \mathcal{O}_{17}, \mathcal{O}_{18}, \mathcal{O}_{19}, \mathcal{O}_{22}, \mathcal{O}_{26}, \mathcal{O}_{27}$
7	2	1	\mathcal{O}_1		10	5	9	$\mathcal{O}_{30},\mathcal{O}_{31},\mathcal{O}_{32},\mathcal{O}_{33},\mathcal{O}_{34},\mathcal{O}_{36},\mathcal{O}_{37},\mathcal{O}_{38},\mathcal{O}_{45}$
$\overline{7}$	3	2	$\mathcal{O}_4, \mathcal{O}_5$		10	6	9	$\mathcal{O}_{46}, \mathcal{O}_{47}, \mathcal{O}_{48}, \mathcal{O}_{49}, \mathcal{O}_{50}, \mathcal{O}_{51}, \mathcal{O}_{53}, \mathcal{O}_{57}, \mathcal{O}_{58}$
$\overline{7}$	4	2	$\mathcal{O}_8, \mathcal{O}_9$		10	7	4	$\mathcal{O}_{62},\mathcal{O}_{63},\mathcal{O}_{65},\mathcal{O}_{66}$
7	5	1	\mathcal{O}_{12}		10	8	3	$\mathcal{O}_{70},\mathcal{O}_{71},\mathcal{O}_{74}$
$\overline{7}$	$\tilde{6}$	1	\mathcal{O}_{15}		10	9	1	\mathcal{O}_{75}
7	7	1	\mathcal{O}_{16}^{13}		10	10	1	\mathcal{O}_{76}

Table 9: All (n, k)-Ovals up to *u*-equivalence for $2 \le n \le 10$. The equivalence class $[\mathcal{O}_i]$ is denoted by \mathcal{O}_i ; see Example 7.7.

Acknowledgements We thank the referees for comments that improved this paper.

References

- W.Ball, H.Coxeter. Mathematical Recreations and Essays, 13-th ed., Dover, 1999.
- [2] L.Baumert. Cyclic Difference Sets, Lecture Notes in Mathematics #182. Springer, 1971.
- [3] T.Beth, D.Jungnickel, H.Lenz. Design Theory, vol.1, 2-nd ed., Encyclopedia of Mathematics and its Applications #69, Cambridge Univ. Press, 1999.
- [4] C.Colbourn, J.Dinitz, (Eds.), Handbook of Combinatorial Designs, 2-nd ed., Chapman & Hall/CRC, 2007.
- [5] M.Hall., Jr. A Survey of Difference Sets, Proc. Amer. Math. Soc. 7 (1956) 975–986.
- [6] J.McSorley. Enumerating k-compositions of n with hereditary and full properties, (in preparation).
- [7] Online Encyclopedia of Integer Sequences, published electronically at http://oeis.org/.
- [8] A.Schoen. ROMBIX, Supplementary manual, 1994. Available electronically at http://schoengeometry.com/.
- [9] A.Schoen, A. McK Shorb. Partitioning s regular 2n-gons $\{2n\}$ into t congruent Oval polygons G(n, g), Abstracts of the American Mathematical Society. 15, (January 1994), 111.
- [10] J.van Lint, R. Wilson. A Course in Combinatorics, Cambridge Univ. Press, Cambridge, 1992.