Single-change circular covering designs

John P. McSorley*
Department of Mathematics, Southern Ilinois University, Carbondale. IL 62901-4408. USA

Received 9 July 1997; revised 20 November 1997; accepted 3 August 1998

Abstract

A single-change circular covering design (scced) based on the set $[v]=\{1, \ldots, v\}$ with block size k is an ordered collection of b blocks, $\mathscr{B}=\left\{B_{1}, \ldots, B_{i}\right\}$, each $B_{i} \subset[v]$, which obey: (1) each block differs from the previous block by a single element, as does the last from the first, and, (2) every pair of $[v]$ is covered by some block. The object is to minimize b for a fixed r and k. We present some minimal constructions of scceds for arbitrary v when $k=2$ and 3 , and for arbitrary k when $k+1 \leqslant v \leqslant 2 k$. Tight designs are those in which each pair is covered exactly once. Start-Finish arrays are used to construct tight designs when $v>2 k$; there are 2 non-isomorphic tight designs with $(v, k)=(9,4)$, and 12 with $(v, k)=(10,4)$. Some non-existence results for tight designs, and standardized, element-regular, perfect, and column-regular designs are considered. (C) 1999 Elsevier Science B.V. All rights reserved

Keywords: Single-change; Circular; Covering; Design; Tight

1. Definitions; notation; examples

A single-change circular covering design based on the set $[v]=\{1, \ldots, v\}$ with block size k is an ordered collection of b blocks, $\mathscr{B}=\left\{B_{1} \ldots, B_{b}\right\}$, each an unordered subset of k distinct elements from [v], which obey:
(1) each block differs from the previous block by a single element, i.e., $\left|B_{i-1} \cap B_{i}\right|=$ $k-1$ for $i=2, \ldots, b$; and the last block, B_{b}, differs from the first, B_{1}, by a single element, i.e., $\left|B_{b} \cap B_{1}\right|=k-1$;
(2) every (unordered) pair $\{x, y\}$ of $[v]$, with $x \neq y$, can be written as $\left\{e_{i}, z\right\}$ where $e_{i} \in B_{i} \backslash B_{i-1}$ and $z \in B_{i}$ for some $i=2 \ldots, b$, or as $\left\{e_{1}, z\right\}$ where $e_{1} \in B_{1} \backslash B_{i}$, and $z \in B_{1}$.

[^0]$\left.\begin{array}{cccc}\text { blocks } & \text { introduced } & \text { pairs covered }\end{array}\right]$
\mathcal{E}, an economical $\operatorname{scccd}(6,3,8)$
(a)
$\mathcal{Y}_{3}, a \operatorname{tight} \operatorname{scccd}(5,3,5)$
(b)

Fig. 1. Examples: \mathscr{E} and \mathscr{Y}_{3}.

For $i=2, \ldots, b$ we say that element e_{i} is introduced in block B_{i}, and the pairs $\left\{e_{i}, z\right\}$ where $z \in B_{i}$ are covered by B_{i}. Similarly, e_{1} is introduced in B_{1} and pairs $\left\{e_{1}, z\right\}$ where $z \in B_{1}$ are covered by B_{1}. We also say that a pair is covered by \mathscr{B} if it is covered by some block in \mathscr{B}.

A single-change circular covering design is simply a single-change covering design (see $[2,4]$) in which a 'single-change' is also required between B_{b} and B_{1}.

We denote a single-change circular covering design by scccd; and a scced based on [v] with block size k by $\operatorname{scccd}(v, k)$, or by $\operatorname{scccd}(v, k, b)$ if we wish to mention that it contains b blocks. For a fixed v and k, where $k \geqslant 2$ and $v \geqslant k+1$, we denote by $b_{*}(v, k)$ the smallest b for which there exists a $\operatorname{scccd}(v, k, b)$, and we call such a $\operatorname{scccd}\left(v, k, b_{*}(v, k)\right)$ minimal. We write our designs vertically as in [4].

Our first example is a $\operatorname{scccd}(6,3,8)$ labelled \mathscr{E} and shown in Fig. 1(a). In \mathscr{E} each pair, except $\{4,1\}$, is covered once; $\{4,1\}$ is covered twice, in B_{5} and in B_{8}. This is an economical design, see Section 5.

As the ordering of the elements in a block is immaterial, we often (but not always) leave a block's unchanged elements in the same columns as in the previous block, see \mathscr{E} in Fig. 1(a); such a representation of \mathscr{E} is called column-strict. In block B_{4} element 1 is introduced because $1 \notin B_{3}$ and element 6 is changed because $6 \notin B_{5}$.

Our second example is a $\operatorname{scccd}(5,3,5)$, see Fig. $1(b)$; we call this design \mathscr{Y}_{3}, see Section 6. Here the 10 pairs from the set $\{1,2,3,4,5\}$ are each covered exactly once, 2 per block; we call such a design tight, see Section 5 .

We generally use the notation $\mathscr{B}=\left\{B_{1}, \ldots, B_{b}\right\}$ for an arbitrary $\operatorname{scccd}(v, k, b)$ and \mathscr{C} for an arbitrary tight $\operatorname{scccd}(v, k, b)$, often with $v>2 k$.

The main object of this paper is to study scceds, with special interest in the function $b_{*}(v, k)$ and in tight designs. We will see that the structure and construction of these designs are somewhat different from those of the single-change covering designs of [2,4].

2. Requirements for \mathscr{B} to form a single-change circular covering design

Let $\mathscr{B}=\left\{B_{1}, \ldots, B_{h}\right\}$ be an ordered collection of b blocks; each B_{i} contains k distinct elements from [v].

We say that \mathscr{B} has the single-change circular property if $\left|B_{i-1} \cap B_{i}\right|=k-1$ for $i=2, \ldots, b$, and $\left|B_{b} \cap B_{1}\right|=k-1$.

Lemma 2.1. \mathscr{B} is $a \operatorname{scccd}(v, k)$ if and only if
(i) \mathscr{B}_{8} has the single-change circular property, and
(ii) every pair of $[v]$ is in some block of \mathscr{B}, and
(iii) no pair of $[v]$ is in every block of \mathscr{B}.

Proof. First suppose that \mathscr{B} is a $\operatorname{scccd}(v, k)$. Then (i) and (ii) are true by definition of a scced. Now suppose that (iii) is false, and that the pair $\{x, y\}$ is in every block of \mathscr{B}. Then neither x nor y is introduced in any block, hence $\{x, y\}$ is not covered by \mathscr{B}, a contradiction because \mathscr{B} covers every pair.

Now suppose that \mathscr{B} satisfies (i), (ii), and (iii). As \mathscr{B} satisfies (i) we need only show that it covers every pair of $[v]$ to conclude that it is a $\operatorname{scccd}(v, k)$. Now, by (ii), every pair $\{x, y\}$ lies in some block of \mathscr{B} and, by (iii), the pair $\{x, y\}$ is not in every block. So let $B_{i_{1}}, B_{i_{2}}, \ldots, B_{i_{1}}$, where $t \leqslant b-1$, be a sequence of consecutive blocks each containing $\{x, y\}$; the block immediately 'before' $B_{i,}$, say B, does not contain $\{x, y\}$. So exactly one of x or y lies in B and the other does not. Hence, either y or x (respectively) is introduced in $B_{i!}$, and so $\{x, y\}$ is covered there. Hence \mathscr{B} covers every pair and is a $\operatorname{scccd}(v, k)$.

3. Designs with $k=2$ and 3

$k=2$: If a tight $\operatorname{scccd}(v, 2, b)$ exists, then $b=v(v-1) / 2$, see Section 5. Now, given a tight $\operatorname{scccd}(v, 2)$ with first block $B_{1}=(1,2)$ and last block $B_{b}=(v, 1)$, we may add on the v blocks as shown in Fig. 2(a) to obtain a tight $\operatorname{scccd}(v+1,2, v(v+1) / 2)$ based on $[v+1]$ with last block $(v+1,1)$.

Beginning with the tight $\operatorname{scced}(3,2,3)$ shown in Fig. 2(b) we can use this construction repeatedly to obtain a tight $\operatorname{scccd}(v, 2)$ for any $v \geqslant 3$.
$k=3$: If a tight $\operatorname{scccd}(v, 3, b)$ exists, then $b=v(v-1) / 4$, see Section 5 ; and so $v \equiv 0$ or $1(\bmod 4)$. Let $v \equiv 0(\bmod 4)$, and suppose that we have a tight $\operatorname{scccd}(v, 3)$ with $B_{1}=(1,2,3)$ and $B_{b}=(v, 1,2)$ in which element 1 is introduced in B_{b}. We can then construct a tight $\operatorname{scccd}(v+4,3,(v+3)(v+4) / 4)$ based on $[v+4]$ by altering B_{b} to ($v, v+1,2$) and adding on the $2 v+3$ blocks as shown in Fig. 2(c). This new design has last block $(v+4,1,2)$ in which 1 is introduced; so we can use this construction repeatedly to obtain a tight $\operatorname{scccd}(v, 3)$ for any $v \equiv 0(\bmod 4)$ beginning with the tight $\operatorname{scccd}(4,3,3)$ shown in Fig. 2(d).

					123
	1,	2,	3		143
			.	123	543
			.	423	542
				412	512
1,2	$\underline{v}, \quad \underline{v+1}, \quad \underline{2}$				
.		$v+2$,		$\begin{gathered} \text { a tight } \\ \operatorname{scccd}(4,3,3) \end{gathered}$	$\begin{gathered} \text { a tight } \\ \operatorname{scccd}(5,3,5) \end{gathered}$
.		$v+2$,	$v+4$		
.	$v, \quad v+2, v+3$				(e)
$\underline{v}, \quad \underline{1}$	v,	1,	$v+3$	(d)	
$v, v+1$	$v+1, \quad 1$,		$1, \quad v+3$		
$v-1, v+1$	$v+1$	$1, \quad v+2$			123
. .	$v+1, v-1, v+2$				173
.		,	.		175
-	123	145
$1, \quad v+1$	-		.	423	146
	$\begin{aligned} & v+1 \\ & v+1 \\ & v+3 \end{aligned}$		$v+2$	453	346
(a)		3,	$v+4$	463	356
		3 ,	$v+4$	461	256
12	$v+3$.		.	561	276
32	.	.	-	562	274
31	$v+3, v-1, v+4$			612	712
a tight	$\begin{aligned} & v+3 \\ & v+4 \end{aligned}$, 2,	$\begin{gathered} v+4 \\ 2 \end{gathered}$	an economical $\operatorname{scccd}(6,3,8)$	an economical $\operatorname{scccd}(7,3,11)$
$\operatorname{scccd}(3,2,3)$					
(b)		(c)		(f)	(g)

Fig. 2. Starter designs and additions for $k=2$ and 3.

We can also construct a tight $\operatorname{scccd}(v, 3)$ when $v \equiv 1(\bmod 4)$ for any $v \geqslant 5$ starting with the tight $\operatorname{scccd}(5,3,5)$ shown in Fig. 2(e); and an economical $\operatorname{scccd}(v, 3$, $\lceil v(v-1) / 4\rceil)$ for $v \equiv 2$ or $3(\bmod 4)$ for any $v \geqslant 6$ starting with the economical scceds in (f) or (g) respectively.

Theorem 3.1. (i) A tight $\operatorname{scccd}(v, 2)$ exists for all $v \geqslant 3$;
(ii) a tight $\operatorname{scccd}(v, 3)$ exists for all $v \equiv 0$ or $1(\bmod 4), v \geqslant 4$;
(iii) an economical $\operatorname{scccd}(v, 3)$ exists for all $v \equiv 2$ or $3(\bmod 4), v \geqslant 6$.

4. Standardized forms; isomorphisms; reverses

A $\operatorname{scccd}(v, k, b)$ is standardized or in standardized form (see Section 1 of [2]) if:
(1) the elements of the first block are $1,2, \ldots, k$ in that order;
(2) the other elements are introduced initially in the order $k+1, k+2, \ldots, v$;
(3) the elements of the first block are changed initially in the order $k, k-1, \ldots, 2,1$ (if our $\operatorname{scccd}(v, k, b)$ has one element, say element 1 , in every block, then the elements of the first block are changed initially in the order $k, k-1, \ldots, 2$);

Fig. 3. The economical scced $(6,3,8), \mathscr{E}$, its standardized form, its representative standardized form. and its reverse.
(4) beginning at the second block, a block's unchanged elements are in the same columns as in the previous block (i.e., it is column-strict).
Given any $\operatorname{scccd}(v, k, b), \mathscr{B}$, that satisfies (4) above, in order to change it to its standardized form we need to apply a permutation of $[v]$ to it, followed by a permutation of its columns. For example, if we apply the permutation $(1,6)(3,4)$ to $\mathscr{E}=\left\{B_{1}, B_{2}, \ldots, B_{*}\right\}$ shown in Fig. 3(a), and then permute its 2 nd and 3rd columns, we arrive at its standardized form shown in (b), with blocks labelled L_{i}.

A cyclic shift of the ordered blocks $: B=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ is one of the following rearrangements:

$$
\begin{aligned}
: B_{B}=\mathscr{B}_{1} & =\left\{B_{1}, B_{2}, \ldots, B_{b}\right\} \\
B_{2} & =\left\{B_{2}, B_{3}, \ldots, B_{b}, B_{1}\right\}, \\
\cdot & \\
\cdot & \\
B_{i} & =\left\{B_{i}, \ldots, B_{h}, B_{1}, \ldots, B_{i-1}\right\}, \\
\cdot & \\
B_{B_{h}} & =\left\{B_{b}, B_{1}, \ldots, B_{b-1}\right\} .
\end{aligned}
$$

The block arrangement \mathscr{B}_{i} is called the ith cyclic shift of \mathscr{B}. For each i the first block in \mathscr{S}_{i} is B_{i}.

Each scced $\mathscr{B}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ has b standardized forms, one for each cyclic shift Z_{i}. Let $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ denote the standardized form of \mathscr{B}_{i} for each $i=1 \ldots, b$.

The $\operatorname{scced}(5,3,5), \mathbb{Z}_{3}$, of Fig. 1(b) has each of its 5 standardized forms identical (shown in Fig. 15(d)); but \mathscr{E} in Fig. 3(a) has each of its 8 standardized forms different. If a design \mathscr{B} does not have all of its standardized forms identical, one of these forms can usefully be chosen as the representative standardized form, $\operatorname{rsf}(\mathscr{B})$. In order to do this for an arbitrary $: \mathcal{B}=\left\{B_{1}, B_{2}, \ldots, B_{k}\right\}$, we will presently define, for each i, four
finite sequences associated with $\operatorname{sf}\left(\mathscr{B}_{i}\right)$, namely S_{1}, S_{2}, S_{3}, and S_{4}. (In general, the sequences S_{1}, S_{2}, S_{3}, and S_{4} will be different for each i, but we choose this notation for simplicity.) We then consider the ordered set $\left\{S_{1}, S_{2}, S_{3}, S_{4}\right\}$. So each $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ gives us an ordered set of four sequences. Next, we order these ordered sets of four sequences according to the criteria below, and choose the 'least' in this ordering. Suppose this least ordered set comes from $\operatorname{sf}\left(\mathscr{B}_{l}\right)$; then $\operatorname{sf}\left(\mathscr{B}_{l}\right)$ is taken as $\operatorname{rsf}(\mathscr{B})$.

Again for simplicity, we use $L_{1}, L_{2}, \ldots, L_{b}$, to denote the b blocks of $\operatorname{sf}\left(\mathscr{B}_{i}\right)$, for every $i=1, \ldots, b$, even though generally the blocks differ for each i. So $\operatorname{sf}\left(\mathscr{P}_{i}\right)=\left\{L_{1}, L_{2}\right.$, $\left.\ldots, L_{b}\right\}$ where $L_{1}=(1,2, \ldots, k)$ and $L_{2}=(1,2, \ldots, k+1)$.

The sequences S_{1} and S_{2} are sequences of distinct blocks from $\left\{L_{1}, L_{2}, \ldots, L_{b}\right\}$; and S_{3} and S_{4} are sequences of not necessarily distinct elements from [$\left.v\right]$. For a fixed $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ we define S_{1} with reference to (2) above. For $t=1, \ldots, v-k$, the t th member of S_{1} is the block into which element $k+t$ is initially introduced. Thus S_{1} begins with L_{2}. Sequence S_{2} (see (3) above) is a sequence of blocks beginning at L_{1}. For $t=1, \ldots, k$, the t th member of S_{2} is the first block from which element $k-t+1$ is initially changed (t stops at $k-1$ if \mathscr{B} has element 1 in every block).

Just as for $i=1, \ldots, b$, the element e_{i} is introduced into block L_{i}, let e_{i}^{\prime} be the element changed from L_{i}. So we have $e_{i}^{\prime} \in L_{i} \backslash L_{i+1}$ for $i=1, \ldots, b-1$, and $e_{b}^{\prime} \in L_{b} \backslash L_{1}$. Now define sequence $S_{3}=\left\{e_{i}: L_{i} \notin S_{1}\right\}$, arranged with increasing i; so, e_{1} is its first member. Similarly, we define $S_{4}=\left\{e_{i}^{\prime}: L_{i} \notin S_{2}\right\}$, arranged with increasing i.

For an example see $\operatorname{sf}\left(\mathscr{E}_{1}\right)$ in Fig. 3(b), where the column of introduced elements, e_{i}, is labelled 'in', and the column of changed elements, e_{i}^{\prime}, is labelled 'ch'. We have $S_{1}=\left\{L_{2}, L_{3}, L_{4}\right\}, S_{2}=\left\{L_{1}, L_{2}, L_{4}\right\}, S_{3}=\{1,3,5,2,3\}$, and $S_{4}=\{5,4,3,5,6\}$.

Thus each $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ gives us an ordered set of four sequences. We now order these ordered sets of four sequences by, first of all, lexicographically ordering their first elements, the S_{1} sequences, according to the rule: $L_{r}<L_{s}$ if and only if $r<s$, and choosing the set(s) whose S_{1} sequence is the first (i.e., the least) in this list. If two (or more) sets have identical S_{1} sequences, we choose the one with the least S_{2} sequence using the same ordering. If two (or more) sets have identical S_{1} and S_{2} sequences then we compare their S_{3} sequences and order them lexicographically using the natural $<$ ordering on [ν], and choose the least. If still identical, we compare their S_{4} sequences, with the < ordering, and choose the least. Two such sets with identical S_{1}, S_{2}, S_{3}, and S_{4} sequences can easily be shown to correspond to standardized forms that are identical.

By this process we arrive at the particular $\operatorname{sf}\left(\mathscr{B}_{l}\right)$ with the least set of sequences according to our lexicographic orderings; we take this particular standardized form as the representative standardized form of $\mathscr{B}, \operatorname{rsf}(\mathscr{B})$. For example, $\operatorname{rsf}(\mathscr{E})$ shown in Fig. 3(c), is $\operatorname{sf}\left(\mathscr{E}_{8}\right)$; and $\operatorname{rsf}\left(\mathscr{Y}_{3}\right)$ is shown in Fig. 15(d).

Two $\operatorname{scccd}(v, k, b) \mathrm{s} \mathscr{B}$ and \mathscr{B}^{\prime} are isomorphic, $\left(\mathscr{B} \cong \mathscr{B}{ }^{\prime}\right)$, if we can apply a permutation of [v] combined with a cyclic shift of the blocks of \mathscr{B} to obtain \mathscr{B}^{\prime}. Similarly, an automorphism of a $\operatorname{scccd}(v, k, b) \mathscr{B}$ is a permutation of $[v]$ which, when applied to \mathscr{B}, produces a cyclic shift of \mathscr{B}. For example, the permutation ($1,2,3,4,5$) is an automorphism of \mathscr{Y}_{3}.

Theorem 4.1. Let \mathscr{B} and \mathscr{B}^{\prime} be two $\operatorname{scccd}(v, k, b) s$. Then $\mathscr{B} \cong \mathscr{B}^{\prime}$ if and only if $\operatorname{rsf}(\mathscr{B})=\operatorname{rsf}\left(\mathscr{B}^{\prime}\right)$.

Proof. Suppose $\mathscr{B} \cong \mathscr{B}^{\prime}$, then, for any $i \in\{1, \ldots, b\}$, there exists a $j \in\{1, \ldots, b\}$ such that \mathscr{B}_{i}, the i th cyclic shift of \mathscr{B}, can be changed into \mathscr{B}_{j}^{\prime} using only a permutation on v, i.e., with no cyclic shift of the blocks of \mathscr{B}_{i}. So $\operatorname{sf}\left(\mathscr{B}_{i}\right)=\operatorname{sf}\left(\mathscr{B}_{j}^{\prime}\right)$, and so $\left\{\operatorname{sf}\left(\mathscr{B}_{1}\right), \ldots, \operatorname{sf}\left(\mathscr{B}_{b}\right)\right\} \subseteq\left\{\operatorname{sf}\left(\mathscr{B}_{1}^{\prime}\right), \ldots, \operatorname{sf}\left(\mathscr{B}_{b}^{\prime}\right)\right\}$. Similarly, $\left\{\operatorname{sf}\left(\mathscr{B}_{1}^{\prime}\right), \ldots, \operatorname{sf}\left(\mathscr{B}_{b}^{\prime}\right)\right\} \subseteq\left\{\operatorname{sf}\left(\mathscr{B}_{1}\right)\right.$, $\left.\ldots, \operatorname{sf}\left(\mathscr{B}_{b}\right)\right\}$ and this gives: $\left\{\operatorname{sf}\left(\mathscr{B}_{1}\right), \ldots, \operatorname{sf}\left(\mathscr{B}_{b}\right)\right\}=\left\{\operatorname{sf}\left(\mathscr{B}_{1}^{\prime}\right), \ldots, \operatorname{sf}\left(\mathscr{B}_{h}^{\prime}\right)\right\}$. Hence $\operatorname{rsf}\left(\mathscr{\mathscr { B } ^ { \prime })}=\right.$ $\operatorname{rsf}\left(\mathscr{B}^{\prime}\right)$.

Now suppose that $\operatorname{rsf}(\mathscr{B})=\operatorname{rsf}\left(\mathscr{B}^{\prime}\right)$, then $\mathscr{B} \cong \operatorname{rsf}(\mathscr{B})=\operatorname{rsf}\left(\mathscr{B}^{\prime}\right) \cong \mathscr{B}^{\prime}, \quad$ as required.

The reverse of the scccd $\mathscr{B}=\left\{B_{1}, B_{2}, \ldots, B_{b}\right\}$ is the scced obtained by reversing the order of the blocks of \mathscr{B}; we denote this design by $\operatorname{rev}(\mathscr{B})=\left\{B_{h}, B_{b-1}, \ldots, B_{1}\right\}$. The reverse of \mathscr{E} is shown in Fig. 3(d). If $\mathscr{B} \cong \operatorname{rev}(\mathscr{B})$ we say that \mathscr{B} is self-reverse.

5. Lower bounds on $\boldsymbol{b}_{\boldsymbol{*}}(\boldsymbol{v}, \boldsymbol{k})$; constructions of designs for $\boldsymbol{k}+1 \leqslant v \leqslant 2 k$

Lemma 5.1. For $v \geqslant 4$ and $k \geqslant 3$, the value of $b_{*}(v, k)$, the minimum number of blocks in $a \operatorname{scccd}(v, k)$, satisfies

$$
b_{*}(v, k) \geqslant \max \left\{v-1,\left\lceil\frac{v(v-1)}{2(k-1)}\right\rceil\right\} .
$$

Proof. In a $\operatorname{scccd}(v, k)$ exactly one element is introduced per block, so, if $b_{*}(v, k)<$ $v-1$, then at most $v-2$ distinct elements are introduced. Hence at least 2 distinct elements are not introduced, and the pair containing them is not covered, a contradiction. So $b_{*}(v, k) \geqslant v-1$.

A $\operatorname{scccd}(v, k)$ must cover all $v(v-1) / 2$ pairs of $[v]$, and $k-1$ pairs are covered per block. Thus $b_{*}(v, k) \cdot(k-1) \geqslant v(v-1) / 2$, and so the result.

Corollary 5.2. For $v \geqslant 4$ and $k \geqslant 3$ we have

$$
b_{*}(v, k) \geqslant \begin{cases}v-1 & \text { for } k+1 \leqslant v \leqslant 2 k-2, \tag{1}\\ {\left[\frac{v(v-1)}{2(k-1)}\right\rceil} & \text { for } v>2 \mathrm{k}-2 .\end{cases}
$$

If $b_{*}(v, k)$ satisfies equation (1) with equality, then we say that the corresponding $\operatorname{scccd}(v, k)$ is economical; except that if $b_{*}(v, k)=v(v-1) /[2(k-1)]$ then the corresponding $\operatorname{scccd}(v, k)$ is tight. An economical and a tight scccd are shown in Fig. 1.

Consider the first case of Corollary 5.2. If a $\operatorname{scccd}(v, k)$ with $k+1 \leqslant v \leqslant 2 k-2$ and with the minimal number of $v-1$ blocks exists, then a total of $v-1$ elements are introduced in the design; from the proof of Lemma 5.1 these $v-1$ elements are distinct. Hence, without loss of generality, in such a design the elements $1, \ldots . v-1$
are each introduced exactly once; the element v is not introduced, and so appears in every block. The following construction satisfies these requirements:

Arrange the elements of $[v-1]$ in a circle and call this arrangement the circular [$v-1]$. Now, for $1 \leqslant i \leqslant v-1$, let A_{i} be the block beginning at i and containing $k-1$ consecutive elements taken clockwise from the circle; i.e., $A_{i}=(i, i+1, \ldots, i+k-2)$, where addition is taken modulo $v-1$ with $v-1$ replacing 0 . Now let $B_{i}=A_{i} \cup\{v\}$ and $\mathscr{B}=\left\{B_{1}, \ldots, B_{v-1}\right\}$.

Theorem 5.3. For $k \geqslant 3$ and $k+1 \leqslant v \leqslant 2 k-2$ the blocks $\mathscr{B}=\left\{B_{1}, \ldots, B_{r-1}\right\}$ where $B_{i}=A_{i} \cup\{v\}$ form an economical $\operatorname{scced}(v, k, v-1)$.

Proof. We need only show that \mathscr{B} is a $\operatorname{scccd}(v, k)$. It then follows, since $|\mathscr{B}|=$ $v-1$, that it is an economical $\operatorname{scccd}(v, k, v-1)$. We show that \mathscr{B} satisfies (i)-(iii) of Lemma 2.1.
(i) This is clear from the definition of \mathscr{B}.
(ii) Now $B_{i}=(i, i+1, \ldots, i+k-2) \cup\{v\}$, where addition is taken modulo $v-1$ with $v-1$ replacing 0 . So element $i+k-2$ is introduced in B_{i}, i.e., element i is introduced in B_{i-k+2}. Hence, for $1 \leqslant i \leqslant v-1$, pair $\{i, v\}$ is covered by B_{i-k+2}. This deals with pairs that contain v.

Now consider the pair $\{i, j\}$ where $1 \leqslant i<j \leqslant v-1$ and let $v-1$ be odd. The pair $\{i, j\}$ can be covered by a 'run' of elements starting either at i or at j and containing $v / 2$ consecutive elements of the circular $[v-1]$. But $v \leqslant 2 k-2$ and so $v / 2 \leqslant k-1$, i.e., such a run is contained in A_{i} or A_{j}, so in B_{i} or B_{j}. Hence $\{i, j\}$ is covered by \mathscr{B}. A similar argument works when $v-1$ is even.
(iii) Let $\{i, j\}$ be in every block; then, without loss of generality, we have $1 \leqslant i \leqslant$ $v-1$. But i is introduced in B_{i-k+2}, and so cannot be in the previous block, a contradiction. Hence no pair is in every block.

Thus \mathscr{B} is an economical $\operatorname{scccd}(v, k, v-1)$.
An economical scced $(5,4,4)$ constructed using Theorem 5.3 is shown in Fig. 4(a).
For a fixed $k \geqslant 3$ the only tight designs amongst the economical $\operatorname{scccd}(v, k, v-1) \mathrm{s}$ with $k+1 \leqslant v \leqslant 2 k-2$ occur when $v(v-1) / 2=(k-1)(v-1)$, i.e., when $v=2 k-2$. So Theorem 5.3 with $v=2 k-2$ yields tight designs:

Theorem 5.4. For $k \geqslant 3$ and $v=2 k-2$ the blocks $\mathscr{B}=\left\{B_{1}, \ldots, B_{2 k-3}\right\}$ where $B_{i}=A_{i} \cup$ $\{2 k-2\}$ form a tight $\operatorname{scccd}(2 k-2, k, 2 k-3)$.

See Fig. 4(b) for a tight scced $(6,4,5)$ constructed using Theorem 5.4.
So far, for a fixed $k \geqslant 3$, we have constructed economical scceds when $k+1 \leqslant v \leqslant$ $2 k-2$. We now consider $v=2 k-1$ and $v=2 k$, so we are in the second case of Corollary 5.2 in which a scced has $b \geqslant\lceil v(v-1) /[2(k-1)]\rceil$ blocks.
$v=2 k-1$: Here $b \geqslant 2 k-1$. Consider the circular [$2 k-1$]. For $1 \leqslant i \leqslant 2 k-1$ let $B_{i}=(i, i+1, \ldots, i+k-1)$, where addition is taken modulo $2 k-1$ with $2 k-1$ replacing

B_{1}
B_{2}
$B_{2} 335$
B_{3}
3415
B_{4}

an economical
$\operatorname{scccd}(5,4,4)$
(a)

	$B_{1} 1234$
$B_{2} 2345$	
$B_{1} 1236$	$B_{3} 3456$
$B_{2} 2346$	$B_{4} 4567$
$B_{3} 3456$	$B_{5} 5671$
$B_{4} 4516$	$B_{6} 6712$
$B_{5} 5126$	$B_{7} 7123$
a tight	a tight
$\operatorname{seccd}(6,4,5)$	$\operatorname{scccd}(7,4,7)$

(b)
(c)

Fig. 4. Designs with $k=4$ constructed using Theorems 5.3-5.5.

$$
\operatorname{scccd}(2 k, k, 2 k+2)
$$

$B_{1} \quad 1234$
$B_{2} 2345$
$B_{3} \quad 3456$
$C \quad 8456$
$B_{4} \quad 4567$
$B_{5} \quad 5671$
$B_{6} \quad 6712$
$B_{7} \quad 7123$
$C^{\prime \prime} 8123$
$\operatorname{scccd}(8,4,10)$
(b)

Fig. 5. The economical $\operatorname{sccd}(2 k, k, 2 k+2)$ of Theorem 5.6 (tight only for $k=2$), this design for $k-4$.

0 . Then we have the following result. This construction and the next also work for $k=2$.

Theorem 5.5. For $k \geqslant 2$ and $v=2 k-1$ the blocks $: B=\left\{B_{1}, \ldots, B_{2 k-1}\right\}$ where $B_{i}=(i, i+$ $1, \ldots, i+k-1)$ form a tight $\operatorname{scccd}(2 k-1, k, 2 k-1)$.

See Fig. 4(c) for a tight $\operatorname{scced}(7,4,7)$ constructed using Theorem 5.5.
$v=2 k$: Here $b \geqslant 2 k+2$. To construct an economical $\operatorname{scccd}(2 k, k, 2 k+2)$ based on [2k] we take the blocks $\left\{B_{1}, \ldots, B_{2 k-1}\right\}$ of the $\operatorname{scccd}(2 k-1, k, 2 k-1)$ in Theorem 5.5 above and add on finally 3 new blocks: C between B_{k-1} and B_{k}, then C^{\prime} after $B_{2 k-1}$, and $C^{\prime \prime}$ after C^{\prime}, i.e., between C^{\prime} and B_{1}; see Fig. 5(a).

As the elements introduced in B_{1} and B_{k} are unchanged, the pairs covered by these blocks are unchanged, and pairs containing the element $2 k$ are covered in the 3 new blocks. Using Lemma 2.1 it is clear this is an economical $\operatorname{scccd}(2 k, k, 2 k+2)$. This economical design is tight only when $2 k+2=2 k(2 k-1) /[2(k-1)]$, i.e., when $k=2$.

Theorem 5.6. For $k \geqslant 2$ and $v=2 k$ the blocks $\mathscr{B}=\left\{B_{1}, B_{2}, \ldots, B_{k-1}, C, B_{k}, \ldots, B_{2 k-1}\right.$, $\left.C^{\prime}, C^{\prime \prime}\right\}$ form an economical $\operatorname{scccd}(2 k, k, 2 k+2)$, which is tight when $k=2$.

See Fig. 5(b) for an economical $\operatorname{scccd}(8,4,10)$ constructed using Theorem 5.6.
The theorem below summarizes this section, cf., Corollary 5.1 of [4].
Theorem 5.7. For $k \geqslant 3$ we have

$$
b_{*}(v, k)= \begin{cases}v-1 & \text { for } k+1 \leqslant v \leqslant 2 k-2 \\ v & \text { for } v=2 k-1 \\ v+2 & \text { for } v=2 k\end{cases}
$$

So, in this section, we have constructed scceds with a minimal number of blocks for $k \geqslant 3$ and $k+1 \leqslant v \leqslant 2 k$, and have given examples for $k=4$. From now on we concentrate mainly on tight designs.

6. Some families of tight designs

Tight scceds are of special interest; they are analogous to tight single-change covering designs, see [2].

So far we have three infinite families of tight sccods with a fixed k, see Theorem 3.1:
(i) $\operatorname{scccd}(v, 2)$ for all $v \geqslant 3$;
(ii) $\operatorname{scccd}(v, 3)$ for all $v \equiv 0(\bmod 4), v \geqslant 4$;
(iii) $\operatorname{scccd}(v, 3)$ for all $v \equiv 1(\bmod 4), v \geqslant 5$.

For the tight designs of [2] infinite families are not known to exist with k variable, except in the case $v=k$, here we have two infinite families with k variable:
(iv) $\mathfrak{F}=\left\{\mathscr{X}_{k}: \mathscr{X}_{k}\right.$ is the tight $\operatorname{scccd}(2 k-2, k, 2 k-3)$ from Theorem 5.4, $\left.k \geqslant 3\right\}$;
(v) $\mathfrak{G}=\left\{\mathscr{Y}_{k}: \mathscr{Y}_{k}\right.$ is the tight $\operatorname{scccd}(2 k-1, k, 2 k-1)$ from Theorem $\left.5.5, k \geqslant 2\right\}$.
(Note that \mathscr{G}_{3} is shown in Fig. 1(b).)
If a scced has the same parameters as a member of one of these two families it is isomorphic to that member:

Theorem 6.1. For a fixed $k \geqslant 3$ let \mathscr{X} be $a \operatorname{scccd}(2 k-2, k, 2 k-3)$. Then $\mathscr{X} \cong \mathscr{X}_{k} \in \mathscr{F}$.
Proof. The parameters of \mathscr{X} indicate that it is tight. Let \mathscr{X} be based on [v] where $v=2 k-2$.

Now \mathscr{X} has $v-1$ blocks, so, from the comments preceding Theorem 5.3, it contains some element, say v, in every block. Any other element $1, \ldots, v-1$ is introduced exactly
once and remains in $k-1$ successive blocks because it must appear in $v-1=2 k-3$ covered pairs; it appears in $k-1$ covered pairs in its first block and in one covered pair in each of its $k-2$ successive blocks.

Hence, up to a permutation of [v], we may construct \mathscr{X} as follows: first, put v in every block; then, for $i=1, \ldots, v-1$, introduce i in B_{i}, and leave it there for $k-1$ successive blocks. Then block B_{k-1} will be then block B_{k-1} will be $(1,2, \ldots, k-1, v)$ and a cyclic shift of the blocks making this the first block will produce \mathscr{X}_{k}. Hence $\mathscr{X} \cong \mathscr{X}_{k}$.

Similarly for the family \mathfrak{G}.

Theorem 6.2. For a fixed $k \geqslant 2$ let 9 be $a \operatorname{scccd}(2 k-1, k, 2 k-1)$. Then $\mathscr{Y} \cong \mathscr{Y}_{k} \in(\mathfrak{5}$.

7. The numbers \boldsymbol{t}_{j} and f_{j} for a tight design

Now we consider constructions of tight scccds for $v>2 k$. First we need some preparatory material, much of which is similar to that of Section 4 in [2].

In an arbitrary tight $\operatorname{scced}(v, k)$ let $T_{j} \subseteq[v]$ denote the set of elements which are introduced j times, $j \geqslant 0$, and let $t_{j}=\left|T_{j}\right|$.

Now consider t_{0}, the number of elements not introduced. From the proof of Lemma 5.1 we must have $t_{0}=0$ or 1 . Let \mathscr{Z} be a tight $\operatorname{scccd}(v, k)$ in which $t_{0}=1$, and call v the element not introduced. Any other element $z=1, \ldots, v-1$ is introduced exactly once, for, if some z is introduced twice or more, then the pair $\{z, v\}$ is covered twice or more; a contradiction because \mathscr{Z} is tight. Hence, each of $1, \ldots, v-1$ is introduced exactly once, and $b=v-1=v(v-1) /[2(k-1)]$, i.e., $v=2 k-2$. Thus 少 is a tight $\operatorname{scccd}(2 k-2, k, 2 k-3)$ and, by Theorem 6.1 , lies in \tilde{F}.

Thus, all tight scceds with $t_{0}=1$ are known; they are members of \mathfrak{F} with $v=2 k-2$. As we are interested in tight designs with $v>2 k$, we assume that $t_{0}=0$ and restrict ourselves to $j \geqslant 1$.

Let \mathscr{C} be an arbitrary tight $\operatorname{scccd}(v, k, b)$, and, for any $x \in[v]$, let $f_{\{v\}}$ denote the number of blocks that contain x.

Let $x \in T_{j}$. Each time x is introduced $k-1$ pairs containing x are covered. There are $v-1$ pairs containing x to be covered, so we may let $j \leqslant\lfloor(v-1) /(k-1)\rfloor=A$ because $t_{j}=0$ for $j>A$.

Now $x \in T_{j}$, so there are j blocks in which x is introduced; $(k-1)$ pairs containing x are covered in each of these blocks. There are $f_{\{x\}}-j$ blocks that contain x but in which it is not introduced; only 1 pair containing x is covered in each of these blocks. This gives $v-1=j(k-1)+\left(f_{\{x\}}-j\right) 1$, i.e., $f_{\{x\}}=(v-1)-j(k-2)$. Hence $f_{\{x\}}$ is constant on T_{j}, so we let $f_{j}=(v-1)-j(k-2)$ be the number of blocks that contain any fixed element from T_{j}. In particular, $f_{1}=v-k+1$.

We have, for $1 \leqslant j \leqslant A$,

$$
\begin{equation*}
A=\left\lfloor\frac{v-1}{k-1}\right\rfloor, \quad \sum_{j=1}^{A} t_{j}=v, \quad \sum_{j=1}^{A} j t_{j}=b, \quad f_{j}=(v-1)-j(k-2) . \tag{2}
\end{equation*}
$$

Some further properties of the numbers t_{j} and f_{j} are given below.
Lemma 7.1. For $k>2$ and any j satisfying $1 \leqslant j \leqslant A$, we have
(i) $f_{A}<f_{A-1}<\cdots<f_{2}<f_{1}$;
(ii) $f_{j} \geqslant j$, and, if $f_{j}<j$, then $t_{l}=0$ for all $l \geqslant j$;
(iii) if $f_{j}=j$, then $t_{j}=0$ or 1 ;
(iv) if $f_{j}=j+1$, then $t_{j}=0,1$, or 2 .

Proof. (i) Clear because $f_{j}=(v-1)-j(k-2)$ and $k>2$.
(ii) For each of the j times when $x \in T_{j}$ is introduced it appears in at least 1 block, so $f_{j} \geqslant j$. So, clearly, if $f_{j}<j$ then $t_{j}=0$. Also, for any $l>j$, we have $f_{l}<f_{j}<j<l$ by (i), hence, $t_{l}=0$.
(iii) For a fixed j, suppose $f_{j}=j$ but $t_{j}=\left|T_{j}\right| \geqslant 2$, and let x and $y \in T_{j}$. Now, because x is introduced j times and appears in j blocks, each time it is introduced it must be immediately removed; similarly for y. But pair $\{x, y\}$ must appear in some block, hence both x and y must be introduced in this block, a contradiction.
(iv) Now suppose $f_{j}=j+1$ but $t_{j} \geqslant 3$, and let x, y, and $z \in T_{j}$. By the pigeonhole principle, for one of the j times when x is introduced it must stay for 2 successive blocks; similarly for y and z. So the configurations x, y, y, and $\underset{z}{z}$ occur once each. In order to cover the pairs $\{x, y\},\{x, z\}$, and $\{y, z\}$ we must have the arrangement $\begin{gathered}x z y \\ x y \\ z y\end{gathered}$, in the design, i.e., $b=3$. But there are only 2 tight scccds with $b=3$: one is $\mathscr{X}_{3} \in \mathfrak{F}$, which we have excluded; the other is $\mathscr{Y}_{2} \in \mathfrak{W}$, which is also excluded because this design has $k=2$ and we are restricted to $k>2$.

8. Start-Finish arrays for a tight design; Criteria for a tight design with $\boldsymbol{v}>\mathbf{2 k}$

This section is mainly concerned with the subset T_{1} of elements introduced exactly once in \mathscr{C}, an arbitrary tight $\operatorname{scccd}(v, k)$.

Suppose $T_{i} \neq \emptyset$ and let $x \in T_{1}$, and consider the $f_{\{x\}}=f_{1}=v-k+1$ successive blocks in \mathscr{C} which contain x; call these blocks $\mathscr{B}_{x}=\left\{B_{x, 1}, \ldots, B_{x, f_{1}}\right\}$, see Fig. 6(a). We may write x as the leftmost element in each of these blocks. We say that x starts, S, in $B_{x, 1}$ (i.e., is introduced there), and finishes, F, in $B_{x, f_{1}}$, see Fig. 6(a). Call this occurrence of x in f_{1} successive blocks the run containing x. Now let y be some other element in T_{1}. The pair $\{x, y\}$ must be covered in \mathscr{B}_{x} and so, because $f_{\{y\}}=f_{1}$ also, either the S or the F of y must appear in \mathscr{B}_{x}. Similarly for all the other elements in T_{1}.

Fig. 6. $S F$-arrays and examples.

Thus, as we run through the elements in T_{1}, each adds its S or its F to the array in the final column of (a). We call this the Start-Finish array, or $S F$-array, for element x, and denote it by $S F_{x}$. Call the $S \mathrm{~s}$ and $F \mathrm{~s}$ symbols.

In Fig. 6(a), block $B_{x, i}$ gives rise to the i th row, $R_{x, i}$, of $S F_{x}$, which contains x and, perhaps, some symbols we write $B_{x, i} \rightarrow R_{x, i}$. If a row contains no symbols it is empty (-).

Fig. 6(b) shows a tight $\operatorname{scccd}(4,2,6)$ with elements 3 and $4 \in T_{1}$. The $S F$-array for element $3, S F_{3}$, is shown first; here the S in $R_{3,3}$ appears because element 4 starts in $B_{3,3}$. The array $S F_{4}$ is shown next; here $F \in R_{4,1}$ because element 3 finishes in $B_{4,1}$. Fig. 6 (c) shows the tight $\operatorname{scccd}(5,3,5), \mathscr{Y}_{3}$; it has $T_{1}=\{1,2,3,4,5\}$ and, for all $x \in T_{1}$. the arrays $S F_{x}$ are identical.

The main idea of this section is to place restrictions on the structure of an $S F$-array of a tight $\operatorname{scccd}(v, k)$ when $v>2 k$. In the following section we 'extend' these $S F$-arrays to tight scceds for $(v, k)=(9,4)$ and $(10,4)$.

So, let us assume that a tight $\operatorname{scccd}(v, k, b), \mathscr{C}$, exists whose set of elements introduced exactly once is T_{1}, and let $x \in T_{1}$. Then, using the following 10 Observations, we will establish 10 Criteria that $S F_{x}$ must satisfy. In the Observations, R denotes an arbitrary row of $S F_{x}$, with corresponding block in \mathscr{B}_{r} denoted by B_{R}.

Observations

(1) Each row R of $S F_{x}$ contains at most one S and at most one F. For suppose R contains two or more $S \mathrm{~s}$ say, then two or more elements are introduced in B_{R}, a contradiction. Similarly for the F s because the reverse of a scecd is again a scced. Clearly the order of the symbols in a row does not matter.
(2) The number of empty rows between any row containing F and the next (different) row containing S as we go down $S F_{x}$ is $\geqslant b-2 f_{1}+1$. To see this let $y \in T_{1}$ finish in any row of $S F_{x}$ and let $z \in T_{1}$ start in a later one, with α empty rows between them. Now, the pair $\{y, z\}$ is not covered in \mathscr{B}_{x}, so the runs containing y and z must meet outside $\mathscr{B}_{\mathcal{F}_{.}}$. That is, $\alpha+f_{\{,\}\}}+f_{\{\xi\}} \geqslant b+1$, so $\alpha \geqslant b-2 f_{1}+1$.

$B_{x, 1}$	$x p q$	$R_{x, 1}$	$x S$	$x p q$.	$R_{x, 1}$	$x S$
$B_{x, 2}$	$x y q$	$R_{x, 2}$	$x S$	$x y q$	$R_{x, 2}$	$x S$
$B_{x, 3}$	$x y z$.	$R_{x, 3}$	$x S$	$x y z$.	
		.	.			
		.	-		$R_{x, f_{1-1}}$	$x F$
$B_{x, f_{1}}$	$x y z$.	$R_{x, f_{1}}$	$x F$	$x y z$.	$R_{x, f_{1}}$	$x F$
	$\cdot y z$			$p y z$.		
	- z			$p q z$.		
	(a)	(b)		(c)	(d)	

Fig. 7. Persistent triples and their corresponding forbidden configurations.

Furthermore, let $F S(v, k)=b-2 f_{1}+1$. Now $F S(v, k) \geqslant 0$ with equality if and only if $v=2 k-2$ or $2 k-1$. Because we are interested only in $v>2 k$, we may assume that $F S(v, k) \geqslant 1$, i.e., that there is always at least 1 empty row between any F and the next S.
(3) Suppose the three elements x, y, and $z \in T_{1}$ (where, without loss of generality, the first is the x of our $S F_{x}$) are introduced in three successive blocks in \mathscr{C}. See Fig. 7(a) where y starts in $B_{x, 2}$ 'changing' p, and z starts in $B_{x, 3}$ changing q; see (b) for the $S F$-array so formed. To cover the pairs $\{p, y\}$ and $\{q, z\}$ the elements p and q must occur in the two blocks immediately succeeding $B_{x, f_{1}}$, as shown in (c). Hence, pair $\{p, q\}$ must be in all remaining blocks outside \mathscr{B}_{x}, for, if not, it will be covered more than once. So both p and $q \in T_{1}$, which forces $b=2 f_{1}-1$, i.e., $v=2 k-2$ or $2 k-1$. So, with our restriction of $v>2 k$, we may assume that the configurations $\underset{S}{S}$ and $\stackrel{\underset{F}{F}}{\underset{F}{F} \text { do not appear (in } \mathscr{C} \text { and so) in } S F_{x} \text {. (Such a triple }\{x, y, z\} \text { is called a persistent }}$ triple, it persists through $v-k-1$ blocks, see Phillips and Wallis [1]. Here we have shown that if a tight scced contains a persistent triple then it must belong to one of the families \mathfrak{F} or \mathfrak{G}; see the constructions in Section 5 and in the proof of Theorem 6.1; all designs in both these families contain persistent triples.)

Similarly, the configuration shown in Fig. 7(d) cannot occur in $S F_{x}$; for, if it did, then the element which starts in $B_{x, 2}$ must finish in the block succeeding $B_{x, f_{1}}$, thus producing the forbidden configuration $\frac{F}{F}$ (in \mathscr{C}).
(4) The S of x lies in $R_{x, 1}$ and the F in $R_{x, f_{1}}$; and then each of the remaining $t_{1}-1$ elements in T_{1} have either their S or their F present in $S F_{x}$, (but not both, for, if element y, say, has both its S and its F present, then its S must appear after its F and so pair $\{x, y\}$ is covered twice). This gives a total of $t_{1}+1$ symbols.
(5) Consider R, an arbitrary row of $S F_{x}$; for each S in or above R there will be an element from T_{1} in B_{R}; similarly for each F in or below R, except that the S and F of

Fig. 8. Configurations corresponding to a persistent pair.
x contribute only one element (x itself) to B_{R}. Now \mathscr{C} has block size k, so we must have

$$
\left\{\begin{array}{l}
\text { the number of } S \mathrm{~s} \\
\text { in or above } R
\end{array}\right\}+\left\{\begin{array}{l}
\text { the number of } F \mathrm{~s} \\
\text { in or below } R
\end{array}\right\}-1 \leqslant k .
$$

Call the left-hand side of the above equation the weight of $R, w t(R)$; it is the number of elements from T_{1} in B_{R}.
(6) Let R be the last row of $S F_{x}$; then $w t(R)$ is the number of $S \mathrm{~s}$ in $S F_{x}$, which is $\leqslant k$ by Observation (5). Similarly, the number of $F \mathrm{~s}$ in $S F_{x}$ is $\leqslant k$. Also, using Observation (4), the total number of symbols, $t_{1}+1$, is $\leqslant 2 k$. Thus, $t_{1} \leqslant 2 k-1$. There is a tight $\operatorname{scccd}(4,2,6)$ with $\left(t_{1}, t_{2}, t_{3}\right)=(3,0,1)$ for which this inequality is sharp; it is also sharp for any design in the family \mathfrak{G}. (Cf. Section 4 of [2], where $t_{1} \leqslant k$.)
(7) Suppose that two rows of weight k are adjacent, and the single-change between their corresponding two blocks is caused by y finishing in the first block and z starting in the successive block. Then there are no empty rows between the row containing the F of y and the row containing the S of z, a contradiction to Observation (2). Hence, two rows of weight k cannot be adjacent.
(8) The configuration ${ }_{S}^{S}$ does not occur in $S F_{x}$ so the number of configurations S_{S}^{S} in $S F_{x}$ is $\leqslant\lfloor k / 2\rfloor$, otherwise the first inequality of Observation (6) is violated. Similarly for the configuration $\underset{F}{F}$.
(9) A persistent pair in \mathscr{C}, see [1] and Section 4 of [2], is a pair of elements from T_{1} which start in successive blocks; thus they persist together through $v-k$ blocks. Each persistent pair has a configuration ${ }_{S}^{S}$ and $\frac{F}{F}$. We claim that our $S F_{x}$ contains exactly one of the configurations $\underset{S}{S}$ or $\underset{F}{F}$ for each persistent pair of \mathscr{C}, except if $\mathscr{C} \in \mathscr{y}$ or $(5$.

For any persistent pair $\{y, z\}$ of \mathscr{C} its configurations ${ }_{S}^{S}$ and ${ }_{F}^{F}$ can be arranged in one of the two ways shown in Fig. 8(a), where the upper S belongs to y. Our claim is clearly true if $x=y$ or z, so assume $x \neq y, z$. Now, the f_{1} rows of $S F_{x}$ must
include either the S or the F of y, and either the S or the F of z. That is, they must include either the upper S or the upper F in (a), and either the lower S or the lower F, not both in each case. If we choose our f_{1} rows of $S F_{x}$ such that this is true and that neither the whole of the ${ }_{S}^{S}$ nor the whole of the $\underset{F}{F}$ is included, then, without loss of generality, the first row must be the row containing the lower F and, as it proceeds downwards and cycles around, its last row must be the row containing the upper S. Hence, $b=2 f_{1}-1$, i.e., $v=2 k-2$ or $2 k-1$, so $\mathscr{C} \in \mathscr{F}$ or \mathfrak{G}, as in Observation (3). Hence, because $v>2 k$, we may assume that, for any persistent pair of \mathscr{C}, our $S F_{x}$ contains either the whole of the pair's $\underset{S}{S}$ or the whole of the pair's $\stackrel{F}{F}$, but not both.

Now, because each persistent pair in \mathscr{G} contains 2 elements from T_{1} and different persistent pairs contain distinct elements and $t_{1} \leqslant 2 k-1$ from Observation (6), the total number of appearances of $\underset{S}{S}$ and $\underset{F}{F}$ in $S F_{x}$ is $\leqslant\left\lfloor t_{1} / 2\right\rfloor \leqslant\lfloor(2 k-1) / 2\rfloor=k-1$. For even k this upper bound is 1 smaller than the upper bound of $2\lfloor k / 2\rfloor$ obtained by adding the upper bounds for the number of appearances of $\underset{S}{S}$ and $\underset{F}{F}$ in Observation (8); for odd k they are the same.
(10) From Observation (4) $S F_{x}$ contains a total of $t_{1}+1$ symbols, of which at least 1 is F. Hence, the number of appearances of S is $\leqslant t_{1}$. So, via Observation (6), the number of appearances of S is $\leqslant \min \left\{t_{1}, k\right\}$. Hence, the number of appearances of F is $\geqslant t_{1}+1-\min \left\{t_{1}, k\right\}$; similarly for the number of appearances of S. So, finally, we have: $t_{1}+1-\min \left\{t_{1}, k\right\} \leqslant|S| \leqslant \min \left\{t_{1}, k\right\}$, and similarly for $|F|$.

So, to summarize our 10 Observations, let \mathscr{C} be an arbitrary tight $\operatorname{scccd}(v, k, b)$ with $v>2 k$, and let $x \in T_{1}$ and let R be an arbitrary row in $S F_{x}$. Then, corresponding to the 10 Observations above, $S F_{x}$ must satisfy Criteria (1)-(10) below, where $|C|$ denotes the number of appearances of configuration C.

Criteria

(1) R contains at most one S and at most one F.
(2) Between any F and the next S there are $\geqslant F S(v, k)=b-2 f_{1}+1 \geqslant 1$ empty rows.
(3) The configurations $\underset{S}{S}, \stackrel{F}{F}$, and the configuration of Fig. 7(d) do not appear.
(4) $S \in R_{x, 1}, F \in R_{x, f_{1}},|S|+|F|=t_{1}+1$.
(5) $\mathrm{wt}(R) \leqslant k$.
(6) $1 \leqslant t_{1} \leqslant 2 k-1$.
(7) Two rows of $\mathrm{wt}(k)$ cannot be adjacent.
(8) $|\underset{S}{S}| \leqslant\lfloor k / 2\rfloor,\left|\frac{F}{F}\right| \leqslant\lfloor k / 2\rfloor$.
(9) $\left|\frac{S}{S}\right|+\left|\frac{F}{F}\right| \leqslant k-1$.
(10) $t_{1}+1-\min \left\{t_{1}, k\right\} \leqslant|S|,|F| \leqslant \min \left\{t_{1}, k\right\}$.

Finally, some comments relevant to Observation (9).
To see that our claim fails in a design from \mathfrak{F} or \mathfrak{G}, consider the tight $\operatorname{scccd}(3,2,3)$ $\mathscr{Y}_{2} \in \mathfrak{F}$ shown in Fig. 8(b). (This corresponds to the second arrangement in (a) where
$f_{1}=2$, so $b=3$.) All 3 pairs $\{1,2\}$, $\{1,3\}$, and $\{2,3\}$ are persistent pairs; however $k-1=1$. The array $S F_{3}$ contains the $\underset{S}{S}$ of persistent pair $\{1,3\}$ and the ${ }_{F}^{F}$ of persistent pair $\{2,3\}$, but neither the $\underset{S}{S}$ nor the $\frac{F}{F}$ of persistent pair $\{1,2\}$. Similarly for all other designs in \mathscr{F} or \mathfrak{G}, where the number of persistent pairs is equal to the number of blocks.

When $v>2 k$, because $S F_{x}$ must contain either the $\underset{S}{S}$ or the $\underset{F}{F}$ of every persistent pair in $\mathscr{6}$, the total number of persistent pairs in 6 is also $\leqslant k-1$; this upper bound is sharp for the tight $\operatorname{scccd}(9,4,12), \mathbb{N}_{2}$, which contains 3 persistent pairs, see Section 9. (Cf. Section 4 of [2], where the number of persistent pairs is $\leqslant k / 2$.)

9. Constructions of tight $\sec (9,4,12)$ s and $\sec (10,4,15) s$ using SF-arrays

We now illustrate the method of constructing tight designs with $v>2 k$ using $S F$-arrays.
$(v, k)=(9,4)$ First we construct all non-isomorphic tight $\operatorname{scccd}(9,4,12) \mathrm{s}$. To start. we must find all $S F$-arrays for $(v, k)=(9,4)$ that satisfy Criteria (1)-(10) of Section 8 .

Eq. (2) of Section 7 gives $A=2, t_{1}+t_{2}=9$, and $t_{1}+2 t_{2}=12$; hence $t_{1}=6$ and $t_{2}=3$. We also have $f_{1}=6$ and $f_{2}=4$. From Criterion (2), $F S(9,4)=1$, i.c., there must be at least 1 empty row between any F and the next S in our $S F$-arrays. Let $T_{1}=\{1,2,3,4,5,6\}$ and $T_{2}=\{7,8,9\}$, and let $x \in T_{1}$.

There are exactly $8 S F$-arrays that satisfy Criteria (1)-(10). Of these, 6 are shown in Fig. $9(\mathrm{a})-(\mathrm{f})$, and the remaining 2 in (a) and (b) of Fig. 12.

In a arbitrary sced \mathbb{C} each of the t_{1} elements of T_{1} has 2 symbols, an S and an F; this gives $2 t_{1}$ symbols of which $t_{1}+1$ appear in $S F_{r}$. We now consider the $t_{1}-1$ 'missing' symbols.

Now consider the $S F_{x}$ in Fig. 10(a). Let us cnlarge this $S F_{x}$ from $f_{1}=6$ rows to $b=12$ rows by including the $t_{1}-1=5$ 'missing' symbols and dropping every x, see Fig. 10 (b). For example, the element which starts in row $R_{x .4}$ of (a), i.e., in R_{4} of (b), must finish $f_{1}=6$ rows later in R_{9}. Call this new array with b rows a $S F$-skeleton; note that the $S F$-skeleton (b) is uniquely determined from the $S F$-array (a).

Now, in Fig. $10(\mathrm{~b})$, let the $S \in R_{1}$ correspond to element 1 , the $S \in R_{4}$ correspond to 2 , the $S \in R_{6}$ to 3 , the $S \in R_{8}$ to 4 , the $S \in R_{9}$ to 5 , and, finally, the $S \in R_{\mid 1}$ to element 6.

In the $S F$-skeleton of Fig. 10 (b) the $S F$-array $S F_{1}$ (i.e., Fig. 9 (a) with $x=1$) appears as rows $R_{1}-R_{6}$; also, $S F_{2}$ (Fig. $9(\mathrm{~b})$ with $x=2$) appears as rows $R_{4}-R_{4} ; S F_{3}$ as rows $R_{6}-R_{11} ; S F_{4}$ as rows $R_{8}-R_{1} ; S F_{5}$ as rows $R_{9}-R_{2}$; and, finally, $S F_{6}$ (which is Fig. 9(f) with $x=6$) appears as rows $R_{11}-R_{4}$. Thus all 6 of the $S F$-arrays in Fig. 9 occur in the $S F$-skeleton of Fig. $10(\mathrm{~b})$. We say that these $6 S F$-arrays are equivalent (\sim) to one another.

In order to begin extending Fig. $10(\mathrm{~b})$ to a tight $\operatorname{scc}(9,4,12)$, consider Fig. $10(\mathrm{c})$, which is a potential tight $\operatorname{scccd}(9,4,12)$ with all elements from $T_{1}=\{1,2,3,4,5,6\}$

$R_{x, 1}$	$x S F$	$x S F$	$x S F$	$x S$	$x S F$	$x S F$
$R_{x, 2}$	$x F$	$x-$	$x-$	$x S F$	$x-$	$x-$
$R_{x, 3}$	$x-$	$x S F$	$x S$	$x-$	$x S F$	$x S F$
$R_{x, 4}$	$x S F$	$x-$	$x S F$	$x S F$	$x-$	$x F$
$R_{x, 5}$	$x-$	$x S$	$x-$	$x-$	$x S F$	$x-$
$R_{x, 6}$	$x F S$	$x F S$	$x F S$	$x F S$	$x F$	$x F S$

(a)
(b)
(c)
(d)
(e)
(f)

Fig. 9.6 of the $8 S F$-arrays which satisfy criteria (1)-(10) when $(v, k)=(9,4)$. These 6 form an equivalence class of $S F$-arrays.

$R_{x, 1}$	$x S F$	R_{1}	$S F$	B_{1}	1465	R_{1}	-
$R_{x, 2}$	$x F$	R_{2}	F	B_{2}	$1 * 65$	R_{2}	$S F$
$R_{x, 3}$	$x-$	\rightarrow	R_{3}	-	B_{3}	$1 * 6 *$	R_{3}
$R_{x, 4}$	$x S F$	R_{4}	$S F$	B_{4}	$126 *$	R_{4}	$S F$
$R_{x, 5}$	$x-$	R_{5}	-	B_{5}	$12 * *$	R_{5}	F
$R_{x, 6}$	$x F S$	R_{6}	$S F$	B_{6}	$123 *$	R_{6}	-
		R_{7}	-	B_{7}	$* 23 *$	R_{7}	$S F$
		R_{8}	S	B_{8}	$423 *$	R_{8}	-
		R_{9}	$S F$	B_{9}	4235	R_{9}	$S F$
	R_{10}	-	B_{10}	$4 * 35$	R_{10}	-	
		R_{11}	$S F$	B_{11}	4635	R_{11}	S
		R_{12}	-	B_{12}	$46 * 5$	R_{12}	$S F$

$S F_{x} \quad S F$-skeleton of $S F_{x}$
(a)
(b)
(c)
reverse of (b)
(d)

Fig. 10. An $S F$-array, its $S F$-skeleton, and the corresponding potential tight $\operatorname{scccd}(9,4)$; the reverse of the $S F$-skeleton of $S F_{x}$.
present. (For example, element 2 starts in B_{4} and finishes in B_{9} because $S F_{2}$ appears as rows $R_{4}-R_{9}$ in (b), etc.)

We must now add on the elements in $T_{2}=\{7,8,9\}$; each is introduced twice, and appears in $f_{2}=4$ blocks.

See Fig. 11(a). Without loss of generality start element 7 in B_{2}, then $7 \in B_{3}$; for, if not, then both 7 and 5 finish in B_{2}, a contradiction. Without loss of generality start 8 in B_{3}; this produces (a).

See Fig. 11(b). Now not both 7 and 8 can finish in B_{3}, so we must have $7 \in B_{4}$ or $8 \in B_{4}$. If $7 \in B_{4}$ then (because $7 \in T_{2}$ and $f_{2}=4$) 7 must start once more in a block containing elements 3,4 , and 9 because pairs $\{7,3\},\{7,4\}$, and $\{7,9\}$ will not have been covered, but this is impossible; hence $8 \in B_{4}$. Further, we have (b) by similar reasoning to the above.

See Fig. 11 (c). Now if $8 \in B_{7}$, then pair $\{8,9\}$ will be covered twice; so $7 \in B_{7}$ and 7 must occur for 2 successive blocks because $f_{2}=4$ and it has already occurred in 2 blocks. To finish we must have $8 \in B_{10}$ and $9 \in B_{12}$, producing Fig. 11(c).

| B_{1} | 1 | 4 | 6 | 5 |
| :--- | :--- | :--- | :--- | :--- | :--- |
| B_{2} | 1 | 7 | 6 | 5 |
| B_{3} | 1 | 7 | 6 | 8 |
| B_{4} | 1 | 2 | 6 | $*$ |
| B_{5} | 1 | 2 | $*$ | $*$ |
| B_{6} | 1 | 2 | 3 | $*$ |
| B_{7} | $*$ | 2 | 3 | $*$ |
| B_{8} | 4 | 2 | 3 | $*$ |
| B_{9} | 4 | 2 | 3 | 5 |
| B_{10} | 4 | $*$ | 3 | 5 |
| B_{11} | 4 | 6 | 3 | 5 |
| B_{12} | 4 | 6 | $*$ | 5 |

(a)

B_{1}	1465
B_{2}	1765
B_{3}	1768
B_{4}	1268
B_{5}	1298
B_{6}	1239
B_{7}	+239
B_{8}	423 *
B_{9}	4235
B_{10}	$4 * 35$
B_{11}	4635
B_{12}	$46 * 5$

(b)
$B_{1} 1465$
$B_{2} 1765$
$B_{3} 1768$
$B_{4} \quad 1268$
$B_{5} \quad 1298$
$B_{6} \quad 1239$
$B_{7} \quad 7239$
$B_{8} 4237$
$B_{9} 4235$
$B_{10} 4835$
$B_{11} 4635$
$B_{12} 4695$
$\mathcal{U}_{1}, \operatorname{scccd}(9,4,12)$
(c)

Fig. 11. Extending a potential tight $\operatorname{scccd}(9,4,12)$ to a tight $\operatorname{scccd}(9,4,12)$.

Let \mathscr{U}_{1} denote this tight $\operatorname{scccd}(9,4,12)$; clearly, by its construction, it is unique up to labelling.

In general, for a given (v, k) with $v>2 k$, let \mathscr{S} denote the set of $S F$-arrays that satisfy Criteria (1)-(10) and let $S F_{x}$ and $S F_{x}^{\prime}$ be two arbitrary $S F$-arrays in \mathscr{S}. We define an equivalence relation \sim on \mathscr{S} as follows:

$$
\begin{aligned}
S F_{x} \sim S F_{x}^{\prime} \quad \text { if and only if } \quad S F_{x} \text { appears as consecutive rows } \\
\text { in the } S F \text {-skeleton determined by } S F_{x}^{\prime} .
\end{aligned}
$$

But, because the skeleton determined by an arbitrary $S F$-array in \mathscr{S} is unique, we can redefine \sim as

$$
\begin{gathered}
S F_{x} \sim S F_{x}^{\prime} \quad \text { if and only if } \quad \text { the } S F \text {-skeleton determined by } S F_{x} \\
\text { is a cyclic shift of the } S F \text {-skeleton } \\
\text { determined by } S F_{x}^{\prime} .
\end{gathered}
$$

It is straightforward to prove that \sim is an equivalence relation.
Each equivalence class of $S F$-arrays gives rise to one $S F$-skeleton; we say that this $S F$-skeleton represents the class. Instead of attempting to extend all $S F$-arrays (or, rather, their $S F$-skeletons) from a particular equivalence class to tight designs, we need only attempt to extend the $S F$-skeleton that represents this class. Also, if two $S F$-skeletons represent different classes, and both can be extended to tight designs, then these designs are non-isomorphic. However, a single $S F$-skeleton can some times be extended to Non-isomorphic designs, see Fig. 14.

The remaining $2 S F$-arrays for $(v, k)=(9,4)$ are shown in (a) and (b) of Fig. 12; they form another equivalence class. The $S F$-skeleton of (b) is (c) which extends uniquely (up to labelling) to the tight $\operatorname{scccd}(9,4,12)$ shown in (d); call it \mathscr{U}_{2}. The $S F$-arrays (a) and (b) each occur 3 times each amongst the $t_{1}=6 S F$-arrays of \mathscr{U}_{2}.

Fig. 12. The remaining $2 S F$-arrays for $(v, k)=(9,4)$, which form another equivalence class; the $S F$-skeleton which represents this class and the corresponding tight $\operatorname{scccd}(9,4,12)$.

This tight design contains $k-1=3$ persistent pairs, which, by the comments at the end of Section 8 , is the maximum number allowed in a tight $\operatorname{scced}(v, k)$ with $v>2 k$.

Now, because the $S F$-skeletons from which \mathscr{U}_{1} and \mathscr{U}_{2} were formed represent different equivalence classes, we have $\mathscr{U}_{1} \neq \mathscr{U}_{2}$. This gives us:

Theorem 9.1. There are 2 non-isomorphic tight $\operatorname{scccd}(9,4,12) s$, namely \mathscr{U}_{1} and \mathscr{U}_{2} shown above.

Now, as mentioned at the end of Section 4, the reverse of a $\operatorname{scccd}(v, k, b), \mathscr{B}$, is another $\operatorname{scccd}(v, k, b), \operatorname{rev}(\mathscr{B})$; and, if a $\operatorname{scccd} \mathscr{C}$ is tight then $\operatorname{rev}(\mathscr{C})$ is also tight. Hence, from Theorem 9.1, $\operatorname{rev}\left(\mathscr{U}_{1}\right) \cong \mathscr{U}_{1}$ or \mathscr{U}_{2}.

To obtain the $S F$-skeleton of $\operatorname{rev}\left(\mathbb{C}_{1}\right)$ from the $S F$-skeleton of \mathbb{C} we reverse the order of its rows and switch $S \leftrightarrow F$.

The $S F$-skeleton of \mathscr{U}_{1} is shown in Fig. $10(\mathrm{~b})$ and the $S F$-skeleton of $\operatorname{rev}\left(\mathscr{U}_{1}\right)$ in Fig. 10 (d); it is a cyclic shift of the $S F$-skeleton of \mathscr{U}_{1}. Hence, because the extension of the $S F$-skeleton of \mathscr{U}_{1} to a tight design is unique up to labelling, we have $\operatorname{rev}\left(\mathscr{U}_{1}\right) \cong \mathscr{U}_{1}$. Thus \mathscr{U}_{1} and \mathscr{U}_{2} are self-reverse.
$(v, k)=(10,4)$. We now construct all non-isomorphic tight $\operatorname{scccd}(10,4,15) \mathrm{s}$.
Eq. (2) of Section 7 yields the three solutions: $\left(t_{1}, t_{2}, t_{3}\right)=(7,1,2),(6,3,1)$, and $(5,5,0)$. Here $f_{3}=3$, so Lemma 7.1 (iii) with $j=3$ disposes of the first solution. For the remaining two let \mathscr{V} be a tight $\operatorname{scccd}(10,4,15)$.
(i) $\left(t_{1}, t_{2}, t_{3}\right)=(6,3,1)$. We could use $S F$-arrays here but, for variety, we prefer the following approach which is justified by the result: there are 2 non-isomorphic tight $\operatorname{scccd}(10,4,15) \mathrm{s}$, both of which can be constructed by 'expanding' \mathscr{U}_{2} of Fig. 12(d).

First some definitions, see Section 7 of [2]. For any $\operatorname{scccd}(v, k, b), \mathscr{B}=\left\{B_{1} \ldots \ldots B_{k}\right\}$. and for any $i=1, \ldots, b-1$ let U_{i} be the subset of $k-1$ elements which survives from B_{i} to B_{i+1}; we call U_{i} the unchanged subset at location i. Also, let U_{b} be the subset of $k-1$ elements which survives from B_{6}, to B_{1}, the unchanged subset at location b.

Again, let $T_{1}=\{1, \ldots, 6\}, T_{2}=\{7,8.9\}$, and let $T_{3}=\{10\}$. Now, because $f_{i}=3$, each time element 10 is introduced into a block it is immediately changed. So the arrangement of blocks shown below must occur 3 times, at the pairs of consecutive locations: $l_{1}, l_{1}+1$ and $l_{2}, l_{2}+1$ and $l_{3}, l_{3}+1$. We have shown the arrangement at the pair of locations $l, l+1$ for any $l \in\left\{l_{1}, l_{2}, l_{3}\right\}$.

\[

\]

Here $U_{l}=U_{l+1}$, i.e., the two unchanged subsets for this arrangement of blocks are equal. Hence, each of the 3 pairs of locations produces an unchanged subset which survives through the pair of locations. Then, because \mathscr{H} is tight, these 3 unchanged subsets partition the set $\{1,2, \ldots, 9\}$.

If we remove the 3 blocks $B_{l_{1}+1}, B_{l_{2}+1}$, and $B_{l_{3}+1}$ that contain element 10 from ${ }_{1}$ we obtain a tight $\operatorname{scccd}(9,4,12)$ with 3 unchanged subsets which partition $\{1,2, \ldots, 9\}$. i.e., with an expansion set of locations, see Section 7 of [2]. Of ψ_{1} and ψ_{2}, only ψ_{2} has an expansion set of locations, in fact it has two:
$\{1,2,7\}$ at location 3, $\{1,2,8\}$ at location 4,
$\{9,3,4\}$ at location 7, and $\{7,3,4\}$ at location 8,
$\{5,6,8\}$ at location 11, $\{5,6,9\}$ at location 12 .
Expanding ψ_{2} at the first expansion set above with element 10 gives us the tight $\operatorname{scccd}(10,4,15), \mathscr{y}_{1}$, shown in Fig. 13(a): similarly, \mathscr{F}_{2} in (b) comes from using the second expansion set.

Now we show that \mathscr{Y}_{1} and \mathscr{I}_{2} are non-isomorphic even though their $S F$-skeletons are cyclic shifts of each other.

See Fig. 13. Consider the complete $S F$-skeleton shown to the right of the $S F$ skeletons. In any block of a scced one element starts and one finishes. Suppose that an element from T_{j} starts and that one from $T_{j^{\prime}}$ finishes, then the corresponding row of the complete $S F$-skeleton is $S_{j} F_{j^{\prime}}$. Thus, the complete $S F$-skeleton includes start-finish

B_{1}	1	9	5	6	S	$S_{1} F_{2}$
B_{2}	1	2	5	6	$S F$	$S_{1} F_{1}$
B_{3}	1	2	7	6	F	$S_{2} F_{1}$
B_{4}	1	2	7	10	-	$S_{3} F_{3}$
B_{5}	1	2	7	8	-	$S_{2} F_{2}$
B_{6}	1	2	3	8	S	$S_{1} F_{2}$
B_{7}	1	2	3	4	$S F$	$S_{1} F_{1}$
B_{8}	9	2	3	4	F	$S_{2} F_{1}$
B_{9}	9	10	3	4	-	$S_{3} F_{3}$
B_{10}	9	7	3	4	-	$S_{2} F_{2}$
B_{11}	5	7	3	4	S	$S_{1} F_{2}$
B_{12}	5	6	3	4	$S F$	$S_{1} F_{1}$
B_{13}	5	6	8	4	F	$S_{2} F_{1}$
B_{14}	5	6	8	10	-	$S_{3} F_{3}$
B_{15}	5	6	8	9	-	$S_{2} F_{2}$
	$V_{1}, \operatorname{scccd}(10,4,15)$					

(a)

B_{1}	9	95	6	S	$S_{1} F_{2}$
B_{2}		25		$S F$	$S_{1} F_{1}$
B_{3}		27	6	F	$S_{2} F_{1}$
B_{4}		27	8	-	$S_{2} F_{2}$
B_{5}	12	210	8	-	$S_{3} F_{3}$
B_{6}		23	8	S	$S_{1} F_{2}$
B_{7}		23	4	$S F$	$S_{1} F_{1}$
B_{8}		23	4	F	$S_{2} F_{1}$
B_{9}		73	4	-	$S_{2} F_{2}$
B_{10}		73	4	-	$S_{3} F_{3}$
B_{11}		73	4	S	$S_{1} F_{2}$
B_{12}	56	63	4	$S F$	$S_{1} F_{1}$
B_{13}	56	68	4	F	$S_{2} F_{1}$
B_{14}	56	68	9	-	$S_{2} F_{2}$
B_{15}	56	610		-	$S_{3} F_{3}$

(b)

Fig. 13. The 2 non-isomorphic tight $\operatorname{scccd}(10,4,15)$ s with $\left(t_{1}, t_{2}, t_{3}\right)=(6,3,1)$, their $S F$-skeletons and complete $S F$-skeletons. Both of these designs come from expanding \mathscr{U}_{2} of Fig. 12(d).
information about all elements in [$v]$, not just those in T_{1}. Clearly, if two designs are isomorphic, then their complete $S F$-skeletons must be cyclic shifts of one another; this is not so for \mathscr{V}_{1} and \mathscr{V}_{2}, hence $\mathscr{V}_{1} \neq \mathscr{V}_{2}$. So there are exactly 2 non-isomorphic tight $\operatorname{scccd}(10,4,15)$ s with $\left(t_{1}, t_{2}, t_{3}\right)=(6,3,1)$, namely \mathscr{V}_{1} and \mathscr{V}_{2}.

The reverse of a tight $\operatorname{scccd}(v, k), \mathscr{C}$, is another tight $\operatorname{scccd}(v, k), \operatorname{rev}(\mathscr{C})$. Moreover, for $j=1, \ldots, A$, we have equality amongst the sets T_{j} for \mathscr{C} and $\operatorname{rev}(\mathscr{C})$, and so equality amongst the numbers t_{j} for \mathscr{C} and $\operatorname{rev}(\mathscr{C})$.
$\operatorname{Sorev}\left(\mathscr{V}_{1}\right)$ also has $\left(t_{1}, t_{2}, t_{3}\right)=(6,3,1)$, and thus $\operatorname{rev}\left(\mathscr{V}_{1}\right) \cong \mathscr{V}_{1}$ or \mathscr{V}_{2}. Now if $\operatorname{rev}\left(\mathscr{V}_{1}\right)$ $\cong \mathscr{V}_{1}$, then the complete $S F$-skeleton of $\operatorname{rev}\left(\mathscr{V}_{1}\right)$ must be a cyclic shift of the complete $S F$-skeleton of \mathscr{V}_{1}, but this is not the case. Hence, $\operatorname{rev}\left(\mathscr{V}_{1}\right) \cong \mathscr{V}_{2}$. So \mathscr{V}_{1} is not isomorphic to its reverse, similarly for \mathscr{V}_{2}.

For two scccds, \mathscr{B} and \mathscr{B}^{\prime}, we write $\mathscr{B} \mathscr{B}^{\prime}$ if $\mathscr{B} \not \not \mathscr{B}^{\prime}$, but $\operatorname{rev}(\mathscr{B}) \cong \mathscr{B}^{\prime}$ (or, equivalently, $\left.\operatorname{rev}\left(\mathscr{B}^{\prime}\right) \cong \mathscr{B}\right)$. Thus $\mathscr{V}_{1} \mathrm{r} \mathscr{V}_{2}$.
(ii) $\left(t_{1}, t_{2}, t_{3}\right)=(5,5,0)$. There are $32 S F$-arrays that satisfy Criteria (1)-(10), and 8 equivalence classes of $S F$-arrays, 6 of size 5 and 2 of size 1 .

The $S F$-skeletons of the 8 classes are shown in Fig. 14; underneath each is the number of its extensions to non-isomorphic designs, and the names of the designs.

So there are 10 non-isomorphic tight scced $(10,4)$ s with $\left(t_{1}, t_{2}, t_{3}\right)=(5,5,0)$, namely \mathscr{V}_{m} for $3 \leqslant m \leqslant 12$. We also have: $\mathscr{V}_{3} \mathrm{r} \mathscr{V}_{5}, \mathscr{V}_{4} \mathrm{r} \mathscr{V}_{6}, \mathscr{V}_{7} \mathrm{r} \mathscr{V}_{8}, \mathscr{V}_{9} \mathrm{r} \mathscr{V}_{10}$, and $\mathscr{V}_{11} \mathrm{r} \mathscr{V}_{12}$.

The 2 designs from the previous case give us:
Theorem 9.2. There are 12 non-isomorphic tight $\operatorname{scccd}(10,4,15) s$, namely \mathscr{y}_{m} for $m=1, \ldots, 12$.

$S F$	-	$S F$	-	$S F$	F	$S F$	$S F$
F	-	F	F	F	-	F	-
-	$S F$	-	-	-	-	-	-
F	-	-	-	-	-	-	$S F$
-	F	$S F$	$S F$	S	$S F$	-	-
-	F	-	F	F	F	S	-
$S F$	-	F	-	F	-	$S F$	$S F$
-	-	-	-	-	-	-	-
-	$S F$	-	S	-	S	-	-
S	-	S	-	S	S	S	$S F$
S	-	$S F$	$S F$	$S F$	F	S	-
-	S	-	-	-	-	F	-
$S F$	-	-	-	-	-	F	$S F$
-	S	S	S	-	S	-	-
-	$S F$	-	$S F$	S	$S F$	-	-
2	2	1	1	1	1	0	2
2							
V_{3}, V_{4}	V_{5}, V_{6}	\mathcal{V}_{7}	V_{8}	V_{9}	V_{10}		$\mathcal{V}_{11}, \mathcal{V}_{12}$

Fig. 14. The $8 S F$-skeletons which represent the 8 equivalence classes of $S F$-arrays for $(v, k)=(10,4)$ and $\left(t_{1}, t_{2}, t_{3}\right)=(5,5,0)$. Underneath each $S F$-skeleton is the number of its extensions to non-isomorphic designs, and the names of the designs.

10. Non-existence of some tight designs

In this section we consider three parameter sets for (v, k) :
(i) $\{(3 k-3, k): k$ even and $\geqslant 2\}$;
(ii) $\{(3 k-2, k): k$ even and $\geqslant 2\}$;
(iii) $\left\{\left((i+1)^{2} / 4,\left(i^{2}+7\right) / 8\right): i\right.$ odd and $\left.\geqslant 3\right\}$.

Every (v, k) in (i)-(iii) above satisfies the division requirement $2(k-1) \mid v(v-1)$ for a tight design to exist, however, for (i) and (ii), tight designs only exist when $k=2$ or 4; and, for (iii), only when $i=3$ or 5 .

Using the notation of [5], we denote by $\operatorname{SCD}(v, k, b)$ a single-change (non-circular) covering design on [v] with b blocks of size k. We let $f(v, k)$ be the smallest b for which there exists a $\operatorname{SCD}(v, k, b)$. The function $f(v, k)$ is studied in [3-5].

Now a $\operatorname{scccd}(v, k, b)$ is also a $\operatorname{SCD}(v, k, b)$. In particular, a minimal $\operatorname{scccd}\left(v, k, b_{*}(v, k)\right)$ is a $S C D\left(v, k, b_{*}(v, k)\right.$), so we have $b_{*}(v, k) \geqslant f(v, k)$. (There are many (v, k) s for which equality holds.)

In Sections 5 and 6 we considered \mathfrak{y} and \mathfrak{G}, two families of tight $\operatorname{scced}(v, k)$ s for $v=2 k-2$ and $2 k-1$ respectively. In the following two theorems we consider $v=3 k-3$ ((i)) and $3 k-2$ ((ii)) respectively.

Theorem 10.1. A tight $\operatorname{scccd}(3 k-3, k,(9 k-12) / 2)$ exists only when $k=2$ or 4 .
Proof. Here k must be even. Consider the pair ($3 k-3, k$) for $k \geqslant 6$, from Theorem 3.3 of [5] we have $f(3 k-3, k)=5 k-8$. If a tight $\operatorname{scccd}(3 k-3, k)$ exists
then $b_{*}(v, k)=(9 k-12) / 2$, in which case the inequality $b_{*}(3 k-3, k) \geqslant f(3 k-3, k)$ fails. Thus, a tight $\operatorname{scced}(3 k-3, k)$ does not exist for $k \geqslant 6$.

For $k=2$ we have a tight $\operatorname{scccd}(3,2,3), \mathscr{Y}_{2}$, and for $k=4$ a tight $\operatorname{scccd}(9,4,12)$, e.g., \mathscr{U}_{1}.

So we have infinitely many pairs $(v, k)=(3 k-3, k)$ where k is even and $\geqslant 6$, for which $2(k-1) \mid v(v-1)$ but a tight $\operatorname{scced}(v, k)$ does not exist, e.g., a tight $\operatorname{scccd}(15,6,21)$ does not exist.

Similarly for $v=3 k-2$:
Theorem 10.2. A tight $\operatorname{scccd}(3 k-2, k,(9 k-6) / 2)$ exists only when $k=2$ or 4 .
When $k=2$ we have a tight $\operatorname{scccd}(4,2,6)$ and $k=4$ a tight $\operatorname{scccd}(10,4,15)$, e.g., \mathscr{V}_{1}.
Theorems 10.1 and 10.2 can also be proved using $S F$-arrays.
The final result in this section, Theorem 10.4, will, for variety and interest, be proved using the following lemma, although it can also be proved in a similar manner to the above.

Lemma 10.3. Let \mathscr{C} be a tight $\operatorname{scccd}(v, k)$ with $v>2 k, x \in T_{1}, t_{1}=\left|T_{1}\right|$, and $f_{1}=$ $v-k+1$. Then
(i) the total number of symbols in any r successive rows of $S F_{x}$ is $\leqslant r+1$;
(ii) $t_{1} \leqslant f_{1}$.

Proof. (i) A straightforward proof by induction on r.
(ii) For any $x \in T_{1}$, the $S F$-array $S F_{x}$ has f_{1} rows, hence $\leqslant f_{1}+1$ symbols. But, by Criterion (4), it has exactly $t_{1}+1$ symbols. Hence $t_{1} \leqslant f_{1}$.

The inequality $t_{1} \leqslant f_{1}$ is sharp for both of the tight $\operatorname{scccd}(9,4,12) \mathrm{s} \mathscr{U}_{1}$ and \mathscr{U}_{2} of Section 9.

Let \mathscr{C} be a tight $\operatorname{scccd}(v, k)$. From Observation (2) we have $2 f_{1} \leqslant b+1$, with equality if and only if $\mathscr{C} \in \mathfrak{F}$ or \mathfrak{G}. So, for tight designs other than those in \mathfrak{y} or \mathfrak{G}, we have $2 f_{1} \leqslant b$.

We now classify tight designs with $2 f_{1}=b$, so $v \geqslant 2 k$.
Theorem 10.4. A tight $\operatorname{scccd}(v, k, b)$ with $2 f_{1}=b$ is a tight $\operatorname{scccd}(4,2,6)$ or a tight $\operatorname{scccd}(9,4,12)$.

Proof. Let \mathscr{D} be a tight $\operatorname{seced}(v, k)$ with $2 f_{1}=b$ and $v \geqslant 2 k$.
We have $2(v-k+1)=v(v-1) /[2(k-1)]$, i.e., $v=(4 k-3+\sqrt{(8 k-7)}) / 2$. So let $k=\left(i^{2}+7\right) / 8$ where i is odd and $\geqslant 3$. Hence, $(v, k)=\left((i+1)^{2} / 4,\left(i^{2}+7\right) / 8\right)((i i i))$, and $f_{1}=\left(i^{2}+4 i+3\right) / 8$.

Eq. (2) from Section 7 then gives $f_{3}=(v-1)-3(k-2)=\left(21+4 i-i^{2}\right) / 8$. So, for $i \geqslant 7$, we have $f_{3} \leqslant 0<3$. Thus, from Lemma 7.1(ii) with $j=3$, we have $t_{l}=0$ for

Fig. 15. Standardized designs and their column-arrays, and other properties. (a) $\operatorname{sf}\left(\mathscr{E}_{1}\right)$, (b) sf(\mathscr{E}_{5}), (c) the representative standardized form of a perfect $\operatorname{seccd}(8,3,14)$: each A_{i} is a permutation of $A_{1}=[4,5,5]$. (d) $\operatorname{rsf}\left(\mathscr{F}_{3}\right)$: each A_{i} is a permutation of $A_{1}=[2,1,2]$, not perfect, element-regular with $\mu=1$. (e) $\operatorname{scced}(5,2,10)$: column-regular with $\eta=5$, perfect, element-regular with $\mu=2$.
$l \geqslant 3$, i.e., every element in \mathscr{D} is introduced once or twice. So, Eq. (2) yields:

$$
t_{1}+t_{2}=v=\frac{(i+1)^{2}}{4}, \quad t_{1}+2 t_{2}=b=\frac{\left(i^{2}+4 i+3\right)}{4} .
$$

This gives $t_{1}=\left(i^{2}-1\right) / 4$. Now, for $i \geqslant 7$ we have $r>2 k$, so, via Lemma 10.3(ii), we must have $t_{1} \leqslant f_{1}$; but this is false when $i \geqslant 7$. Thus, a tight $\operatorname{scccd}\left((i+1)^{2} / 4 .\left(i^{2}+7\right) / 8\right)$ does not exist for $i \geqslant 7$.

For $i=3$ a tight $\operatorname{scccd}(4,2,6)$ exists and for $i=5$ a tight $\operatorname{scccd}(9,4,12)$ exists.

11. Perfect designs; column-regular designs; element-regular designs

Again, let $\mathscr{B}=\left\{B_{1}, \ldots, B_{h}\right\}$ be an arbitrary $\operatorname{scccd}(v, k, b)$, and, for each $i=1, \ldots, h$, let $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ be the standardized form of its i th cyclic shift \mathscr{B}_{i}, see Section 4.

Now consider $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ for any fixed $i=1, \ldots, b$; its first block is $(1,2, \ldots, k)$. For $r=1, \ldots, k$, let its r th column be the column beginning with r, and let $\eta_{i, r}$ be the number of elements introduced into this column. Now let A_{i} be the ordered k-tuple $\left[\eta_{i, 1}, \ldots, \eta_{i . k}\right]$; call this the column-array of $\operatorname{sf}\left(\mathscr{B}_{i}\right)$.

Consider again $\mathscr{E}=\left\{B_{1}, \ldots, B_{8}\right\}$, the $\operatorname{scccd}(6,3,8)$ from Fig. 3(a) and its standardized form $\operatorname{sf}\left(\mathscr{E}_{1}\right)=\left\{L_{1}, \ldots, L_{8}\right\}$ from Fig. 3(b) shown again in Fig. 15(a); we have $A_{1}=[3,2,3]$. Now consider Fig. 15(b), which shows sf($\left.\mathscr{E}_{5}\right)$, the standardized form of $\mathscr{E}_{5}=\left\{B_{5}, B_{6}, B_{7}, B_{8}, B_{1}, B_{2}, B_{3}, B_{4}\right\}$, this design has $A_{5}=[1,4,3]$. So, for a fixed \mathscr{A}^{\prime}, we may have different $A_{i} \mathrm{~s}$ for different is.

A standardized $\operatorname{scccd}(v, k, b) \mathscr{B}=\left\{B_{1}, \ldots, B_{b}\right\}$ is perfect if each of the unchanged elements between B_{b} and B_{1} is in the same column in B_{b} as in B_{1}. So, the two ends of a perfect standardized scced can be 'joined-up' to give a circular version of requirement (4) in the definition of standardization (Section 4). For any \mathscr{B}, all of its b standardized forms are perfect or none are. Hence, a standardized \mathscr{B} is perfect if and only if $\operatorname{rsf}(\mathscr{B})$ is perfect. The standardized form of \mathscr{Y}_{3} (from Fig. 1(b)) is shown in Fig. 15(d); this is also $\operatorname{rsf}\left(\mathscr{Y}_{3}\right)$, it is not perfect. See Fig. 15(c) for the representative standardized form of a perfect $\operatorname{scccd}(8,3,14)$.

An interesting property of perfect standardized scceds is:
Theorem 11.1. Let A_{1}, \ldots, A_{b} be the column-arrays of a perfect standardized $\operatorname{scccd}(v, k, b)$. Then each A_{i} is a permutation of A_{1}, for $i=1, \ldots, b$.

Proof. For any fixed $r=1, \ldots, k$, consider the r th column in a perfect standardized $\operatorname{scccd}(v, k, b) \mathscr{B}=\operatorname{sf}\left(\mathscr{B}_{1}\right)=\left\{B_{1}, \ldots, B_{b}\right\}$. The elements in this column in B_{b} and B_{1} are either the same, or different if the single-change between B_{b} and B_{1} occurs in this column. In either case, we may write the elements of this column in a circle. Then $\eta_{1, r}$, the number of introductions in this column, is counted starting at B_{1}; this number is fixed no matter where on the circle we start. Now let $\operatorname{sf}\left(\mathscr{B}_{2}\right)$ be formed from $\mathscr{B}_{2}=\left\{B_{2}, B_{3}, \ldots, B_{b}, B_{1}\right\}$ by a permutation of $[v]$ and a permutation ϕ of $[k]$, i.e., of the columns. Then $\eta_{2, r}$, the number of introductions in column r of $\operatorname{sf}\left(\mathscr{B}_{2}\right)$, is equal to the number of introductions in column $\phi^{-1}(r)$ of $\operatorname{sf}\left(\mathscr{B}_{1}\right)$ when starting counting at B_{2}, which is the same as starting at B_{1}; this number is $\eta_{1, \phi^{-1}(r)}$. Thus $\eta_{2, r}=\eta_{1, \phi^{-1}(r)}$ for $r=1, \ldots, k$. That is, A_{2} is a permutation of A_{1}, and so on for A_{i}, $i=3, \ldots, b$.

For example, in the perfect standardized $\operatorname{scccd}(8,3,14)$ in Fig. 15(c), each A_{i} is a permutation of $A_{1}=[4,5,5]$. The $\operatorname{scccd}(5,3,5)$ shown in Fig. 15(d) is $\operatorname{rsf}\left(\mathscr{Y}_{3}\right)$. Each column-array of this design is a permutation of $A_{1}=[2,1,2]$, even though it is not perfect, so the converse of Theorem 11.1 is not true.

Consider $\mathrm{sf}\left(\mathscr{B}_{i}\right)$ for a fixed i, if the number of introductions into each column is the same, then we say that $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ is column-regular, see Section 4 of [2]. So $\eta_{i, r}=\eta=b / k$ for each $r=1, \ldots, k$, and $A_{i}=[\eta, \ldots, \eta]$. Also, \mathscr{B} itself is column-regular if $\operatorname{sf}\left(\mathscr{B}_{i}\right)$ is column-regular for each $i=1, \ldots, b$. So a $\operatorname{scccd}(v, k, b)$ is column-regular if each of its b standardized forms is itself column-regular.

Although we have defined a column-array only for a standardized scced we can also define it for a column-strict scccd. So, the column-array of a column-strict $\operatorname{scccd}(v, k, b)$, \mathscr{B}, is the ordered k-tuple $\left[\eta_{1}, \ldots, \eta_{k}\right]$ where η_{r} is the number of elements introduced into the r th column of \mathscr{B}, for each $r=1, \ldots, k$.

The definitions of 'perfect' and 'column-regular' can also be carried over to columnstrict scecds; and a $\operatorname{scced}(v, k, b), \mathscr{B}=\left\{B_{1}, \ldots, B_{b}\right\}$, is column-regular if the columnstrict representation of each \mathscr{B}_{i} is itself column-regular.

We can now prove:

Fig. 16. Figure for Theorem 11.2.

Theorem 11.2. A standardized column-regular $\operatorname{scccd}(v, k, b)$ is perfect.
Proof. Let $\mathscr{B}=\operatorname{sf}\left(\mathscr{B}_{1}\right)=\left\{B_{1}, \ldots, B_{b}\right\}$ be a standardized column-regular $\operatorname{scccd}(v, k, b)$, and let $\eta=b / k$. Now $B_{1}=(1, \ldots, k)$, without loss of generality let element 1 be introduced in B_{1} and let 1^{\prime} be changed from B_{b}, and suppose that 1 and 1^{\prime} are in different columns; let 1^{\prime} be in the s th column where $s \neq 1$. Now \mathscr{B} is column-regular and so the column-array of the column-strict representation of each \mathscr{B}_{i} is $A_{1}=[\eta, \ldots, \eta]$.

Now consider the column-strict $\mathscr{B}_{2}=\left\{B_{2}, B_{3}, \ldots, B_{b}, B_{1}\right\}$, where the elements in B_{2} are in the same order as they were in \mathscr{B}, element 1 is now in the same column as 1^{\prime}, the sth column; hence the s th element in the column-array of the column-strict \mathscr{B}_{2} is $\eta+1$, a contradiction. So 1 and 1^{\prime} are in the same column in \mathscr{B}.

Now consider element r for any fixed $r \in\{2, \ldots, k\}=B_{1} \cap B_{h}$; let it be changed first from $B_{i_{r}}$ and replaced by r^{\prime} in $B_{i_{r}+1}$. See the column-strict arrangement $\mathscr{B}_{i_{r, 1}}=$ $\left\{B_{i,+1}, \ldots, B_{b}, B_{1}, \ldots, B_{i_{r}}\right\}$ in Fig. 16(a); elements r^{\prime} and r lie in the same column by the previous argument. Moreover, $r \in B_{b}$ and $r \in B_{1}, \ldots, B_{i}$, so we must have Fig. 16(b).

Now we can retrieve $\mathscr{B}=\left\{B_{1}, \ldots, B_{b}\right\}$ from (b) without changing the columns in which r and r^{\prime} appear. Hence, in \mathscr{B}, the $r \in B_{1}$ lies in the same column as the $r \in B_{b}$, and, because r was arbitrarily chosen from $B_{1} \cap B_{b}$, so \mathscr{B} is perfect.

Combining Theorems 11.1 and 11.2 we have the following theorem in which all designs are assumed to be column-strict.

Theorem 11.3. Let $\mathscr{B}=\left\{B_{1}, \ldots, B_{b}\right\}$ be an arbitrary $\operatorname{scccd}(v, k, b)$. Then
(i) if \mathscr{B} is perfect the column-array of \mathscr{B}_{i} is a permutation of the column-array of \mathscr{B} for each $i=1, \ldots, b$;
(ii) if \mathscr{B} is column-regular then \mathscr{B} is perfect.

An arbitrary $\operatorname{scccd}(v, k, b), \mathscr{B}$, is element-regular if each of the v elements from [v] is introduced the same number of $\mu=b / v$ times. In the notation of Section 7 we have $t_{\mu}=v$.

Fig. 17. Table showing some of the numbers of non-isomorphic tight $\operatorname{scced}(v, k) \mathrm{s}$ for $v \geqslant 2 k-2$ and $v \leqslant 10$, ($k=2, v \geqslant 3$). The number of perfect designs is shown in parenthesis (). For $k \geqslant 3$ the 1 in column $v=2 k-2$ corresponds to $\mathscr{X}_{k} \in \mathbb{F}$, and for $k \geqslant 2$ the 1 in column $v=2 k-1$ to $\mathscr{Y}_{k} \in \mathscr{F}$. The symbol - means that $2(k-1) \nmid v(v-1)$ and so a tight design with parameters ($v, k)$ cannot exist. The missing numbers are currently being computed.

If \mathscr{C} is tight and element-regular with $\mu=1$ then $v=b=2 k-1$, and so \mathscr{C} is a $\operatorname{scccd}(2 k-1, k, 2 k-1)$ and, by Theorem 6.2, is isomorphic to $\mathscr{Y}_{k} \in \mathfrak{G}$.

Our final example is shown in Fig. 15(e). It is the representative standardized form of a tight $\operatorname{scccd}(5,2,10)$ which is column-regular with $\eta=5$, and so perfect, and elementregular with $\mu=2$.

Fig. 17 gives some of the numbers of non-isomorphic tight $\operatorname{scccd}(v, k) \mathrm{s}$ for $v \leqslant 10$.

Acknowledgements

Thank you to Donald A. Preece for reading, and commenting upon, an early version of this paper.

References

[1] N.C.K. Phillips, W.D. Wallis, Persistent pairs in single-change covering designs, Proc. 24th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, Boca Raton FL, 1993, Congr. Numer. 96 (1993) 75-82.
[2] D.A. Preece, R.L. Constable, G. Zhang, J.L. Yucas, W.D. Wallis, J.P. McSorley, N.C.K. Phillips, Tight single-change covering designs, Util. Math. 47 (1995) 55-84.
[3] G.H.J. van Rees, Single-change covering designs II, Congr. Numer. 92 (1993) 29-32.
[4] W.D. Wallis, J.L. Yucas, G.-H. Zhang, Single-change covering designs, Designs, Codes and Cryptography 3 (1992) 9-19.
[5] G.-H. Zhang, Some new bounds on single-change covering designs, SIAM J. Discrete Math. 7 (2) (1994) 166-171.

[^0]: * E-mail: jpmcsorl@pfeinsil.math.siu.edu.

