Multivariate Matching Polynomials of Cyclically Labelled Graphs

John P. McSorley and Philip Feinsilver, Department of Mathematics, Mailcode 4408, Southern Illinois University, Carbondale. IL 62901-4408.
mcsorley60@hotmail.com pfeinsil@math.siu.edu

Keywords
Matching, Matching Polynomial, Labelled, Graph, Recurrence, MacMahon's Master Theorem

Abstract

We consider the matching polynomials of graphs whose edges have been cyclically labelled with the ordered set of t labels $\left\{x_{1}, \ldots, x_{t}\right\}$.

We first work with the cyclically labelled path, with first edge label x_{i}, followed by N full cycles of labels $\left\{x_{1}, \ldots, x_{t}\right\}$, and last edge label x_{j}. Let $\Phi_{i, N t+j}$ denote the matching polynomial of this path. It satisfies the (τ, Δ)-recurrence: $\Phi_{i, N t+j}=\tau \Phi_{i,(N-1) t+j}-\Delta \Phi_{i,(N-2) t+j}$, where τ is the sum of all non-consecutive cyclic monomials in the variables $\left\{x_{1}, \ldots, x_{t}\right\}$ and $\Delta=(-1)^{t} x_{1} \cdots x_{t}$. A combinatorial/algebraic proof and a matrix proof of this fact are given. Let G_{N} denote the first fundamental solution to the (τ, Δ)-recurrence. We express G_{N} (i) as a cyclic binomial using the Symmetric Representation of a matrix, (ii) in terms of Chebyshev polynomials of the second kind in the variables τ and Δ, and (iii) as a quotient of two matching polynomials. We extend our results from paths to cycles and rooted trees.

Introduction

The matching polynomial of a graph is defined in Farrell [1]. Often in pure mathematics and combinatorics it is interesting to consider cyclic structures, eg., cyclic groups, cyclic designs, and circulant graphs. Here we consider the (multivariate) matching polynomial of a graph whose edges have been cyclically labelled.

We concentrate mainly on paths, cycles and trees. To cyclically label a path with the ordered set of t labels $\left\{x_{1}, \ldots, x_{t}\right\}$, label the first edge with any x_{i}, the second with x_{i+1}, and so on until label x_{t} has been used, then start with x_{1}, then x_{2}, \ldots, x_{t}, then x_{1} again \ldots, repeating cyclically until all edges have been labelled, with the last edge receiving label x_{j}. Suppose that N full cycles of labels $\left\{x_{1}, \ldots, x_{t}\right\}$ have been used. Call the matching polynomial of this labelled path $\Phi_{i, N t+j}$. We show, for a fixed i and j, that $\Phi_{i, N t+j}$ satisfies the following recurrence, the (τ, Δ)-recurrence:

$$
\Phi_{i, N t+j}=\tau \Phi_{i,(N-1) t+j}-\Delta \Phi_{i,(N-2) t+j}
$$

where τ is the sum of all non-consecutive cyclic monomials in the variables $\left\{x_{1}, \ldots, x_{t}\right\}$ (see Section 1), and $\Delta=(-1)^{t} x_{1} \cdots x_{t}$. We give two different proofs of this fact. The first one is a combinatorial/algebraic proof in Section 2 that uses the following Theorem concerning decomposing the matching polynomial $\mathcal{M}(G, \mathbf{x})$ of a graph.
Theorem Let G be a labelled graph, H a subgraph of G, and M_{H} a matching of H, then

$$
\mathcal{M}(G, \mathbf{x})=\sum_{M_{H}} M_{H}(\mathbf{x}) \mathcal{M}\left(G-H-\bar{M}_{H}, \mathbf{x}\right),
$$

where the summation is over every matching M_{H} of H. The second proof (Section 3) uses a matrix formulation of the recurrences that we develop.

Let G_{N} denote the first fundamental solution to the (τ, Δ)-recurrence; three different expressions for G_{N} are given in Section 4. The first expression is a sum of cyclic binomials and uses the Symmetric Representation of matrices from Section 3; the second involves Chebyshev polynomials of the second kind in the variables τ and Δ; and the third is a quotient of two matching polynomials, see Theorem 4.5.

In Section 5 we extend our results from paths to cycles and rooted trees; we find explicit forms for the matching polynomial of a cyclically labelled cycle, and indicate how to find the matching polynomial of a cyclically labelled rooted tree, again using the decomposition Theorem stated above.

Many examples are given throughout the paper.

1 The multivariate matching polynomial of a graph, its decomposition; non-consecutive and non-consecutive cyclic functions

For a fixed $t \geq 1$ we use multi-index notations: $\mathbf{k}=\left(k_{1}, \ldots, k_{t}\right)$, where each $k_{s} \geq 0, \mathbf{0}=(0, \ldots, 0)$, and variables $\mathbf{x}=\left(x_{1}, \ldots, x_{t}\right)$. The total degree of \mathbf{k} is denoted by $|\mathbf{k}|=k_{1}+\cdots+k_{t}$.

Let G be a finite simple graph with vertex set $V(G)$ where $|V(G)| \geq 1$, and edge set $E(G)$. We label these edges from the t commutative variables $\left\{x_{1}, \ldots, x_{t}\right\}$, exactly one label per edge. A matching of G is a collection of edges, no two of which have a vertex in common. A k-matching of G is a matching with exactly k_{s} edges with label x_{s}, for each s with $1 \leq s \leq t$. If M_{G} is a k-matching of G we define its weight to be

$$
M_{G}(\mathbf{x})=x_{1}^{k_{1}} \cdots x_{t}^{k_{t}}
$$

The empty matching of G, which contains no edges, is denoted by M_{\emptyset}; it is the unique 0 -matching and its weight is $M_{\emptyset}(\mathbf{x})=1$.

Define the multivariate matching polynomial, or simply, the matching polynomial, of G, by

$$
\mathcal{M}(G, \mathbf{x})=\sum_{M_{G}} M_{G}(\mathbf{x})
$$

where the summation is over every matching M_{G} of G.
Denote the number of \mathbf{k}-matchings of G by $a(G, \mathbf{k})$. Then an alternative definition of the multivariate matching polynomial of G is

$$
\mathcal{M}(G, \mathbf{x})=\sum_{\left(k_{1}, \ldots, k_{t}\right)} a(G, \mathbf{k}) x_{1}^{k_{1}} \cdots x_{t}^{k_{t}} .
$$

The multivariate matching polynomial is a natural extension of the matching polynomial of Farrell [1]. Indeed, here with $t=1$ and in [1] with $w_{1}=1$ and $w_{2}=x_{1}$, the polynomials are identical.

Let P_{1} be the graph with one vertex and no edges, i.e., an isolated vertex; we define $\mathcal{M}\left(P_{1}, \mathbf{x}\right)=1$. Now suppose $G^{\prime}=G \cup n P_{1}$, where $n \geq 1$, i.e., G^{\prime}
is the disjoint union of G and n isolated vertices, then we define $\mathcal{M}\left(G^{\prime}, \mathbf{x}\right)=$ $\mathcal{M}(G, \mathbf{x})$.

For any edge $e \in E(G)$, let \bar{e} denote the set of edges that are incident to e; and for any subgraph H of G, let $\bar{H}=\cup_{e \in E(H)} \bar{e}$. Define $\bar{M}_{\emptyset}=\emptyset$. Also let $G-H$ be the graph obtained from G when all the edges of H are removed, so $G-H$ has the same vertex set as G.

Now let H be a fixed subgraph of G and let M_{H} be a matching of H. In the following theorem we express $\mathcal{M}(G, \mathbf{x})$ as a sum of terms, each term containing the weight of a fixed matching, $M_{H}(\mathbf{x})$, of H; we call this decomposing $\mathcal{M}(G, \mathbf{x})$ at H.

Theorem 1.1 Let G be a graph labelled as above, H a fixed subgraph of G, and M_{H} a matching of H. Then

$$
\begin{equation*}
\mathcal{M}(G, \mathbf{x})=\sum_{M_{H}} M_{H}(\mathbf{x}) \mathcal{M}\left(G-H-\bar{M}_{H}, \mathbf{x}\right), \tag{1}
\end{equation*}
$$

where the summation is over every matching M_{H} of H.
Proof. Let M_{G} be a matching of G which induces a (fixed) matching M_{H} on H, i.e., M_{G} contains exactly M_{H} and no other edges from H. Then $M_{G}(\mathbf{x})=M_{H}(\mathbf{x}) M(\mathbf{x})$ where M is a matching of G with no edges in H, and also with no edges in \bar{M}_{H} or else M_{G} would not be a matching. Hence, M is a matching of $G-H-\bar{M}_{H}$, i.e., $M(\mathbf{x})$ is a term of $\mathcal{M}\left(G-H-\bar{M}_{H}, \mathbf{x}\right)$. So $M_{H}(\mathbf{x}) \mathcal{M}\left(G-H-\bar{M}_{H}, \mathbf{x}\right)$ is the sum of the weights of all the matchings in G which induce M_{H} on H.

Now every matching in G induces some matching on H, so we may sum over all matchings in H to give (1).

Theorem 1.1 extends known facts about matching polynomials, eg., see Theorem 1 of Farrell [1] for the case where H is a single edge. We have the corresponding:

Corollary 1.2 Let G be a graph labelled as above, and let $H=e$ labelled with x be an edge of G. Then

$$
\begin{equation*}
\mathcal{M}(G, \mathbf{x})=\mathcal{M}(G-e, \mathbf{x})+x \mathcal{M}(G-e-\bar{e}, \mathbf{x}) \tag{2}
\end{equation*}
$$

Proof. The result comes from (1) since $H=e$ has just two matchings: the empty matching M_{\emptyset} with weight $M_{\emptyset}(\mathbf{x})=1$, and the matching e with weight $M_{e}(\mathbf{x})=x$.

Notation Throughout this paper we use P_{m} to denote the path with m vertices and $m-1$ edges.

Fix i and j where $1 \leq i \leq j \leq t$. Consider the path P_{j-i+2} with its $j-i+1$ edges labelled from the ordered set $\left\{x_{i}, \ldots, x_{j}\right\}$, the first edge receiving label x_{i}, and the last x_{j}; see Fig. 1.

Fig. 1: The labelled path P_{j-i+2} with matching polynomial $\phi_{i, j}$.

The pair $x_{s} x_{s+1}$ for any fixed s with $i \leq s \leq j-1$ is called a consecutive pair. A monomial from the ordered set $\left\{x_{i}, \ldots, x_{j}\right\}$ that contains no consecutive pairs is a non-consecutive monomial, a nc-monomial. Note that the empty monomial is a $n c$-monomial that we denote by 1 .

Let $\phi_{i, j}$ be the sum of all $n c$-monomials in the ordered variables $\left\{x_{i}, \ldots, x_{j}\right\}$. Then $\phi_{i, j}=\mathcal{M}\left(P_{j-i+2}, \mathbf{x}\right)$ is the matching polynomial of the labelled path P_{j-i+2}. We call the functions $\phi_{i, j}$ elementary non-consecutive functions, and for any $i \geq 1$ define the initial values

$$
\begin{equation*}
\phi_{i, i-2}=\phi_{i, i-1}=1 . \tag{3}
\end{equation*}
$$

These initial values ensure that the following recurrence is valid for any j with $i \leq j \leq t$.

Theorem 1.3 For a fixed i and j with $1 \leq i \leq j \leq t$ and the initial values in (3), we have

$$
\begin{equation*}
\phi_{i, j}=\phi_{i, j-1}+x_{j} \phi_{i, j-2} . \tag{4}
\end{equation*}
$$

Proof. Let e be the rightmost edge of $G=P_{j-i+2}$ shown in Fig. 1, and apply (2).

Example 1 For arbitrary i we have

$$
\begin{aligned}
& \phi_{i, i}=1+x_{i}, \quad \phi_{i, i+1}=1+x_{i}+x_{i+1}, \\
& \phi_{i, i+2}=1+x_{i}+x_{i+1}+x_{i+2}+x_{i} x_{i+2}, \\
& \phi_{i, i+3}=1+x_{i}+x_{i+1}+x_{i+2}+x_{i+3}+x_{i} x_{i+2}+x_{i} x_{i+3}+x_{i+1} x_{i+3} .
\end{aligned}
$$

Example 2 For arbitrary i, putting $j=i-1$ and $j=i-2$ in Recurrence (4) and using (3) give

$$
\phi_{i, i-3}=0 \quad \text { and } \quad \phi_{i, i-4}=\frac{1}{x_{i-2}} .
$$

In the second equation, if $i=1$ we replace x_{-1} by x_{t-1}, and if $i=2$ we replace x_{0} by x_{t}.

Consider Recurrence (4). It is convenient to work with a basis of solutions to this recurrence. Denote the first fundamental solution by $f_{i, j}$ and the second by $g_{i, j}$, with initial values

$$
\begin{equation*}
f_{i, i-2}=0, f_{i, i-1}=1 \quad \text { and } \quad g_{i, i-2}=1, g_{i, i-1}=0 \tag{5}
\end{equation*}
$$

So

$$
\phi_{i, i-2}=f_{i, i-2}+g_{i, i-2} \quad \text { and } \quad \phi_{i, i-1}=f_{i, i-1}+g_{i, i-1} .
$$

Now, from Recurrence (4) and strong induction on j, we have (6) below for all j with $i \leq j \leq t$

$$
\begin{align*}
\phi_{i, j} & =f_{i, j}+g_{i, j} \tag{6}\\
\phi_{i, j} & =\phi_{i+1, j}+x_{i} \phi_{i+2, j} . \tag{7}
\end{align*}
$$

Equation (7) comes from decomposing $\phi_{i, j}$ at the leftmost edge of P_{j-i+2}, whose label is x_{i}, i.e., decomposing $\phi_{i, j}$ at x_{i}; see Corollary 1.2. These two equations suggest that the fundamental solutions are given by

$$
f_{i, j}=\phi_{i+1, j} \quad \text { and } \quad g_{i, j}=x_{i} \phi_{i+2, j} .
$$

This is indeed the case:
Lemma 1.4 For any j with $i \leq j \leq t$ we have
(i) $f_{i, j}=\phi_{i+1, j}$,
(ii) $g_{i, j}=x_{i} \phi_{i+2, j}$.

Proof. We need only prove (i) because of (6) and (7) above.
From (5) we have $f_{i, i-2}=0$ and from Example 2 we have $\phi_{i+1, i-2}=0$; thus $f_{i, i-2}=\phi_{i+1, i-2}$. Similarly, from (5) and (3), we have $f_{i, i-1}=\phi_{i+1, i-1}$. So both $f_{i, j}$ and $\phi_{i+1, j}$ have the same initial values at $j=i-2$ and $j=i-1$ and they both satisfy Recurrence (4), so they are equal for any j with $i \leq j \leq t$.

Thus we know combinatorially what the two fundamental solutions to Recurrence (4) are. The first, $f_{i, j}$, is the matching polynomial of the path shown in Fig. 2(a); the second, $g_{i, j}$, is $x_{i} \times$ the matching polynomial of the path in Fig. 2(b).
(a)

(b)

Fig. 2 (a) The labelled path with matching polynomial $f_{i, j}$.

$$
\text { (b) The labelled path with matching polynomial } \frac{g_{i, j}}{x_{i}} \text {. }
$$

Example 3 For arbitrary i we have

$$
\begin{array}{ll}
f_{i, i}=1, & g_{i, i}=x_{i} \\
f_{i, i+1}=1+x_{i+1}, & g_{i, i+1}=x_{i} \\
f_{i, i+2}=1+x_{i+1}+x_{i+2}, & g_{i, i+2}=x_{i}+x_{i} x_{i+2}
\end{array}
$$

Now arrange the variables $\left\{x_{i}, \ldots, x_{j}\right\}$ clockwise around a circle. Thus x_{i} and x_{j} are consecutive. Call a pair $x_{s} x_{s^{\prime}}$ consecutive cyclic if x_{s} and $x_{s^{\prime}}$ are consecutive on this circle. Call a monomial from $\left\{x_{i}, \ldots, x_{j}\right\}$ a nonconsecutive cyclic monomial - ncc-monomial - if it contains no consecutive cyclic pairs. The empty monomial is a ncc-monomial that we denote by 1 .

Let $\tau_{i, j}$ be the sum of all ncc-monomials in the variables $\left\{x_{i}, \ldots, x_{j}\right\}$. Then, for $j \geq i+2, \tau_{i, j}=\mathcal{M}\left(C_{j-i+1}, \mathbf{x}\right)$ is the matching polynomial of the
labelled cycle C_{j-i+1} with $j-i+1$ edges and $j-i+1$ vertices, shown in Fig. 3; the cycle starts at the large vertex, and proceeds clockwise.

Fig. 3: The labelled cycle C_{j-i+1} with matching polynomial $\tau_{i, j}$.
For initial values let

$$
\begin{equation*}
\tau_{i, i-1}=2, \quad \tau_{i, i}=1, \quad \text { and } \quad \tau_{i, i+1}=1+x_{i}+x_{i+1} \tag{8}
\end{equation*}
$$

Lemma 1.5 For any j with $i \leq j \leq t$ we have
(i) $\tau_{i, j}=f_{i, j}+g_{i, j-1}$,
(ii) $\phi_{i, j}-\tau_{i, j}=x_{i} x_{j} \phi_{i+2, j-2}$.

Proof. (i) We check this equality at $j=i$ and $j=i+1$ using (5), Example 3, and (8). For $j \geq i+2$ we decompose $\tau_{i, j}$ at x_{i} yielding $\tau_{i, j}=$ $\phi_{i+1, j}+x_{i} \phi_{i+2, j-1}$, which gives (i) via Lemma 1.4.
(ii) We check at $j=i$ and $j=i+1$ using Examples 1 and 2, and (8). For $j \geq i+2$ the difference $\phi_{i, j}-\tau_{i, j}$ consists of all $n c$-monomials that contain the consecutive cyclic pair $x_{i} x_{j}$; clearly this is $x_{i} x_{j} \times$ the sum of all $n c$ monomials on $\left\{x_{i+2}, \ldots, x_{j-2}\right\}$, i.e., $x_{i} x_{j} \phi_{i+2, j-2}$.

Example 4 For arbitrary i we have

$$
\begin{aligned}
& \tau_{i, i+2}=1+x_{i}+x_{i+1}+x_{i+2}, \\
& \tau_{i, i+3}=1+x_{i}+x_{i+1}+x_{i+2}+x_{i+3}+x_{i} x_{i+2}+x_{i+1} x_{i+3} .
\end{aligned}
$$

2 Cyclically labelled paths; $\Phi_{i, N t+j}$ and the (τ, Δ)-recurrence

Consider a path P and the ordered set of t labels $\left\{x_{1}, \ldots, x_{t}\right\}$. For a fixed i, where $1 \leq i \leq t$, and moving from left to right, label the first edge of P with x_{i}, the second with x_{i+1}, and so on until label x_{t} has been used; so the $(t-i+1)$-th edge receives label x_{t}. Then label edge $t-i+2$ with x_{1}, and edge $t-i+3$ with x_{2}, and so on \ldots, labelling cyclically with $\left\{x_{1}, \ldots, x_{t}\right\}$ until all edges have been labelled. Let the last edge receive label x_{j}, where $1 \leq j \leq t$. Suppose that $N \geq 0$ full cycles of labels $\left\{x_{1}, \ldots, x_{t}\right\}$ have been used beginning at edge $t-i+2$. Then if $j=t$ we call this path $P(i, N t)$, or if $1 \leq j<t$ we call it $P(i, N t+j)$. This labelling is a cyclic labelling. The cyclically labelled path $P(i, N t+j)$ is shown in Fig. 4. Let $\Phi_{i, N t+j}(\mathbf{x})=\Phi_{i, N t+j}$ denote the matching polynomial of the path $P(i, N t+j)$.

Fig. 4: The cyclically labelled path $P(i, N t+j)$ with matching polynomial $\Phi_{i, N t+j}$.

We define the initial conditions for $\Phi_{i, N t+j}$ as

$$
\begin{array}{lll}
& N=-1: & \Phi_{i,-t+j}=\phi_{i, j}, \quad \text { for all } j \text { with } 0 \leq j \leq t, \tag{9}\\
\text { also } & N=0: \quad \Phi_{i, 0 t+j}=\Phi_{i, j} .
\end{array}
$$

In order to find $\phi_{i, j}$ if $j<i$ we use the initial values for $\phi_{i, j}$ from (3) and push back Recurrence (4), as shown in Example 2.

Now $\Phi_{i, N t+j}$ satisfies the same recurrence as that of $\phi_{i, j}$, Recurrence (4); the proof is similar, noting that x_{0} must be replaced by x_{t}, and considering $N t-1$ as $(N-1) t+t-1$, etc.

Lemma 2.1 For any $N \geq-1$ and j with $0 \leq j \leq t$ we have

$$
\begin{equation*}
\Phi_{i, N t+j}=\Phi_{i, N t+j-1}+x_{j} \Phi_{i, N t+j-2} . \tag{10}
\end{equation*}
$$

Notation For $i=1$ we write $\phi_{i, j}=\phi_{1, j}=\phi_{j}$ and $\phi_{t}=\phi$, also $\tau_{1, j}=\tau_{j}$ and $\tau_{t}=\tau$, and $f_{1, j}=f_{j}$, etc. Also let $\Delta=(-1)^{t} x_{1} \cdots x_{t}$.

Lemma 2.2 For any $N \geq 0$ and any j with $0 \leq j \leq t$ we have

$$
\begin{equation*}
\Phi_{i, N t+j}=\Phi_{i, N t} f_{j}+\Phi_{i, N t-1} g_{j} . \tag{11}
\end{equation*}
$$

Proof. With $N=0$ and $j=0$ Equation (11) is true using the initial values $f_{0}=1$ and $g_{0}=0$ of (5) with $i=1$. Otherwise, consider the path $P(i, N t+j)$ of Fig. 4 and decompose its matching polynomial, $\Phi_{i, N t+j}$, at the edge labelled x_{1} marked with a $*$. This gives

$$
\begin{aligned}
\Phi_{i, N t+j} & =\Phi_{i, N t} \phi_{2, j}+x_{1} \Phi_{i, N t-1} \phi_{3, j} \\
& =\Phi_{i, N t} f_{j}+\Phi_{i, N t-1} g_{j}
\end{aligned}
$$

using Lemma 1.4.

Now we define the second order (τ, Δ)-recurrence

$$
\begin{equation*}
\Theta_{N}=\tau \Theta_{N-1}-\Delta \Theta_{N-2} \tag{12}
\end{equation*}
$$

Let $G_{N}(\mathbf{x})=G_{N}$ denote the first fundamental solution to this recurrence. We will evaluate G_{N} in Section 4.

In Theorem 2.4 below we show that, for a fixed i and $j, \Phi_{i, N t+j}$ satisfies the (τ, Δ)-recurrence. First:

Lemma 2.3 For any $N \geq 1$ we have

$$
\begin{align*}
& \text { (i) } \Phi_{i, N t-1} f_{t}-\Phi_{i, N t} f_{t-1}=\Delta \Phi_{i,(N-1) t-1} \tag{13}\\
& \text { (ii) } \Phi_{i, N t-1} g_{t}-\Phi_{i, N t} g_{t-1}=-\Delta \Phi_{i,(N-1) t} .
\end{align*}
$$

Proof. (i) Using Recurrence (4) on f_{t} and on $\Phi_{i, N t}$ (see Lemma 2.1), the left-hand side of (13) becomes
$\Phi_{i, N t-1}\left\{f_{t-1}+x_{t} f_{t-2}\right\}-\left\{\Phi_{i, N t-1}+x_{t} \Phi_{i, N t-2}\right\} f_{t-1}=-x_{t}\left\{\Phi_{i, N t-2} f_{t-1}-\Phi_{i, N t-1} f_{t-2}\right\}$.
The second factor in the right-hand side of this equation is the left-hand side of (13) with subscripts shifted down by 1. After t such iterations the left-hand side of (13) becomes

$$
\left(-x_{t}\right)\left(-x_{t-1}\right) \ldots\left(-x_{1}\right)\left\{\Phi_{i,(N-1) t-1} f_{0}-\Phi_{i,(N-1) t} f_{-1}\right\}=\Delta \Phi_{i,(N-1) t-1}
$$

using the initial values $f_{0}=1$ and $f_{-1}=0$. The proof of (ii) is similar.
Now a main result: $\Phi_{i, N t+j}$ satisfies the (τ, Δ)-recurrence.
Theorem 2.4 For any $N \geq 1$, and any fixed i with $1 \leq i \leq t$, and any fixed j with $0 \leq j \leq t$, we have

$$
\begin{equation*}
\Phi_{i, N t+j}=\tau \Phi_{i,(N-1) t+j}-\Delta \Phi_{i,(N-2) t+j} . \tag{14}
\end{equation*}
$$

Proof. Due to Recurrences (4) and (10) we need only show that (14) is true when $j=t$ and $t-1$. It will then be true for all j with $0 \leq j \leq t$ by pushing back Recurrence (10).

With $N \geq 1$ and $j=t$, Equation (11) gives

$$
\begin{aligned}
\Phi_{i, N t+t} & =\Phi_{i, N t} f_{t}+\Phi_{i, N t-1} g_{t} \\
& =\Phi_{i, N t} f_{t}+\Phi_{i, N t-1} g_{t}+\Phi_{i, N t} g_{t-1}-\Phi_{i, N t} g_{t-1} \\
& =\Phi_{i, N t} f_{t}+\Phi_{i, N t} g_{t-1}+\Phi_{i, N t-1} g_{t}-\Phi_{i, N t} g_{t-1} \\
& =\tau \Phi_{i, N t}-\Delta \Phi_{i,(N-1) t}, \\
& =\tau \Phi_{i,(N-1) t+t}-\Delta \Phi_{i,(N-2) t+t},
\end{aligned}
$$

using $\tau=\tau_{t}=f_{t}+g_{t-1}$ from Lemma 1.5(i), and Lemma 2.3(ii) at the fourth line. For $j=t-1$ the proof is similar using Lemma 2.3(i).

3 Matrix formulation of recurrences

Here we use matrices to give another proof that $\Phi_{i, N t+j}$ satisfies the (τ, Δ) recurrence, and prepare for the evaluation of G_{N} in Section 4.

Recall from Section 1 that $f_{i, j}$ and $g_{i, j}$ are the 2 fundamental solutions to Recurrence (4). Now define the matrix

$$
X_{i, j}=\left(\begin{array}{cc}
g_{i, j-1} & f_{i, j-1} \\
g_{i, j} & f_{i, j}
\end{array}\right) .
$$

Then the recurrences for $f_{i, j}$ and $g_{i, j}$ can be written as:

$$
X_{i, j}=\left(\begin{array}{cc}
0 & 1 \tag{15}\\
x_{j} & 1
\end{array}\right)\left(\begin{array}{ll}
g_{i, j-2} & f_{i, j-2} \\
g_{i, j-1} & f_{i, j-1}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
x_{j} & 1
\end{array}\right) X_{i, j-1}
$$

Consistent with (5) we have $X_{i, i-1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=I$, the 2×2 identity matrix. Thus, for $j \geq i$, we have

$$
X_{i, j}=\left(\begin{array}{cc}
0 & 1 \tag{16}\\
x_{j} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
x_{j-1} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
x_{i} & 1
\end{array}\right)
$$

Let $\mathbf{1}=\binom{1}{1}$ and $\mathbf{e}=\binom{0}{1}$, and let $\langle\cdot, \cdot\rangle$ denote the usual inner product. Then for $j \geq i$, and using (6),

$$
\begin{equation*}
\phi_{i, j}=\left\langle X_{i, j} \mathbf{1}, \mathbf{e}\right\rangle . \tag{17}
\end{equation*}
$$

As before if $i=1$ we let $X_{1, j}=X_{j}$ and if $j=t$ we let $X=X_{t}$, in particular,

$$
X=\left(\begin{array}{cc}
g_{t-1} & f_{t-1} \tag{18}\\
g_{t} & f_{t}
\end{array}\right)=\left(\begin{array}{cc}
0 & 1 \\
x_{t} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
x_{t-1} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
x_{1} & 1
\end{array}\right) .
$$

For $N \geq 0$, from (10) we may also write

$$
\binom{\Phi_{i, N t+j-1}}{\Phi_{i, N t+j}}=\left(\begin{array}{cc}
0 & 1 \\
x_{j} & 1
\end{array}\right)\binom{\Phi_{i, N t+j-2}}{\Phi_{i, N t+j-1}}
$$

and then repeated use of (15) gives

$$
\begin{equation*}
\Phi_{i, N t+j}=\left\langle X_{j} X^{N} X_{i, t} \mathbf{1}, \mathbf{e}\right\rangle \tag{19}
\end{equation*}
$$

Now using (16) and (18) we see that $X_{j} X^{-1} X_{i, t}=X_{i, j}$. So, using (17) and (9), we have

$$
\left\langle X_{j} X^{-1} X_{i, t} \mathbf{1}, \mathbf{e}\right\rangle=\left\langle X_{i, j} \mathbf{1}, \mathbf{e}\right\rangle=\phi_{i, j}=\Phi_{i,-t+j}
$$

thus (19) is true for $N=-1$ also.
Theorem 3.1 For $N \geq-1$ we have

$$
\Phi_{i, N t+j}=\left\langle X_{j} X^{N} X_{i, t} \mathbf{1}, \mathbf{e}\right\rangle
$$

From Lemma 1.5(i) and (16) we have the following forms for the trace and determinant of matrix $X_{i, j}$

$$
\operatorname{tr}\left(X_{i, j}\right)=\tau_{i, j} \quad \text { and } \quad \operatorname{det}\left(X_{i, j}\right)=(-1)^{j-i+1} x_{i} \cdots x_{j}
$$

In particular, for matrix X from (18), we have

$$
\begin{equation*}
\operatorname{tr}(X)=\tau \quad \text { and } \quad \operatorname{det}(X)=\Delta \tag{20}
\end{equation*}
$$

Now let Z be any invertible 2×2 matrix with $\operatorname{trace} \operatorname{tr}(Z)$ and determinant $\operatorname{det}(Z)$, and let T denote transpose. Then the Cayley-Hamilton theorem says that $Z^{2}=\operatorname{tr}(Z) Z-\operatorname{det}(Z) I$, so $Z^{N}=\operatorname{tr}(Z) Z^{N-1}-\operatorname{det}(Z) Z^{N-2}$, for $N \geq 1$. Let \mathbf{u} and $\mathbf{v} \in \mathbf{R}^{2}$ and, for $N \geq-1$, define $\Psi_{N}=\left\langle Z^{N} \mathbf{u}, \mathbf{v}\right\rangle$. Then

Lemma 3.2 For $N \geq 1, \Psi_{N}$ satisfies the recurrence

$$
\Psi_{N}=\operatorname{tr}(Z) \Psi_{N-1}-\operatorname{det}(Z) \Psi_{N-2}
$$

with initial conditions $\Psi_{-1}=\left\langle Z^{-1} \mathbf{u}, \mathbf{v}\right\rangle$ and $\Psi_{0}=\left\langle Z^{0} \mathbf{u}, \mathbf{v}\right\rangle=\langle\mathbf{u}, \mathbf{v}\rangle$.

Now for $N \geq-1$,

$$
\Phi_{i, N t+j}=\left\langle X_{j} X^{N} X_{i, t} \mathbf{1}, \mathbf{e}\right\rangle=\left\langle X^{N} X_{i, t} \mathbf{1}, X_{j}^{\mathrm{T}} \mathbf{e}\right\rangle .
$$

So, for $N \geq 1$, Lemma 3.2 with $Z=X, \mathbf{u}=X_{i, t} \mathbf{1}$, and $\mathbf{v}=X_{j}^{\mathrm{T}} \mathbf{e}$, and (20), gives,

$$
\Phi_{i, N t+j}=\tau \Phi_{i,(N-1) t+j}-\Delta \Phi_{i,(N-2) t+j}
$$

This is a second proof that $\Phi_{i, N t+j}$ satisfies the (τ, Δ)-recurrence.

4 The Symmetric Representation, MacMahon's Master Theorem, three expressions for G_{N}

Consider polynomials in the variables u_{1}, \ldots, u_{d}. We will work with the vector space whose basis elements are the homogeneous polynomials of degree N in these variables, i.e., with

$$
\left\{u_{1}^{n_{1}} \cdots u_{d}^{n_{d}} \mid n_{1}+\cdots+n_{d}=N, \text { each } n_{\ell} \geq 0\right\}
$$

this vector space has dimension $\binom{N+d-1}{N}$.
The symmetric representation of a $d \times d$ matrix $A=\left(a_{\ell \ell^{\prime}}\right)$ is the action on polynomials induced by:

$$
u_{1}^{n_{1}} \cdots u_{d}^{n_{d}} \rightarrow v_{1}^{n_{1}} \cdots v_{d}^{n_{d}}
$$

where

$$
v_{\ell}=\sum_{\ell^{\prime}} a_{\ell^{\prime}} u_{\ell^{\prime}}
$$

or, more compactly, $v=A u$. That is, define the matrix element $\left\langle\begin{array}{c}m_{1}, \ldots, m_{d} \\ n_{1}, \ldots, n_{d}\end{array}\right\rangle_{A}$ to be the coefficient of $u_{1}^{n_{1}} \cdots u_{d}^{n_{d}}$ in $v_{1}^{m_{1}} \cdots v_{d}^{m_{d}}$. Then, for a fixed $\left(m_{1}, \ldots, m_{d}\right)$, we have

$$
v_{1}^{m_{1}} \cdots v_{d}^{m_{d}}=\sum_{\left(n_{1}, \ldots, n_{d}\right)}\left\langle\begin{array}{c}
m_{1}, \ldots, m_{d} \tag{21}\\
n_{1}, \ldots, n_{d}
\end{array}\right\rangle_{A} u_{1}^{n_{1}} \cdots u_{d}^{n_{d}} .
$$

Observe that the total degree $N=|n|=\sum n_{\ell}=|m|=\sum m_{\ell}$, i.e., homogeneity of degree N is preserved. We use multi-indices: $m=\left(m_{1}, \ldots, m_{d}\right)$ and $n=\left(n_{1}, \ldots, n_{d}\right)$. Then, for a fixed $m,(21)$ becomes

$$
v^{m}=\sum_{n}\left\langle\begin{array}{c}
m \\
n
\end{array}\right\rangle_{A} u^{n}
$$

Successive application of B then A shows that this is a homomorphism of the multiplicative semi-group of square $d \times d$ matrices into the multiplicative semi-group of square $\binom{N+d-1}{N} \times\binom{ N+d-1}{N}$ matrices.

Proposition 4.1 Matrix elements satisfy the homomorphism property

$$
\left\langle\begin{array}{c}
m \\
n
\end{array}\right\rangle_{A B}=\sum_{k}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{A}\left\langle\begin{array}{l}
k \\
n
\end{array}\right\rangle_{B} .
$$

Proof. Let $v=(A B) u$ and $w=B u$. Then,

$$
\begin{aligned}
v^{m} & =\sum_{n}\left\langle\begin{array}{c}
m \\
n
\end{array}\right\rangle_{A B} u^{n} \\
& =\sum_{k}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{A} w^{k} \\
& =\sum_{n} \sum_{k}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{A}\left\langle\begin{array}{c}
k \\
n
\end{array}\right\rangle_{B} u^{n} .
\end{aligned}
$$

Definition Fix the degree $N=\sum n_{\ell}=\sum m_{\ell}$. Define $\operatorname{tr}_{\text {Sym }}^{N}(A)$, the symmetric trace of A in degree N, as the sum of the diagonal elements $\left\langle\begin{array}{c}m \\ n\end{array}\right\rangle_{A}$, i.e.,

$$
\operatorname{tr}_{\mathrm{Sym}}^{N}(A)=\sum_{m}\left\langle\begin{array}{l}
m \\
m
\end{array}\right\rangle_{A} .
$$

Equality such as $\operatorname{tr}_{\text {Sym }}(A)=\operatorname{tr}_{\text {Sym }}(B)$ means that the symmetric traces are equal in every degree $N \geq 0$.
Remark The action defined here on polynomials is equivalent to the action on symmetric tensor powers, see Fulton and Harris [2], pp. 472-5.

Now it is straightforward to see directly (cf. the diagonal case shown in the Corollary below) that if A is upper-triangular, with eigenvalues $\lambda_{1}, \ldots, \lambda_{d}$, then $\operatorname{tr}_{\text {Sym }}^{N}(A)=h_{N}\left(\lambda_{1}, \ldots, \lambda_{d}\right)$, the $N^{\text {th }}$ homogeneous symmetric function. The homomorphism property, Proposition 4.1, shows that $\operatorname{tr}_{\text {Sym }}^{N}(A B)=$ $\operatorname{tr}_{\text {Sym }}^{N}(B A)$, and that similar matrices have the same trace. Again by the homomorphism property, if two $d \times d$ matrices are similar, $A=M B M^{-1}$, then that relation extends to their respective symmetric representations in every degree. Recall that any matrix is similar to an upper-triangular one with the same eigenvalues. Thus,

Theorem 4.2 Symmetric Trace Theorem (see pp. 51-2 of Springer [5]).
We have

$$
\frac{1}{\operatorname{det}(I-c A)}=\sum_{N=0}^{\infty} c^{N} \operatorname{tr}_{\mathrm{Sym}}^{N}(A)
$$

Proof. With λ_{ℓ} denoting the eigenvalues of A,

$$
\frac{1}{\operatorname{det}(I-c A)}=\prod_{\ell} \frac{1}{1-c \lambda_{\ell}}
$$

$$
\begin{aligned}
& =\sum_{N=0}^{\infty} c^{N} h_{N}\left(\lambda_{1}, \ldots, \lambda_{d}\right) \\
& =\sum_{N=0}^{\infty} c^{N} \operatorname{tr}_{\mathrm{Sym}}^{N}(A)
\end{aligned}
$$

As a Corollary we have MacMahon's Master Theorem, which we express in the above terminology.

Corollary 4.3 MacMahon's Master Theorem.
The diagonal matrix element $\left\langle\begin{array}{c}m \\ m\end{array}\right\rangle_{A}$ is the coefficient of $u^{m}=u_{1}^{m_{1}} \cdots u_{d}^{m_{d}}$ in the expansion of $\operatorname{det}(I-U A)^{-1}$ where $U=\operatorname{diag}\left(u_{1}, \ldots, u_{d}\right)$ is the diagonal matrix with entries u_{1}, \ldots, u_{d} on the diagonal.

Proof. From Theorem 4.2, with $c=1$, we want to calculate the symmetric trace of $U A$. By the homomorphism property,

$$
\begin{aligned}
\operatorname{tr}_{\text {Sym }}^{N}(U A) & =\sum_{m}\left\langle\begin{array}{c}
m \\
m
\end{array}\right\rangle_{U A} \\
& =\sum_{m} \sum_{k}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{U}\left\langle\begin{array}{c}
k \\
m
\end{array}\right\rangle_{A}
\end{aligned}
$$

Now, with $v=U w$ and $v_{\ell}=u_{\ell} w_{\ell}$, then

$$
v^{m}=\left(u_{1} w_{1}\right)^{m_{1}} \cdots\left(u_{d} w_{d}\right)^{m_{d}}=u^{m} w^{m}=\sum_{k}\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{U} w^{k}
$$

i.e.,

$$
\left\langle\begin{array}{c}
m \\
k
\end{array}\right\rangle_{U}=u_{1}^{m_{1}} \cdots u_{d}^{m_{d}} \delta_{k_{1} m_{1}} \cdots \delta_{k_{d} m_{d}}
$$

so that

$$
\operatorname{tr}_{\mathrm{Sym}}^{N}(U A)=\sum_{m}\left\langle\begin{array}{l}
m \\
m
\end{array}\right\rangle_{A} u^{m} .
$$

Now we restrict ourselves to $d=2$, and return to the (τ, Δ)-recurrence.
Recall, from (18), the 2×2 matrix

$$
\begin{aligned}
X & =\left(\begin{array}{cc}
0 & 1 \\
x_{t} & 1
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
x_{t-1} & 1
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
x_{1} & 1
\end{array}\right) \\
& =\xi_{t} \xi_{t-1} \cdots \xi_{1}
\end{aligned}
$$

where $\xi_{s}=\left(\begin{array}{cc}0 & 1 \\ x_{s} & 1\end{array}\right)$ for $1 \leq s \leq t$. Let us modify ξ_{s} slightly by defining $\alpha_{s}=\left(\begin{array}{cc}0 & 1 \\ x_{s} & a_{s}\end{array}\right)$ for $1 \leq s \leq t$, and calling

$$
\begin{aligned}
\bar{X} & =\left(\begin{array}{cc}
0 & 1 \\
x_{t} & a_{t}
\end{array}\right)\left(\begin{array}{cc}
0 & 1 \\
x_{t-1} & a_{t-1}
\end{array}\right) \cdots\left(\begin{array}{cc}
0 & 1 \\
x_{1} & a_{1}
\end{array}\right) \\
& =\alpha_{t} \alpha_{t-1} \cdots \alpha_{1} .
\end{aligned}
$$

Let

$$
\operatorname{tr}(\bar{X})=\bar{\tau} \quad \text { and } \quad \operatorname{det}(\bar{X})=\bar{\Delta},
$$

and let \bar{G}_{N} be the first fundamental solution to the $(\bar{\tau}, \bar{\Delta})$-recurrence:

$$
\begin{equation*}
\Theta_{N}=\bar{\tau} \Theta_{N-1}-\bar{\Delta} \Theta_{N-2} . \tag{22}
\end{equation*}
$$

Then

$$
\begin{aligned}
\sum_{N=0}^{\infty} c^{N} \bar{G}_{N} & =\frac{1}{1-\bar{\tau} c+\bar{\Delta} c^{2}} \\
& =\frac{1}{\operatorname{det}(I-c \bar{X})} \\
& =\sum_{N=0}^{\infty} c^{N} \operatorname{tr}_{\mathrm{Sym}}^{N}(\bar{X}) .
\end{aligned}
$$

So

$$
\bar{G}_{N}=\operatorname{tr}_{\mathrm{Sym}}^{N}(\bar{X})=\sum_{m}\left\langle\begin{array}{l}
m \\
m
\end{array}\right\rangle_{\bar{X}}=\sum_{m}\left\langle\begin{array}{l}
m \\
m
\end{array}\right\rangle_{\alpha_{t} \alpha_{t-1} \cdots \alpha_{1}} .
$$

We need to calculate the symmetric trace of \bar{X} and so identify \bar{G}_{N}. By the homomorphism property, we need only find the matrix elements for each matrix α_{s}, multiply together and take the trace.

For $\alpha_{s}=\left(\begin{array}{cc}0 & 1 \\ x_{s} & a_{s}\end{array}\right)$ the mapping induced on polynomials is

$$
\begin{equation*}
v_{1}=u_{2}, \quad v_{2}=x_{s} u_{1}+a_{s} u_{2} \tag{23}
\end{equation*}
$$

For any integer $N \geq 0$, the expansion of $v_{1}^{m} v_{2}^{N-m}$ in powers of u_{1} and u_{2} is of the form

$$
v_{1}^{m} v_{2}^{N-m}=\sum_{n}\left\langle\begin{array}{c}
m \tag{24}\\
n
\end{array}\right\rangle_{\alpha_{s}} u_{1}^{n} u_{2}^{N-n},
$$

with the notation for the matrix elements abbreviated accordingly. From (23) and (24), the binomial theorem yields

$$
\left\langle\begin{array}{c}
m \\
n
\end{array}\right\rangle_{\alpha_{s}}=\binom{N-m}{n} x_{s}^{n} a_{s}^{N-m-n} .
$$

For example, when $t=3$, the product $\bar{X}=\alpha_{3} \alpha_{2} \alpha_{1}$ gives the matrix elements, for homogeneity of degree N,

$$
\begin{aligned}
\left\langle\begin{array}{c}
m \\
n
\end{array}\right\rangle_{\bar{X}} & =\sum_{\left(k_{2}, k_{3}\right)}\left\langle\begin{array}{c}
m \\
k_{3}
\end{array}\right\rangle_{\alpha_{3}}\left\langle\begin{array}{c}
k_{3} \\
k_{2}
\end{array}\right\rangle_{\alpha_{2}}\left\langle\begin{array}{c}
k_{2} \\
n
\end{array}\right\rangle_{\alpha_{1}} \\
& =\sum_{\left(k_{2}, k_{3}\right)}\binom{N-m}{k_{3}}\binom{N-k_{3}}{k_{2}}\binom{N-k_{2}}{n} x_{1}^{n} x_{2}^{k_{2}} x_{3}^{k_{3}} a_{1}^{N-k_{2}-n} a_{2}^{N-k_{3}-k_{2}} a_{3}^{N-k_{3}-m} .
\end{aligned}
$$

Thus, the symmetric trace $\operatorname{tr}_{\text {Sym }}^{N}(\bar{X})=\sum_{m}\left\langle\begin{array}{l}m \\ m\end{array}\right\rangle_{\bar{X}}$ is
$\sum_{\left(k_{1}, k_{2}, k_{3}\right)}\binom{N-k_{2}}{k_{1}}\binom{N-k_{3}}{k_{2}}\binom{N-k_{1}}{k_{3}} x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}} a_{1}^{N-k_{1}-k_{2}} a_{2}^{N-k_{2}-k_{3}} a_{3}^{N-k_{3}-k_{1}}$,
a cyclic binomial. In general, for a product of arbitrary length, the symmetric trace is given by the corresponding cyclic binomial.

Recall the recurrence

$$
\begin{equation*}
S_{N}(x)=2 x S_{N-1}(x)-S_{N-2}(x) \tag{25}
\end{equation*}
$$

for $N \geq 1$. The Chebyshev polynomials of the first kind, $T_{N}=T_{N}(x)$, are solutions of this recurrence with initial conditions $T_{-1}=x$ and $T_{0}=1$, and the Chebyshev polynomials of the second kind, $U_{N}=U_{N}(x)$, are solutions with $U_{-1}=0$ and $U_{0}=1$.

Combining these observations yields the main identities:
Theorem 4.4 Let $\bar{X}=\alpha_{t} \alpha_{t-1} \cdots \alpha_{1}$, with $\alpha_{s}=\left(\begin{array}{cc}0 & 1 \\ x_{s} & a_{s}\end{array}\right)$ for $1 \leq s \leq t$, and let $\bar{\tau}=\operatorname{tr}(\bar{X})$ and $\bar{\Delta}=\operatorname{det}(\bar{X})$. Let \bar{G}_{N} denote the first fundamental solution to the $(\bar{\tau}, \bar{\Delta})$-recurrence (22).

Then we have the cyclic binomial identity

$$
\begin{aligned}
\bar{G}_{N} & =\sum_{\left(k_{1}, \ldots, k_{t}\right)}\binom{N-k_{2}}{k_{1}}\binom{N-k_{3}}{k_{2}} \cdots\binom{N-k_{1}}{k_{t}} x_{1}^{k_{1}} x_{2}^{k_{2}} \cdots x_{t}^{k_{t}} a_{1}^{N-k_{1}-k_{2}} a_{2}^{N-k_{2}-k_{3}} \cdots a_{t}^{N-k_{t}-k_{1}} \\
& =\bar{\Delta}^{N / 2} U_{N}\left(\frac{\bar{\tau}}{2 \sqrt{\bar{\Delta}}}\right) \\
& =\sum_{k=0}^{\lfloor N / 2\rfloor}\binom{N-k}{k} \bar{\tau}^{N-2 k}(-\bar{\Delta})^{k}
\end{aligned}
$$

where U_{N} denotes the Chebyshev polynomial of the second kind.
Proof. The first equality follows by computing the symmetric trace for arbitrary t as indicated above. The second follows by induction on N using initial conditions $\bar{G}_{-1}=0$ and $\bar{G}_{0}=1$, the $(\bar{\tau}, \bar{\Delta})$-recurrence (22) and the Chebyshev recurrence (25). The third follows from the second by the Symmetric Trace Theorem applied to $\bar{X}=\left(\begin{array}{cc}0 & 1 \\ -\bar{\Delta} & \bar{\tau}\end{array}\right)$, the shift matrix for the ($\bar{\tau}, \bar{\Delta}$)-recurrence.

Note that $G_{-1}=0$ and $G_{0}=1$, so $G_{1}=\tau$ using the (τ, Δ)-recurrence. This also follows directly from the condition $k_{s-1}+k_{s} \leq 1$ for non-zero terms in the cyclic binomial summation above. Note also that setting all $a_{s}=1$ above gives explicit expressions for G_{N}.

Example 5 Here $N=2$ and $t=3$. Let $A^{\operatorname{Sym}(N)}$ denote the symmetric representation in degree N of the matrix A. From the above we have

$$
\begin{aligned}
G_{2} & =\sum_{\left(k_{1}, k_{2}, k_{3}\right)}\binom{2-k_{2}}{k_{1}}\binom{2-k_{3}}{k_{2}}\binom{2-k_{1}}{k_{3}} x_{1}^{k_{1}} x_{2}^{k_{2}} x_{3}^{k_{3}} \\
& =1+2 x_{1}+2 x_{2}+2 x_{3}+x_{1}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}+x_{1} x_{2} x_{3} .
\end{aligned}
$$

Also $d=2$, so $\binom{N+d-1}{N}=3$, and $\xi_{s}=\left(\begin{array}{cc}0 & 1 \\ x_{s} & 1\end{array}\right)$ for $1 \leq i \leq 3$, thus

$$
X=\xi_{3} \xi_{2} \xi_{1}=\left(\begin{array}{cc}
x_{1} & x_{2}+1 \\
x_{1} x_{3}+x_{1} & x_{2}+x_{3}+1
\end{array}\right) .
$$

Now $\xi_{s}^{\operatorname{Sym}(2)}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & x_{s} & 1 \\ x_{s}^{2} & 2 x_{s} & 1\end{array}\right)$ for $1 \leq s \leq 3$, and so

$$
\begin{array}{rl}
X^{\operatorname{Sym}(2)} & =\xi_{3}{ }^{\operatorname{Sym}(2)} \xi_{2}^{\operatorname{Sym}(2)} \xi_{1}^{\operatorname{Sym}(2)} \\
x_{1}^{2} & 2 x_{1} x_{2}+2 x_{1} \\
& \left(\begin{array}{ccc}
& x_{2}^{2}+2 x_{2}+1 \\
x_{1}^{2} x_{3}+x_{1}^{2} & x_{1} x_{2} x_{3}+2 x_{1} x_{2} & x_{2}^{2}+x_{2} x_{3}+2 x_{2} \\
& +2 x_{1} x_{3}+2 x_{1} & +x_{3}+1 \\
& & \\
x_{1}^{2} x_{3}^{2}+2 x_{1}^{2} x_{3}+x_{1}^{2} & 2 x_{1} x_{2} x_{3}+2 x_{1} x_{3}^{2}+2 x_{1} x_{2} & x_{3}^{2}+2 x_{2} x_{3}+x_{2}^{2} \\
& +4 x_{1} x_{3}+2 x_{1} & +2 x_{2}+2 x_{3}+1
\end{array}\right) .
\end{array} .
$$

We check that $G_{2}=\operatorname{tr}\left(X^{\operatorname{Sym}(2)}\right)$, as indicated above.
We now give an expression for G_{N} as a quotient of two matching polynomials; this requires (29) from the next section.

Theorem 4.5 For $N \geq 0$ we have

$$
G_{N}=\frac{\Phi_{1, N t-2}}{\phi_{t-2}} .
$$

Proof. Equation (29) is

$$
\begin{equation*}
\Phi_{i, N t+j}=\Phi_{i, j} G_{N}-\Delta \phi_{i, j} G_{N-1}, \tag{26}
\end{equation*}
$$

and from Example 2 we have $\phi_{i, i-3}=0$. So (26) with $j=i-3$ gives

$$
\begin{equation*}
G_{N}=\frac{\Phi_{i, N t+i-3}}{\Phi_{i, i-3}}=\frac{\Phi_{1, N t-2}}{\phi_{t-2}}, \tag{27}
\end{equation*}
$$

the second equality comes from putting $i=1$ in the first and then using (9) in the denominator.

Finally, consider the Fibonacci sequence $\left\{F_{m} \mid m \geq 1\right\}=\{1,1,2,3,5,8,13,21, \ldots\}$. It is straightforward to show that the number of matchings in the path P_{m} with $m-1$ edges is F_{m+1}. Now $\Phi_{1, N t-2}$ is the matching polynomial of the path $P(1, N t-2)$ which has $(N+1) t-2$ edges and so has $F_{(N+1) t}$ matchings. Similarly, the path whose matching polynomial is ϕ_{t-2} has F_{t} matchings. Now, evaluating (27) above with $N=N-1$ and $x_{s}=1$ for all $1 \leq s \leq t$, gives $F_{t} \mid F_{N t}$, a well-known result on Fibonacci numbers, see pp. 148-9, Hardy and Wright [4]. Furthermore, we have

$$
\frac{F_{(N+1) t}}{F_{t}}=\sum_{\left(k_{1}, \ldots, k_{t}\right)}\binom{N-k_{2}}{k_{1}}\binom{N-k_{3}}{k_{2}} \ldots\binom{N-k_{1}}{k_{t}} .
$$

5 Examples: Paths, Cycles, Trees

In this Section we express the matching polynomial of some well-known graphs in terms of the fundamental solutions to the (τ, Δ)-recurrence (12).
G_{N} is the first fundamental solution to the (τ, Δ)-recurrence, so the initial values for G_{N} are

$$
\begin{equation*}
G_{-2}=\frac{-1}{\Delta}, \quad G_{-1}=0, \quad G_{0}=1, \quad\left(\text { and } \quad G_{1}=\tau\right) \tag{28}
\end{equation*}
$$

The second fundamental solution is $-\Delta G_{N-1}$.

5.1 Paths

$\Phi_{i, N t+j}$ satisfies the (τ, Δ)-recurrence whose fundamental solutions are G_{N} and $-\Delta G_{N-1}$, thus $\Phi_{i, N t+j}=a G_{N}+b\left(-\Delta G_{N-1}\right)$ for some a and b. The initial conditions for $\Phi_{i, N t+j}$ from (9) and for G_{N} from (28) give $a=\Phi_{i, j}$ and $b=\Phi_{i,-t+j}=\phi_{i, j}$. Hence for $N \geq-1$,

$$
\begin{equation*}
\Phi_{i, N t+j}=\Phi_{i, j} G_{N}-\Delta \phi_{i, j} G_{N-1} \tag{29}
\end{equation*}
$$

Example 6 Here $i=2$ and $t=3$,

$$
N=-1 \quad \phi_{2,2}=1+x_{2}
$$

$$
N=0 \quad \phi_{2,3}=1+x_{2}+x_{3}
$$

$$
N=0 \quad \Phi_{2,1}=1+x_{1}+x_{2}+x_{3}+x_{1} x_{2}
$$

$$
N=0 \quad \Phi_{2,2}=1+x_{1}+2 x_{2}+x_{3}+x_{1} x_{2}+x_{2}^{2}+x_{2} x_{3}
$$

$$
N=1 \quad \Phi_{2,3}=1+x_{1}+2 x_{2}+2 x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}+x_{1} x_{2} x_{3} .
$$

For $N \geq 1$ let $P_{N t+j+1}=P(1,(N-1) t+j)$ be the path with $N t+j+1$ vertices and $N t+j$ edges, cyclically labelled starting with label x_{1}. Let $\mathcal{P}_{N t+j+1}(\mathbf{x})=\mathcal{P}_{N t+j+1}=\Phi_{1,(N-1) t+j}$ be its matching polynomial. With this notation any subscript on a P, \mathcal{P}, C, or \mathcal{C} refers to the number of vertices in the appropriate graph.

Theorem 5.1 For any $N \geq 1$ we have

$$
\begin{aligned}
& \text { (i) } \mathcal{P}_{N t+j+1}=\Phi_{1, j} G_{N-1}-\Delta \phi_{j} G_{N-2}, \\
& \text { (ii) } \mathcal{P}_{N t+1}=G_{N}+(\phi-\tau) G_{N-1} .
\end{aligned}
$$

Proof. The proof of (i) is clear using (29) with $i=1$ and $N=N-1$. So (i) with $j=0$ gives $\mathcal{P}_{N t+1}=\Phi_{1,0} G_{N-1}-\Delta \phi_{0} G_{N-2}$. But $\Phi_{1,0}=\Phi_{1,-t+t}=$ $\phi_{1, t}=\phi_{t}=\phi$ and $\phi_{0}=\phi_{1,0}=1$, and then using the (τ, Δ)-recurrence for G_{N} gives (ii).

Example 7 Here $t=3$,

$$
\begin{aligned}
& P_{1 \cdot 3+2+1} \bullet{ }^{x_{1}} \bullet{ }^{x_{2}} \bullet^{x_{3}} \bullet^{x_{1}}{ }{ }^{x_{2}} \bullet \\
& \mathcal{P}_{1 \cdot 3+2+1}=1+2 x_{1}+2 x_{2}+x_{3}+x_{1}^{2}+2 x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{1} x_{2} x_{3} . \\
& \mathcal{P}_{2 \cdot 3+1}=1+2 x_{1}+2 x_{2}+2 x_{3}+x_{1}^{2}+2 x_{1} x_{2}+3 x_{1} x_{3}+x_{2}^{2}+2 x_{2} x_{3}+x_{3}^{2}+x_{1}^{2} x_{3}+ \\
& 2 x_{1} x_{2} x_{3}+x_{1} x_{3}^{2} \text {. }
\end{aligned}
$$

5.2 Cycles

Now we identify the first and the last vertices of the path $P(i, N t+j)$ to form the cyclically labelled cycle $C(i, N t+j)$ with matching polynomial $\Gamma_{i, N t+j}(\mathbf{x})=\Gamma_{i, N t+j}$.

By decomposing $\Gamma_{i, N t+j}$ at the 'first' edge labelled x_{i} we see that, $c f$. (29),

$$
\begin{align*}
\Gamma_{i, N t+j} & =\Phi_{i+1, N t+j}+x_{i} \Phi_{i+2, N t+j-1}, \\
& =\Phi_{i+1, j} G_{N}-\Delta \phi_{i+1, j} G_{N-1}+x_{i}\left\{\Phi_{i+2, j-1} G_{N}-\Delta \phi_{i+2, j-1} G_{N-1}\right\}, \\
& =\left\{\Phi_{i+1, j}+x_{i} \Phi_{i+2, j-1}\right\} G_{N}-\Delta\left\{\phi_{i+1, j}+x_{i} \phi_{i+2, j-1}\right\} G_{N-1}, \\
& =\Gamma_{i, j} G_{N}-\Delta \tau_{i, j} G_{N-1}, \tag{30}
\end{align*}
$$

using (29) at the second line, and decomposing $\Gamma_{i, j}$ and $\tau_{i, j}$ at the first edge x_{i} at the fourth line. Also, defining $\Gamma_{i,-t+j}=\tau_{i, j}$ ensures that (30) is true for all $N \geq-1$.

Example 8 Here $i=2$ and $t=3$ again,

$$
\begin{array}{ll}
N=-1 & \tau_{2,2}=1 \\
N=0 & \tau_{2,3}=1+x_{2}+x_{3}, \\
N=0 & \Gamma_{2,1}=1+x_{1}+x_{2}+x_{3}, \\
N=0 & \Gamma_{2,2}=1+x_{1}+2 x_{2}+x_{3}+x_{1} x_{2}+x_{2} x_{3}, \\
N=1 & \Gamma_{2,3}=1+x_{1}+2 x_{2}+2 x_{3}+x_{1} x_{2}+x_{1} x_{3}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}
\end{array}
$$

Let $C_{N t+j}=C(1,(N-1) t+j)$ be the cycle with $N t+j$ vertices and $N t+j$ edges in which labelling has started with x_{1}, and let $\mathcal{C}_{N t+j}(\mathbf{x})=$ $\mathcal{C}_{N t+j}=\Gamma_{1,(N-1) t+j}$ be its matching polynomial. Compare with Theorem 5.1,

Theorem 5.2 For any $N \geq 1$ we have
(i) $\mathcal{C}_{N t+j}=\Gamma_{1, j} G_{N-1}-\Delta \tau_{j} G_{N-2}$,
(ii) $\mathcal{C}_{N t}=G_{N}-\Delta G_{N-2}$.

Proof. The proof of (i) is clear from (30). Part (i) with $j=0$ gives (ii), using $\Gamma_{1,0}=\tau$, and $\tau_{0}=2$ from (8).

Example 9 Here $t=3$ again, the cycle starts at the large vertex and proceeds clockwise,

For a fixed $t \geq 1$ write $\widehat{\mathcal{P}}_{N}=\mathcal{P}_{N t+1}$ and $\widehat{\mathcal{C}}_{N}=\mathcal{C}_{N t}$. We now express G_{N}, $\widehat{\mathcal{P}}_{N}$, and $\widehat{\mathcal{C}}_{N}$ in terms of Chebyshev polynomials.

It is well-known that, in one variable x, the matching polynomial of the path $P_{2 m}$ is related to $U_{2 m}$ as follows

$$
\mathcal{M}\left(P_{2 m}, x\right)=(-1)^{m} x^{m} U_{2 m}\left(\frac{i}{2 \sqrt{x}}\right),
$$

and, for $P_{2 m-1}$ we have

$$
\mathcal{M}\left(P_{2 m-1}, x\right)=(-1)^{m} x^{m}\left[U_{2 m}\left(\frac{i}{2 \sqrt{x}}\right)+U_{2 m-2}\left(\frac{i}{2 \sqrt{x}}\right)\right]
$$

where $i=\sqrt{-1}$. Also, for the matching polynomials $\mathcal{M}\left(C_{2 m}\right)$ and $\mathcal{M}\left(C_{2 m-1}\right)$ of the cycles $C_{2 m}$ and $C_{2 m-1}$ there are similar formulas but with a factor of 2 on the right-hand side where U is replaced by T. See Theorem 3 of Godsil and Gutman [3], and Theorems 9 and 11 of Farrell [1].

Now Theorem 4.4 modified for G_{N} gives

$$
\begin{equation*}
G_{N}=\Delta^{N / 2} U_{N}\left(\frac{\tau}{2 \sqrt{\Delta}}\right) \tag{31}
\end{equation*}
$$

Formulas for $\widehat{\mathcal{P}}_{N}$ and $\widehat{\mathcal{C}}_{N}$ in terms of U_{N} and T_{N} are given below, where the variable t is suppressed.

Theorem 5.3 For any $N \geq 1$ we have

$$
\begin{aligned}
& \text { (i) } \widehat{\mathcal{P}}_{N}=\Delta^{N / 2}\left\{U_{N}\left(\frac{\tau}{2 \sqrt{\Delta}}\right)+\left(\frac{\phi-\tau}{\sqrt{\Delta}}\right) U_{N-1}\left(\frac{\tau}{2 \sqrt{\Delta}}\right)\right\}, \\
& \text { (ii) } \widehat{\mathcal{C}}_{N}=2 \Delta^{N / 2} T_{N}\left(\frac{\tau}{2 \sqrt{\Delta}}\right) .
\end{aligned}
$$

Proof. (i) This follows from Theorem 5.1(ii) and (31).
(ii) From Theorem $5.2\left(\right.$ ii) we have $\widehat{\mathcal{C}}_{N}=G_{N}-\Delta G_{N-2}$, and now the wellknown relation $2 T_{N}=U_{N}-U_{N-2}$ between the two types of Chebyshev polynomials and (31) gives the result.

Expressions for $G_{N}, \widehat{\mathcal{P}}_{N}$, and $\widehat{\mathcal{C}}_{N}$ for $N=0,1,2,3$, and 4 are given below

$$
\begin{array}{lll}
G_{0}=1 & \widehat{\mathcal{P}}_{0}=1 & \widehat{\mathcal{C}}_{0}=2 \\
G_{1}=\tau & \widehat{\mathcal{P}}_{1}=\phi & \widehat{\mathcal{C}}_{1}=\tau \\
G_{2}=\tau^{2}-\Delta & \widehat{\mathcal{P}}_{2}=\phi \tau-\Delta & \widehat{\mathcal{C}}_{2}=\tau^{2}-2 \Delta \\
G_{3}=\tau^{3}-2 \tau \Delta & \widehat{\mathcal{P}}_{3}=\phi \tau^{2}-\phi \Delta-\tau \Delta & \widehat{\mathcal{C}}_{3}=\tau^{3}-3 \tau \Delta \\
G_{4}=\tau^{4}-3 \tau^{2} \Delta+\Delta^{2} & \widehat{\mathcal{P}}_{4}=\phi \tau^{3}-2 \phi \tau \Delta-\tau^{2} \Delta+\Delta^{2} & \widehat{\mathcal{C}}_{4}=\tau^{4}-4 \tau^{2} \Delta+2 \Delta^{2} .
\end{array}
$$

5.3 Trees

Here we consider cyclically labelled trees.
First let us extend the definition of a cyclically labelled path to include the path of Fig. 1, and the graph P_{1} with one vertex and no edges.

A tree is a connected simple graph with no cycles, and a rooted tree is a tree in which some vertex of degree 1 has been specified to be the root, r. Given any rooted tree, let us label its edges by first labelling the edge incident to r with x_{i}. Then label all edges incident to this edge with x_{i+1}, then label all edges incident to these edges with x_{i+2}, and so on until label x_{t} has been used. Then label with the ordered set $\left\{x_{1}, \ldots, x_{t}\right\}$ in a similar
manner to before, repeating cyclically until all edges have been labelled,..., and so on. Let T denote such a cyclically labelled tree, see Fig. 5 for an example with $i=2$ and $t=3$.

Fig. 5: A cyclically labelled tree with $i=2$ and $t=3$.
We may draw any such T with r as the leftmost vertex. Then we place the other vertices of T from 'left to right' according to their distance from r, i.e., if a vertex v_{1} is at distance d_{1} from r and vertex v_{2} is at distance d_{2} from r where $d_{2}>d_{1}$, then v_{2} is placed to the right of v_{1}.

Paths in T are of two types: (I) A path that always moves from left to right (a path that always moves from right to left can be thought of one that always moves from left to right): such a path is clearly cyclically labelled; or (II) a path that moves first from right to left and then from left to right; such a path must pass through at least one vertex of degree ≥ 3, i.e., a vertex where T 'branches'.

Let V denote the set of vertices of degree ≥ 3 in T, and let $v \in V$ be arbitrary of degree $\operatorname{deg}(v)$. Vertex v has 1 edge to its left and $\operatorname{deg}(v)-1 \geq 2$ edges to its right. Let H_{v} be the subgraph of T that consists of the 'last' $\operatorname{deg}(v)-2 \geq 1$ edges as we rotate clockwise around v. Thus H_{v} is the star $K_{1, \operatorname{deg}(v)-2}$ centered at v. Set $H=\cup_{v \in V} H_{v}$.

Lemma 5.4 The forest $T-H$ is a union of cyclically labelled paths.
Proof. We show that $T-H$ does not contain a path of type (II). Suppose it does contain a path of type (II), then this path must pass through some
vertex $v \in V$. So 2 edges incident to v and to the right of v lie in this path and so lie in $T-H$, a contradiction because $T-H$ contains only 1 edge incident to v and to the right of v. Thus $T-H$ is a union of paths of type (I), each of which is a cyclically labelled path.

Thus $T-H$ is a union of cyclically labelled paths, and so $T-H-\bar{M}_{H}$ is also, for every matching M_{H} of H. We know the matching polynomial of any cyclically labelled path, so we can decompose the matching polynomial of $T, \mathcal{M}(T, \mathbf{x})$, at H, according to Theorem 1.1,

$$
\mathcal{M}(T, \mathbf{x})=\sum_{M_{H}} M_{H}(\mathbf{x}) \mathcal{M}\left(T-H-\bar{M}_{H}, \mathbf{x}\right),
$$

where the summation is over every matching M_{H} of H.
Example 10 See Fig. 5.

H has 6 matchings with weights: $1, x_{1}, x_{1}, x_{3}, x_{1} x_{3}$, and $x_{1} x_{3}$. Thus there are 6 terms in the decomposition, and $\mathcal{M}(T, \mathbf{x})$ is the sum of the following 6 terms:

$$
\begin{aligned}
& 1 . \phi_{1} \phi_{2,3} \Phi_{2,1}+x_{1} \cdot \phi_{1} \phi_{2,2} \phi_{2,3}+x_{1} \cdot \phi_{1} \phi_{2,2} \phi_{3,3}+x_{3} \cdot \phi_{1} \phi_{2,3}+x_{1} x_{3} \cdot \phi_{2,3}+x_{1} x_{3} \cdot \phi_{3,3} \\
& =1+4 x_{1}+2 x_{2}+3 x_{3}+3 x_{1}^{2}+7 x_{1} x_{2}+8 x_{1} x_{3}+x_{2}^{2}+3 x_{2} x_{3}+2 x_{3}^{2} \\
& +5 x_{1}^{2} x_{2}+3 x_{1}^{2} x_{3}+3 x_{1} x_{2}^{2}+7 x_{1} x_{2} x_{3}+4 x_{1} x_{3}^{2}+2 x_{1}^{2} x_{2}^{2}+3 x_{1}^{2} x_{2} x_{3} .
\end{aligned}
$$

Acknowledgement: We thank the referees for some helpful comments.

References

[1] E.J. Farrell, An Introduction to Matching Polynomials, Jour. Comb. Theory, Series B, 27, pp. 75-86, 1979.
[2] W. Fulton, J. Harris, Representation Theory, A First Course, Graduate Texts in Mathematics, 129, Springer-Verlag, 1991.
[3] C.D. Godsil, I. Gutman, On the Theory of the Matching Polynomial, Jour. Graph. Theory, 5, pp. 137-144, 1981.
[4] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th Edition, Oxford University Press, 1979.
[5] T.A. Springer, Invariant Theory, Lecture Notes in Mathematics, 585, Springer-Verlag, 1977.

