A Combinatorial Interpretation of Lommel Polynomials and Their Derivatives

P. FEINSILVER, J. MCSORLEY

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901 USA

R. SCHOTT

CRIN, INRIA-Lorraine, Université Henri Poincaré, 54506 Vandoeuvre-lès-Nancy, France

Abstract. In this paper we present interpretations of Lommel polynomials and their derivatives. A combinatorial interpretation uses matchings in graphs. This gives an interpretation for the derivatives as well. Then Lommel polynomials are considered from the point of view of operator calculus. A step-3 nilpotent Lie algebra and finite-difference operators arise in the analysis.

I. Introduction

Interpretations of orthogonal polynomials in terms of combinatorial models has received a lot of attention over the last decade. S. Dulucq and L. Favreau [3] recently presented a combinatorial model for Bessel polynomials. A general combinatorial theory for orthogonal polynomials has been developed in the work of X.G. Viennot [12], de Médicis and Viennot [2], and in the theory of species, formalized by F. Bergeron [1], A. Joyal [6][7], G. Labelle [8] and P. Leroux [9]. An analytical study of the zeros of Lommel polynomials may be found in [5]. The basics of the operator calculus approach are in [4].

Lommel polynomials arise in the study of Bessel functions as the linearization coefficients expressing $J_{\nu+n}$ in terms of J_{ν} and $J_{\nu-1}$, cf. Watson [13]. They may be given explicitly in the form

$$R_n(\xi, \nu) = \sum_{k=0}^{[n/2]} {n-k \choose k} (-1)^k \frac{\Gamma(\nu+n-k)}{\Gamma(\nu+k)} (2/\xi)^{n-2k}$$

Changing variables to $\phi_n(x,\varepsilon) = R_n(-2/\varepsilon, -x/\varepsilon)$, with ε understood as a parameter, we have the recurrence

$$x\phi_n = \phi_{n+1} + \varepsilon n\phi_n + \phi_{n-1} \tag{1.1}$$

with initial conditions $\phi_{-1}=0,\ \phi_0=1.$ Thus, these are a family of orthogonal polynomials. They have the form

$$\phi_n(x,\varepsilon) = \sum_k {n-k \choose k} (-1)^k (x-k\varepsilon) \cdots (x-(n-k-1)\varepsilon)$$
 (1.2)

In this paper we present some interpretations of Lommel polynomials. We proceed from a general approach and then specialize to the case of Lommel polynomials. For example, note that with $\varepsilon = 0$ in equation (1.1), we have the recurrence for Chebyshev polynomials. In fact, with $\varepsilon = 0$, the polynomials ϕ_n become the Chebyshev polynomials of the second kind.

II. Basic construction: matchings

Let G be a simple graph on n vertices with vertex labels 1 to n and weight w_i on vertex $i, 1 \le i \le n$. A matching, M, of G is a set of disjoint edges, a set of edges pairwise having no vertex in common. If a vertex i is incident to an edge of M, we write $i \in M$, otherwise $i \notin M$. We define the weight of M, $W_G(M)$, to be

$$W_G(M) = \prod_{i \notin M} w_i$$

If G has an even number of vertices and M is a perfect matching of G, in other words, if all vertices of G lie in M, then $W_G(M)$ is defined to equal 1. Note that every graph has the empty matching, containing no edges.

For the rest of this work, we will take G to be P_n , the path on n vertices, running from left to right. We denote $W_G(M)$, then, by $W_n(M)$, the weight of the matching M of P_n .

Define

$$\mathcal{P}_n = \sum_{M} (-1)^{|M|} W_n(M)$$

with |M| the number of edges in M, summing over all matchings M of P_n .

2.1 Proposition. \mathcal{P}_n satisfies the recurrence

$$\mathcal{P}_{n+1} = w_{n+1}\mathcal{P}_n - \mathcal{P}_{n-1}$$

Proof: Let M be a matching of \mathcal{P}_{n+1} . Either M does not contain the edge (n, n+1) or it does. Every case where the edge (n, n+1) is not in M corresponds to some matching on n vertices with the additional factor of w_{n+1} since n+1 is in none of them. On the other hand, in all matchings including the edge (n, n+1), removing it leaves a matching on n-1 vertices with the removal of the edge contributing a minus sign.

We define $\mathcal{P}_{-1} = 0$, $\mathcal{P}_0 = 1$. From the Proposition, this gives $\mathcal{P}_1 = w_1$, which agrees with the scheme, since the only matching of P_1 , a single vertex, is the empty matching,

with weight w_1 . Similarly, we have from the Proposition that $\mathcal{P}_2 = w_1w_2 - 1$. The graph P_2 has two matchings — the empty matching with weight w_1w_2 and the matching which contains the single edge (1,2) of weight 1.

Now recall that a three-term recurrence of the form

$$x\phi_n = \phi_{n+1} + b_n\phi_n + c_n\phi_{n-1}$$

with $c_n \geq 0$ yields a sequence of orthogonal polynomials. In Proposition 2.1, we can introduce a variable x either additively or multiplicatively into the weights. I.e., consider

$$(x - u_{n+1})\mathcal{P}_n = \mathcal{P}_{n+1} + \mathcal{P}_{n-1}$$

which means that x as the eigenvalues of the corresponding tridiagonal matrices are the zeros of the polynomials \mathcal{P}_n . Or we can write $w_{n+1} = xu_{n+1}$ with the recurrence taking the form

$$xu_{n+1}\mathcal{P}_n = \mathcal{P}_{n+1} + \mathcal{P}_{n-1}$$

for example, with constant $u_{n+1} = 2$, we have the recurrence for the Chebyshev polynomials.

2.1 Lommel Polynomials and their derivatives

The recurrence (1.1) corresponds to the weights $w_i = x - (i-1)\varepsilon$. For fixed ε , we treat ϕ_n as a function of one variable, x, and denote it by R_n . Here are some explicit expressions:

$$R_1 = x$$
 $R_3 = x^3 - 3\varepsilon x^2 + 2\varepsilon^2 x - 2x + 2\varepsilon$ $R_2 = x^2 - \varepsilon x - 1$ $R_4 = x^4 - 6\varepsilon x^3 + 11\varepsilon^2 x^2 - 6\varepsilon^3 x - 3x^2 + 9\varepsilon x - 6\varepsilon^2 + 1$

Now, let G be a simple graph with n vertices labelled 1 to n having weight $x - (i - 1)\varepsilon$ on vertex i. Define a k-extended matching of G as a set $\{v_1, \ldots, v_k, M\}$ of k vertices of G together with a matching M such that $v_j \notin M$ for $1 \le j \le k$. I.e., no vertex v_j is incident to any edge in M.

Denoting the k-extended matching $\{v_1, \ldots, v_k, M\}$ by E_M , M is called the matching of E_M . For a vertex $v \in G$, we write $v \in E_M$ if either $v = v_j$ for some $j, 1 \le j \le k$, or $v \in M$. Let $|E_M| = |M|$ denote the number of edges in the matching of E_M .

The weight of E_M , $W_G(E_M)$ is given by:

$$W_G(E_M) = \prod_{i \notin E_M} (x - (i-1)\varepsilon)$$

As above, if every vertex of G lies in E_M , then $W_G(E_M) = 1$. We take $G = P_n$, the path, and denote $W_G(E_M)$ by $W_n(E_M)$.

2.1.1 Derivatives of Lommel polynomials

For a combinatorial interpretation of the kth derivative $R_n^{(k)}$, start from the contribution of the matching M, $W_n(M) = \prod_{i \notin M} (x - (i - 1)\varepsilon)$. Consider $W_n(M)$ as a function of x. Since the derivative of each factor in $W_n(M)$ is 1, for the kth derivative we have, the summation taken over all k-subsets of vertices $\{v_{i_1}, \ldots, v_{i_k}\}$ of G such that no vertex v_{i_j} is in M,

$$W_n^{(k)}(M) = \sum_{\{i_1, \dots, i_k\}} \frac{k! W_n(M)}{\prod_j (x - (i_j - 1)\varepsilon)}$$

$$= k! \sum_{\{i_1, \dots, i_k\}} W_n(\{i_1, \dots, i_k, M\})$$

$$v_{i_j} \notin M$$

$$= k! \sum_{E_M} W_n(E_M)$$

this last summation taken over all k-extended matchings E_M with matching M. Hence

2.1.1.1 Proposition. The kth derivative of the Lommel polynomial R_n is given by

$$R_n^{(k)} = k! \sum_E (-1)^{|E|} W_n(E)$$

where the summation is over all k-extended matchings of P_n , with |E| denoting the number of edges in the matching of E.

Note that with k = 0 we recover the original case of R_n , considering a matching as a 0-extended matching.

Example. Consider the second derivative of R_4 . We have

$$R_4 = x^4 - 6\varepsilon x^3 + 11\varepsilon^2 x^2 - 6\varepsilon^3 x - 3x^2 + 9\varepsilon x - 6\varepsilon^2 + 1$$

$$\frac{1}{2}R_4'' = 6x^2 - 18\varepsilon x + 11\varepsilon^2 - 3$$

The 2-extended matchings with corresponding weights are given in the following table:

$$\begin{array}{lll} 2 - \text{ext. match.} & \text{weight} \\ \{1,2,\emptyset\} & (x-2\varepsilon)(x-3\varepsilon) \\ \{1,3,\emptyset\} & (x-\varepsilon)(x-3\varepsilon) \\ \{1,4,\emptyset\} & (x-\varepsilon)(x-2\varepsilon) \\ \{2,3,\emptyset\} & x(x-2\varepsilon) \\ \{2,4,\emptyset\} & x(x-2\varepsilon) \\ \{3,4,\emptyset\} & x(x-\varepsilon) \\ \{3,4,(1,2)\} & 1 \\ \{1,4,(2,3)\} & 1 \\ \{1,2,(3,4)\} & 1 \end{array}$$

III. Lommel polynomials and finite-difference calculus

Here we show how to write Lommel polynomials in terms of a recurrence with operator coefficients. Recall that the solution to the recurrence

$$f_{n+1} = af_n + bf_{n-1}$$

with initial conditions $f_{-1} = 0$, $f_0 = 1$, is given by

$$f_n = \sum_{k} \binom{n-k}{k} a^{n-2k} b^k$$

(In other terms, we can express the solution to

$$f_{n+1} = af_n - bf_{n-1}$$

with the same initial conditions, in terms of Chebyshev polynomials of the second kind: $f_n = b^{n/2}U_n(a/(2\sqrt{b}))$.) This formula holds for a and b operators, e.g., matrices, with $f_0 = I$, the identity, as long as a and b commute. If they do not commute, we apply them on different sides:

3.1 Proposition. For operators a and b, the solution to the recurrence

$$f_{n+1} = f_n a + b f_{n-1}$$

with initial conditions $f_{-1} = 0$, $f_0 = I$, is given by

$$f_n = \sum_{k} \binom{n-k}{k} b^k a^{n-2k}$$

And similarly with a acting on the left and b on the right.

For Lommel polynomials, introduce the shift operator T_{ε} acting on functions f by

$$T_{\varepsilon}f(x) = f(x - \varepsilon)$$

We denote the operator of multiplication by x by X. Using the relation

$$(XT_{\varepsilon})^{n} 1 = x(x - \varepsilon)(x - 2\varepsilon) \cdots (x - (n - 1)\varepsilon)$$

where 1 denotes the constant function 1, we have from equation (1.2),

$$R_n(x) = \sum_{k} {n-k \choose k} (-T_{\varepsilon})^k (XT_{\varepsilon})^{n-2k} 1$$
(3.1)

Comparing with Proposition 3.1, we see

3.2 Proposition. Define operators F_n by the recurrence

$$F_{n+1} = F_n X T_{\varepsilon} - T_{\varepsilon} F_{n-1}$$

with $F_{-1} = 0$, $F_0 = I$. Then the Lommel polynomials are given by

$$R_n(x) = F_n 1$$

For example,

$$F_1 = XT_{\varepsilon}, \quad F_2 = (XT_{\varepsilon})^2 - T_{\varepsilon}, \quad F_3 = (XT_{\varepsilon})^3 - 2T_{\varepsilon}XT_{\varepsilon}$$

etc.

Another approach to expressions of the form

$$\sum_{k} \binom{n-k}{k} a^{n-2k} b^k$$

involves the nilpotent Lie algebra generated by the operators $D^2 = (d/dx)^2$ and X. The commutator $[D^2, X] = D^2X - XD^2 = 2D$, while [D, X] = 1. Thus, $\{D^2, D, X, 1\}$ form the basis for a nilpotent Lie algebra of step 3, i.e., all commutators of length greater than 3 vanish. Now,

3.3 Proposition. Let $f_n(x) = \sum_k \binom{n-k}{k} b^k x^{n-2k}$. Then

$$f_n(x) = {}_{0}F_1\left(\begin{array}{c} - \\ -n \end{array} \middle| -bD^2\right) x^n$$

Proof: Expanding the ${}_{0}F_{1}$ function gives

$$\sum_{k} \frac{(-bD^2)^k}{(-n)_k \, k!} \, x^n = \sum_{k} \frac{(n-k)!}{n! \, k!} \, b^k D^{2k} \, x^n$$

from which the result is clear.

To see the connection with Lommel polynomials, first we review the basic operator calculus needed. Consider the formal series in one variable

$$V(z) = \sum_{n=0}^{\infty} a_n z^n$$

this is the symbol of the generalized differential operator V(D), which acts on polynomials in the variable x. This satisfies

$$[V(D), X] = V'(D) \tag{3.2}$$

V'(z) denoting the derivative of the series V(z). We assume that $a_0 = 0$, $a_1 = 1$. Thus, V' has a formal multiplicative inverse 1/V'(z), which we denote by W(z). From equation (3.2), we see that, defining $\xi = XW(D)$, we have

$$[V(D), \xi] = 1$$

From which the usual rules of polynomial calculus follow, such as

$$V\xi^n 1 = n\xi^{n-1} 1$$

The shift operator T_{ε} has symbol $e^{-\varepsilon z}$. Thus, for the operator $\xi = XT_{\varepsilon}$, we have the corresponding operator V(D) with symbol

$$V(z) = \frac{1}{\varepsilon} \left(e^{\varepsilon z} - 1 \right) \tag{3.3}$$

which is the (forward) finite-difference operator with step size ε . Next, define the finite-difference Laplacian with symbol

$$\Delta_{\varepsilon}(z) = \frac{1}{\varepsilon^2} \left(e^{\varepsilon z} + e^{-\varepsilon z} - 2 \right)$$

Now we have

3.4 Proposition. The Lommel polynomials $R_n(x)$ satisfy

$$R_n(x) = {}_{0}F_1\left(\begin{array}{c} - \\ -n \end{array} \middle| \Delta_{\varepsilon}\right) \xi^n 1$$

with $\xi = XT_{\varepsilon}$.

Proof: Write equation (3.1) in the form

$$R_n(x) = \sum_{k} {n-k \choose k} (-T_{\varepsilon})^k \xi^{n-2k} 1$$

Then, as in Proposition 3.3,

$$R_n(x) = {}_{0}F_1\left(\begin{array}{c} - \\ -n \end{array} \middle| T_{\varepsilon}V(D)^2\right) \xi^n 1$$

with V(D) the difference operator in equation (3.3). Now calculating with symbols, we see that

$$T_{\varepsilon}(z)V(z)^{2} = \frac{1}{\varepsilon} \left(e^{\varepsilon z} - 1\right) \left(1 - e^{-\varepsilon z}\right) = \Delta_{\varepsilon}(z)$$

and hence the result.

IV. Concluding remarks

It would be interesting to consider the combinatorial approach for other families of orthogonal polynomials as indicated in §II. In [4], the function $_0F_1$ arises naturally in the sl(2) calculus yielding eigenfunctions of the radial Laplacian in Euclidean space. Here, we see that the Lommel polynomials correspond to the finite-difference Laplacian. It appears that the Lommel polynomials play a natural role in harmonic analysis on a lattice and merit further study in this context.

References

- 1. F. Bergeron, A Combinatorial Outlook on Symmetric Functions, Journal of Combinatorial Theory, Series A, vol 50, 2, 1989, 226–234.
- 2. A. de Médicis et X.G. Viennot, Moments des q-Polynômes de Laguerre et la Bijection de Foata-Zeiberger, Advances in Applied Mathematics 15, 262-304 1994.
- 3. S. Dulucq and L. Favreau, Un modèle combinatoire pour les polynômes de Bessel, Séminaire Lotharingien de Combinatoire (1990), Publication Université de Strasbourg, 1991.
- 4. P. Feinsilver and R. Schott, Agebraic Structures and Operator Calculus, Volume 1: Representations and Probability Theory, Kluwer 1993.
- 5. P. Feinsilver and R. Schott, On Bessel functions and rate of convergence of zeros of Lommel polynomials, Mathematics of Computation 59, 199, 153-156, 1992.
- 6. A. Joyal, Une théorie combinatoire des séries formelles, Adv. in Math. 42, 1-82, 1981.
- 7. A. Joyal, Foncteurs analytiques et espèces de structures, Proceedings, Colloque de Comb. Enumer. UQAM, 1985, Lecture Notes in Math. 1234, 126-159, Springer Verlag, 1986.
- 8. G. Labelle, Une nouvelle démonstration combinatoire des formules d'inversion de Lagrange, Adv. in Math. 42, 217-247, 1981.
- 9. P. Leroux and V. Strehl, *Jacobi Polynomials: combinatorics of the basic identities*, Discrete Math., 57, 167-187, 1985.
- 10. G.C. Rota (ed.), Finite operator calculus, Academic Press, 1975.
- 11. G. Szëgo, Orthogonal polynomials, AMS Colloq. Publ., 1975.
- 12. X.G. Viennot, Une théorie combinatoire des polynômes orthogonaux généraux, Notes de cours, Université du Quebec à Montréal, 1983.
- 13. G.N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, 1980.