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Abstract

The construction given in [4] is extended to obtain new infinite
families of orthogonal arrays of strength 3. Regular 3-wise balanced
designs play a central role in this construction.
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1 Introduction

An orthogonal array of size N , with k constraints (or of degree k), s levels
(or of order s), and strength t, denoted OA(N, k, s, t), is a k × N array with
entries from a set of s ≥ 2 symbols, having the property that in every t×N
submatrix, every t×1 column vector appears the same number λ = N

st times.
The parameter λ is the index of the orthogonal array. An OA(N, k, s, t) is
also denoted by OAλ(t, k, s); in this notation, if t is omitted it is understood
to be 2, and if λ is omitted it is understood to be 1. A parallel class in an
OAλ(t, k, s) is a set of s columns so that each row contains all s symbols
within these s columns. A resolution of the orthogonal array is a partition of
its columns into parallel classes, and an OA with such a resolution is termed
resolvable. An OAλ(t, k, n) is class-regular or regular if some group Γ of order
n acts regularly on the symbols of the array. A class-regular OAλ(t, k, n) is
resolvable. See [1] for a brief survey on orthogonal arrays of strength at least
3.

In [4] a construction for orthogonal arrays of strength 3 is given that
starts from resolvable 3-(v, k, λ) designs and uses 3-transitive groups. The
conditions on the resolvable 3-design ingredient can be relaxed and a more
general theorem can be stated using a resolvable set system (X,B) such that:

1. the number of blocks containing three points x, y, z ∈ X, x 6= y 6= z 6=
x, is a constant λ3 that does not depend on the choice of x, y, z;

2. the number of blocks containing two points x, y ∈ X but disjoint from
a third point z ∈ X, x 6= y 6= z 6= x, is a constant b1

2 that does not
depend on the choice of x, y, z.

We allow (X,B) to contain blocks of any size, including 1, 2, 3 and |X|.
If x, y ∈ X, x 6= y, then the number of blocks containing x and y is

λ2 = b1
2 + λ3 independent of the choice of x and y. These set systems need

not be balanced for points. For example, the set system
{
{1, 2, 3, 4}, {1, 2,∞}, {1, 3,∞}, {1, 4,∞}, {2, 3,∞}, {2, 4,∞},
{3, 4,∞}, {1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}

}

has λ3 = 1, λ2 = 3, points 1, 2, 3, 4 each occur in 7 blocks, but ∞ in 6 blocks.
If resolvability is required, then every point must occur in the same number
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λ1 = r of blocks. Kageyama [3] called a t-wise balanced design that is also
i-balanced for each i < t a regular t-wise balanced design.

Theorem 1.1 (Kageyama [3]) Let (X,B) be a regular 3-wise balanced design
with at most two distinct block sizes, k1, k2. Then the subdesigns

Bki = {B ∈ B : |B| = ki}

are each 2-designs, i = 1, 2.

If λ3 6= 0, and the block size is constant, then such a design is a 3-
design. But these conditions are not necessary. For example, the edges of
the complete graph Kv when v is even have λ3 = 0, λ2 = 1, and λ1 = v − 1.
Furthermore Kv has a 1-factorization and so this set system is resolvable.

A 3-(v,K,Λ) design of width w is a pair (X,B) where X is a v-element
set of points and B is a collection of subsets of X called blocks satisfying:

1. the size of every block is in K;

2. Λ = [λ1, λ2, λ3] and every i-element subset is in λi blocks, i = 1, 2, 3
and

3. the blocks can be partitioned into λ1 resolution classes using no more
than w blocks in any one class.

The revised theorem is then:

Theorem 1.2 Let G act 3-transitively on the (n + 1)-element set Ω and let
m(n3 − n) be the order of G. If a 3-(v,K,Λ) design of width w exists such
that n = (λ1 − λ3)/(λ2 − λ3)− 2 with w ≤ n + 1 and λ3(n + 1) ≤ λ2, then a
resolvable OAm(n−1)(λ2−λ3)(3, v, n + 1) also exists.

Proof: This is exactly the same as in the proof of Theorem 2.1 in [4].
Resolvability of the OA follows from the transitivity of the action of G (this
was not pointed out in [4]). 2
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2 Applications of the Construction

As in [4] we apply Theorem 1.2 with sharply 3-transitive groups, so that
n = q is a power of a prime, and m = 1.

Lemma 2.1 Let q be an odd prime power. Then there exists an OAq−1(3, q+
3, q + 1).

Proof: Set v = q+3. Then a 1-factorization of Kv is a 3-(v, {2}, [v−1, 1, 0])
design of width w = v/2 = (q + 3)/2. Then w − 1 ≤ q and (λ1 − λ3)/(λ2 −
λ3) − 2 = (v − 1 − 0)/(1 − 0) − 2 = v − 3 = q, and the result follows from
Theorem 1.2. 2

Theorem 2.2 For all x ≥ 2 there exists a 3-(4x, {2, 4, 2x}, [1+2(x−1)(2x−
1), 2x − 1, 1]) design of width 2(x − 1).

Proof: The construction is essentially the doubling construction for Steiner
quadruple systems (see [2], for example). Let A and B be two disjoint sets of
size 2x and let {a1, a2, . . . , a2x−1} and {b1, b2, . . . , b2x−1} be one factorizations
of A and B respectively. Take as blocks

1. the sets A and B each of size 2x;

2. the x2 4-element subsets in each of the 2x − 1 families: {α ∪ β : α ∈
ai, β ∈ bi}, for all i = 1, 2, . . . , 2x − 1; and

3. all the 2
(

2x
2

)
pairs that are either in A or in B each repeated x − 2

times.

Arrange the blocks into resolution classes with at most 2(x− 1) blocks each,
to produce the required design. 2

If we use PGL2(q) and the 3-(v,K,Λ) designs constructed in Theorem 2.2
as ingredients to Theorem 1.2 then

q =
(λ1 − λ3)

(λ2 − λ3)
− 2

=
(1 + 2(x − 1)(2x − 1) − 1)

2(x − 1)
− 2

= 2x − 3.

Consequently, the following arrays are obtained.
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Lemma 2.3 An OAq2−1(3, 2(q + 3), q + 1) exists for every odd prime power
q.

Another way to construct 3-(v,K,Λ) designs is given next.

Theorem 2.4 If there exists an OAµ(3, n, yw), then there exists a 3-(n,K,Λ)
design of width w with

Λ = [µy3w3, µy3w2, µy3w].

Proof: Let A be an OAµ(3, n, v). We think of A as an n×µv3 array defined
on symbol set X, |X| = yw. Partition X into subsets Yi, i = 1, 2, . . . , w
with each |Yi| = y. We define a 3-(n,K,Λ) design of width w with wµv3

blocks, as follows: for i = 1, 2, . . . , w and each column j of A, define a block
Bi,j = {h : A[h, j] ∈ Yi}. Then ({1, . . . , n}, {Bij}) is a 3-(n,K,Λ) design of
width w with Λ = [µy3w3, µy3w2, µy3w]. 2

If Di is a 3-(v,Ki,Λi) design of width wi, for i = 1, 2, . . . , n then for
natural numbers αi, the union with repeated blocks ∪n

i=1αiDi of αi copies
of Di, 1, 2, . . . , n is a 3-(v,∪iKi,

∑
i αiΛi) design of width w = maxiwi. We

illustrate this idea next.

Theorem 2.5 Let q be a prime power and choose integers a, b,m ≥ 1 such
that

1. q + 3 = m(a + b);

2. ma ≥ 4;

3. m(a + 2b) ≡ 0 (mod 4); and

4. (m(a + 2b) − 4)/4 ≡ 0 (mod b).

Then an OA(a + b)

4b
(q − 1 + mb)(q − 1)

(3,

(
a + 2b

a + b

)
(q + 3), q + 1) exists.
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Proof: Let x = m(a + 2b)/4. Then x ≥ 2 is a positive integer and by
Theorem 2.2 there is 3-(4x, {2, 4, 2x}, [1 + 2(x− 1)(2x− 1), 2x− 1, 1]) design
D1 of width 2(x − 1). Also the edges of the complete graph K4x (see the
proof of Corollary 2.1) form a 3-(4x, {2}, [4x − 1, 1, 0]) design D2 of width
w = 2x. Take one copy of D1 and a

b
(x − 1) copies of D2 to form a

3-
(
4x, {2, 4, 2x},

[
1 +

(x− 1)(4(a + b)x− (a + 2b))
b

,
(x− 1)(a + 2b)

b
, 1
])

design D of width w = 2x. The conditions of Theorem 1.2 are satisfied. 2

The main applications of Theorem 1.2 rest on finding suitable regular
3-wise balanced designs. We have illustrated in this section the applications
of some easily constructed designs of this type, but expect that further con-
structions can lead to more existence results for orthogonal arrays.
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