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INTRODUCTION

Let Ω be a finite set of size n. A cyclic permutation on Ω is a permutation whose cycle

decomposition is one cycle of length n. This paper classifies all finite doubly-transitive per-

mutation groups which contain a cyclic permutation. The classification appears in Table 1.

We use (G, Ω) for a finite doubly-transitive permutation group G acting on a finite set

Ω. For other notation and definitions see the self-contained article Cameron [1].

CLASSIFICATION

(G, Ω) has a unique minimal normal subgroup N = soc(G), which is either elementary

abelian or simple.

In the first case suppose (G, Ω) has an elementary abelian regular normal subgroup

N of size pd, where d ≥ 1. Let g ∈ G be a cyclic permutation, it has order pd. Now

G ≤ AGL(d, p) ≤ GL(d + 1, p). By considering the JCF of g we have pd−1 + 1 ≤ d + 1, so

d = 1 or p = d = 2. So G contains no cyclic permutations unless d = 1 or p = d = 2. See

Table 1, d = 1 corresponds to row a and p = d = 2 to row b.

In the second case, when N is simple, N is known because of the classification of the

finite simple groups. Cameron [1] tabulates all simple groups, N , which occur as socles of

finite doubly-transitive groups.

We have N ≤ G ≤ Aut(N ). For each row of the table in [1] we will check such G for

cyclic permutations:

N = An: Clearly An contains a cyclic permutation if and only if n is odd. When n ≥ 5 and

n is odd, then Aut(An) ∼= Sn. Hence G ∼= An or Sn, see rows c and d of Table 1.



N = PSL(d,q): Here Zsigmondy’s theorem may be used. If G = PSL(2, 8) there is nothing

to prove. Consider GL(1, qd)/ΓL(1, qd) ≤ ΓL(d, q). Except for the case that d = 2 and q is a

Mersenne prime, let p be a primitive prime divisor of qd−1 and let P be a Sylow p-subgroup

of GL(1, qd). We may check that ΓL(1, qd) = NΓL(d,q)(P ) and GL(1, qd) = CΓL(1,qd)(P ).

Now p does not divide q− 1, so any cyclic permutation must be the image in PΓL(d, q) of a

cyclic subgroup of ΓL(d, q) containing P or a conjugate, and so must be a conjugate of the

image of GL(1, qd). Hence such a cyclic permutation must lie in PGL(d, q). Finally, if d = 2

and q is a Mersenne prime, a similar argument can be made with a subgroup P of order 4.

Hence, for every d ≥ 2 and prime power q, a group G for which PSL(d, q) ≤ G ≤ PΓL(d, q)

contains a cyclic permutation if and only if PGL(d, q) ≤ G. See row e of Table 1. Thus, we

have decided which subgroups of PΓL(d, q) have cyclic permutations, see p.179 of Feit [3].

N = PSU(3,q): Here we use Liebeck, Praeger, and Saxl [4] which lists all maximal fac-

torizations of all finite simple groups and their automorphism groups. Let g ∈ G be a

cyclic permutation. In this case N is already doubly-transitive and so we need only consider

G = N 〈g〉. If M is any maximal subgroup of G containing g, then G = MGα is a maximal

factorization and appears in these lists.

From the lists on p.13 of [4] only G = PSU (3, q) for q = 3, 5, and 8 has a maximal

factorization. In the first two cases the group A does not contain an element of order q3 +1,

so we may exclude them. In the final case, since G = N 〈g〉 , so G/N is cyclic, and then this

case is out by their remark. Hence, PSU (3, q) contains no cyclic permutations.

N = 2B2(q) and 2G2(q): The lists also take care of these two groups.

N = PSp(2d,2): Here both permutation representations have even degree, hence a cyclic

permutation is an odd permutation, but N is complete.

For the remaining cases we refer to the “Atlas of Finite Groups” by Conway, Curtis, Norton,

Parker, and Wilson [2]. The only groups which contain cyclic permutations are those with

prime degree, see the last three rows of Table 1. (See also p.179 of Feit [3].)

This completes the examination of the Table in [1]. For every finite doubly-transitive

group G we have determined whether or not it contains a cyclic permutation, those which

do are listed in Table 1.



TABLE 1

G n N

a) AGL(1, p), p any prime p Cp

b) S4 4 C2 × C2

c) Sn, n ≥ 5 n An

d) An, n odd and ≥ 5 n An

e) Any G with PGL(d, q) ≤ G ≤ PΓL(d, q) (qd − 1)/(q − 1) PSL(d, q)

(d, q) 6= (2, 2), (2, 3), or (2, 4)

f) PSL(2, 11) 11 PSL(2, 11)

g) M11 11 M11

h) M23 23 M23

REMARKS

(i) The groups S2 and S3 occur in row a as AGL(1, 2) and AGL(1, 3) respectively.

(ii) Groups in rows a and b have an elementary abelian socle, groups in rows c − h a

non-abelian simple socle.

(iii) No two groups from Table 1 are isomorphic except S5 from row c and PGL(2, 5)

from row e, these two groups have inequivalent representations being of degrees 5 and 6

respectively.
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