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Abstract 

A single-change circular covering design (scccd) based on the set [v] = { 1 . . . . .  t:} with block 
size k is an ordered collection o f b  blocks, ~ = {Bi . . . . .  B/,}, each B~ C [v], which obey: ( 1 ) each 
block differs from the previous block by a single element, as does the last from the first, and, (2) 
every pair of [v] is covered by some block. The object is to minimize b for a fixed v and k. We 
present some minimal constructions of scccds for arbitrary t: when k - 2 and 3, and for arbitrary 
k when k + 1 ~<v~<2k. Tight designs are those in which each pair is covered exactly once. 
Start-Finish arrays are used to construct tight designs when v>2k;  there are 2 non-isomorphic 
tight designs with (v, k ) -  (9, 4), and 12 with (v, k ) - ( 1 0 ,  4). Some non-existence results for tight 
designs, and standardized, element-regular, perfect, and column-regular designs are considered. 
@ 1999 Elsevier Science B.V. All rights reserved 
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1. Definitions; notation; examples 

A single-change circular cover&9 design based on the set [v] {1 . . . . .  v} with block 

size k is an ordered collect ion o f  b blocks, .~ = {B1 . . . . .  B~,}, each an unordered subset 

o f  k distinct e lements  from [v], which obey: 

(1) each block differs from the previous block by a single element,  i.e., IBi l~qB, .1 = 

k - 1 for i = 2  . . . . .  b ;  and the last block,  B/,, differs from the first, BI, by a single 

element,  i.e., IB/, f~Bll = k  - 1; 

(2) every (unordered)  pair  {x,y} of  [v], with x ¢  y, can be writ ten as {ei,z} where 

eiCB~\Bi i and zEBi  for some i = 2  . . . . .  b, or as {e l ,z}  where el ~B~\B/, and 

zCB~. 

* E-mail: jpmcsorl@pfeinsil.math.siu.edu. 
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element 
b locks  introduced pairs covered 

Bi ei {ei, z}, z ~ Bi 
B1 6 4 2  6 {6, 4} {6, 2} 
B2 6 3 2  3 {3,6} {3,2} 
Ba 6 3 5  5 {5,6} {5,3} 
B4 631  1 {1,6} {1,3} 
B5 431  4 {4, 3} {4, 1} 
B6 451 5 {5, 4} {5, 1} 
B7 251  2 {2, 5} {2,1} 
Bs 241  4 {4, 2} {4,1} 

£, an economical scecd(6, 3, 8) 3)3, a tight 

123  
2 3 4  
3 4 5  
451  
5 1 2  

scccd(5, 3, 5) 

(a) (b) 

Fig. 1. Examples: ~f and °2/3. 

For i = 2  . . . . .  b we say that element ei is introduced in block Bi, and the pairs {ei,z} 
where z EBi are covered by Bi. Similarly, el is introduced in B1 and pairs {el,z} where 
z E Bl are covered by B1. We also say that a pair is covered by :~ if it is covered by 
some block in ~ .  

A single-change circular covering design is simply a single-change coverin9 design 
(see [2,4]) in which a 'single-change' is also required between B6 and B1. 

We denote a single-change circular covering design by scccd; and a scccd based 
on Iv] with block size k by scccd(v,k), or by scccd(v,k,b) if  we wish to mention 
that it contains b blocks. For a fixed v and k, where k >t2 and v ~>k + 1, we denote 
by b.(v,k) the smallest b for which there exists a scccd( v, k, b ), and we call such a 
scccd(v,k,b.(v,k)) minimal. We write our designs vertically as in [4]. 

Our first example is a scccd(6, 3, 8) labelled 8 and shown in Fig. l(a). In g each 
pair, except {4, 1}, is covered once; {4, 1} is covered twice, in B5 and in Bs. This is 
an economical design, see Section 5. 

As the ordering of the elements in a block is immaterial, we often (but not always) 
leave a block's unchanged elements in the same columns as in the previous block, see 

in Fig. l(a); such a representation of g is called column-strict. In block B4 element 
1 is introduced because 1 ~ B3 and element 6 is changed because 6 ~ Bs. 

Our second example is a scccd(5,3,5), see Fig. l(b); we call this design ~3, see 
Section 6. Here the 10 pairs from the set {1,2, 3,4, 5} are each covered exactly once, 
2 per block; we call such a design tight, see Section 5. 

We generally use the notation : ~ =  { B I  . . . . .  Bb} for an arbitrary scccd(v,k,b) and cd 
for an arbitrary tight scccd(v, k, b), often with v > 2k. 

The main object of this paper is to study scccds, with special interest in the function 
b.(v,k) and in tight designs. We will see that the structure and construction of these 
designs are somewhat different from those of the single-change covering designs of 
[2,4]. 
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2. Requirements for ~ to form a single-change circular covering design 

Let ~ = {B1 . . . . .  Bb} be an ordered collection of  b blocks; each Bi contains k distinct 

elements from [v]. 

We say that ~ has the single-change circular property if IBi_l A B i l = k -  1 for 
i = 2  . . . . .  b, and ] B b A B I I = k -  1. 

Lemma 2.1. M is a scccd(v,k) if  and only if 
(i) ~ has the single-change circular property, and 

(ii) every pair of [v] is in some block of ~,  and 
(iii) no pair of [v] is in every block of ~. 

Proof.  First suppose that ~ is a scccd(v,k).  Then (i) and (ii) are true by definition 
of  a scecd. Now suppose that (iii) is false, and that the pair {x, y} is in every block 
of  ~ .  Then neither x nor y is introduced in any block, hence {x, y} is not covered by 

~ ,  a contradiction because ~ covers every pair. 
Now suppose that M satisfies (i), (ii), and (iii). As ~ satisfies (i) we need only 

show that it covers every pair o f  [v] to conclude that it is a scccd(v,k).  Now, by (ii), 
every pair {x, y} lies in some block of  ~ and, by (iii), the pair {x, y} is not in every 
block. So let Bi,  ,Bi2  . . . . .  Bi ,  , where t ~< b -  1, be a sequence of  consecutive blocks each 
containing {x, y ) ;  the block immediately 'before '  Bi~, say B, does not contain {x, y}. 
So exactly one of  x or y lies in B and the other does not. Hence, either y or x 
(respectively) is introduced in Bi,, and so {x,y} is covered there. Hence ~ covers 

every pair and is a scccd(v,k).  [] 

3. Designs with k = 2 and 3 

k = 2 :  I f  a tight scccd(v, 2, b) exists, then b =  v ( v -  1)/2, see Section 5. Now, given 

a tight scccd(v, 2) with first block B1 = (1,2)  and last block Bb = (v, 1 ), we may add 
on the v blocks as shown in Fig. 2(a) to obtain a tight scccd(v + 1,2, v(v + 1 )/2) based 

on [v + 1] with last block (v + 1, 1). 
Beginning with the tight scccd(3,2, 3) shown in Fig. 2(b) we can use this construc- 

tion repeatedly to obtain a tight scccd(v,2) for any v ~>3. 
k = 3: I f  a tight scccd(v,3, b) exists, then b = v ( v -  1)/4, see Section 5; and so v = 0 

or 1 (mod 4). Let v -~0  (rood 4), and suppose that we have a tight scccd(v,3) with 
BI = (1 ,2 ,3)  and Bb = (v, 1,2) in which element 1 is introduced in Bh. We can then 
construct a tight scccd(v + 4 ,3 , (v  + 3)(v + 4) /4)  based on [v + 4] by altering B~ to 
(v,v + 1,2) and adding on the 2v + 3 blocks as shown in Fig. 2(c). This new design 
has last block (v + 4, 1,2) in which 1 is introduced; so we can use this construction 
repeatedly to obtain a tight scccd(v, 3) for any v = 0 (rood 4) beginning with the tight 

scccd(4, 3, 3) shown in Fig. 2(d). 
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1, 2, 3 

1, 2 v_, v + l ,  _2 
v, v + 2, 2 
v, v + 2 ,  v + 4  
v, v + 2 ,  v + 3  

v_, _1 v, 1, v + 3 
v, v + l  v + l ,  1, v + 3  

v - l , v + l  v + l ,  1, v + 2  
v + l ,  v -  1, v + 2  

1, v + l  
v + l ,  3, v + 2  

(a) v + l ,  3, v + 4  
v + 3, 3, v + 4 

12 
32 
31 

v + 3 ,  v - l , v + 4  
a t igh t  v + 3 ,  2, v + 4  

scccd(3, 2, 3) v + 4, 1, 2 

(b) (c) 

123 
143 

123 543 
423 542 
412 512 

a tight a tight 
scccd(4,3,3) scccd(5,3,5) 

(d) (~) 

123 
173 
175 

123 145 
423 146 
453 346 
463 356 
461 256 
561 276 
562 274 
612 712 

an economical an economical 
scccd(6, 3, 8) scccd(7, 3, 11) 

(f) (g) 

Fig. 2. Starter designs and additions for k = 2 and 3. 

We can also construct a tight scccd(v, 3) when v - - 1  (mod 4) for any v~>5 start- 
ing with the tight scccd(5, 3, 5) shown in Fig. 2(e); and an economical scccd(v,3, 

I v ( v -  1 )/41 ) for v _= 2 or 3 (rood 4) for any v ~> 6 starting with the economical scccds 

in (f) or (g) respectively. 

Theorem 3.1. (i) A tight scccd(v,2) exists for all v~>3; 
(ii) a tight scccd(v, 3) exists for all v - O  or 1 (rood 4), v~>4; 

(iii) an economical scccd(v, 3) exists for all v=-2 or 3 (rood 4), v~>6. 

4. Standardized forms; isomorphisms; reverses 

A scccd(v,k,b) is standardized or in standardized form (see Section 1 of  [2]) if: 
(1) the elements o f  the first block are 1,2 . . . . .  k in that order; 

(2) the other elements are introduced initially in the order k ÷ 1,k + 2 . . . . .  v; 

(3) the elements o f  the first block are changed initially in the order k, k -  1 . . . . .  2, 1 (if 
our scccd(v, k, b) has one element, say element 1, in every block, then the elements 

o f  the first block are changed initially in the order k,k - 1 . . . . .  2); 
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in ch in ch 

]31 G 4 2 L1 1 2 3 1 [31 L~ 1 2 3 2 131 2"1 1 
[32 (i 3 2 L2 12 4 141 12-1 L2 1 2 4 i4[ 121 2 5 1 
B3 635  r3 154  [51 5 L3 154  }51 ]![ 451 
B4 6 3 1 L4 1 6 4 I-6t [-[I L4 6 5 4 ]61 6 4 3 1 
B5 431 L5 3 6 4  3 4 L5 354  3 4 631 
BG 451  L6 365  5 3 L6 352  2 5 635  
B7 251  L7 265  2 5 L7 362  6 2 632  
t?s 241  L8 263  3 6 Ls 361 1 (i 6,12 

$ sf(£) : sf(~l) rsf(~) = sf(~8) rev(~) 

(a) (b) (c) (d) 

Fig. 3. The economical scccd(6, 3, 8), d,', its standardized fonn,  its representative standardized form. and its 
reverse. 

(4) beginning at the second block, a block's unchanged elements arc in the same 
columns as in the previous block (i.e., it is column-strict). 

Given any scccd(v, k, b), ~ ,  that satisfies (4) above, in order to change it to its standard- 

ized form we need to apply a permutation o f  [v] to it, followed by a permutation o f  its 

columns. For example, if we apply the permutation (1,6)(3,4)  to d = {BI ,B2 . . . . .  B~} 

shown in Fig. 3(a), and then permute its 2nd and 3rd columns, we arrive at its stan- 
dardized form shown in (b), with blocks labelled Li. 

A cTclic shi f t  of  the ordered blocks . ~ =  {B~,B2 . . . . .  Bf,} is one of  the following 
rearrangements: 

: ~ =  .Nl - {BI ,B2 . . . . .  B/,} 

,~2 {B2, B3 . . . . .  Bt,, B I }, 

~ s  = {Bi . . . . .  B/, ,BI . . . . .  B, I }, 

:~t, = {Bf,,BI . . . . .  Bt, t } .  

The block arrangement ;fi  is called the i th cyclic shi/? of  :~. For each i the first 
block in d i  is Bs. 

Each scccd ~ = {BI ,B2 . . . . .  Bl,} has b standardized forms, one for each cyclic shift 
;'~'s. Let sf(.~s) denote the standardized form of  ,~s for each i =  1 . . . . .  b. 

The scccd(5,3,5),  ?~'3, of  Fig. l(b) has each of  its 5 standardized forms identical 
(shown in Fig. 15(d)); but N in Fig. 3(a) has each of  its 8 standardized forms different. 

I f  a design ~M does not have all of  its standardized forms identical, one of  these forms 

can usefully be chosen as the representa t ive  s tandard ized  Jbrm,  rsf(~),  in order to 
do this for an arbitrary . ~ =  {B1,B2 . . . . .  B~,}, we will presently define, for each i. four 
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finite sequences associated with sf(Mi), namely S1, $2, $3, and $4. (In general, the 
sequences $1, $2, $3, and $4 will be different for each i, but we choose this notation 

for simplicity.) We then consider the ordered set {SI, $2, $3, $4}. So each sf(Mi) gives 
us an ordered set of  four sequences. Next, we order these ordered sets of  four sequences 

according to the criteria below, and choose the 'least' in this ordering. Suppose this 
least ordered set comes from sf(Ml); then sf(M D is taken as rsf(M). 

Again for simplicity, we use LI ,L2 . . . . .  Lb, to denote the b blocks of  sf(Mi), for every 

i =  1 . . . . .  b, even though generally the blocks differ for each i. So sf(Mi)={Li,L2,  
. . . .  L6} where Ll = ( 1 , 2  . . . . .  k) and L2 = ( 1 , 2  . . . . .  k +  1). 

The sequences Sl and $2 are sequences of distinct blocks from {L1,L2 . . . .  ,Lh}; and 
$3 and $4 are sequences of  not necessarily distinct elements from Iv]. For a fixed sf(Mi) 
we define Si with reference to (2) above. For t = 1 . . . .  , v -  k, the tth member of  S1 
is the block into which element k + t is initially introduced. Thus SI begins with L2. 
Sequence $2 (see (3) above) is a sequence of blocks beginning at Ll. For t =  1 . . . . .  k, 
the tth member of  $2 is the first block from which element k - t + 1 is initially changed 

(t stops at k - 1 if  M has element 1 in every block). 
Just as for i = 1 . . . . .  b, the element ei is introduced into block Li, let e~ be the 

element changed from Li. So we have e~ CLi\Li+l for i =  1 . . . . .  b -  1, and e~ ELb\LI. 
Now define sequence $3 = {ei: Li ~$1}, arranged with increasing i; so, el is its first 
member. Similarly, we define $4 = {e~: Li q~ $2}, arranged with increasing i. 

For an example see sf(E1) in Fig. 3(b), where the column of introduced elements, 
ei, is labelled ' in ' ,  and the column of changed elements, e~, is labelled 'ch' .  We have 

S1 = {L2,L3,L4}, Sz = {L1,Lz,L4}, $3 = {1,3,5,2,3}, and $4 = {5,4,3,5,6}. 
Thus each sf(Mi) gives us an ordered set of  four sequences. We now order these 

ordered sets of  four sequences by, first of  all, lexicographically ordering their first 
elements, the S1 sequences, according to the rule: L~<Ls if and only if r<s,  and 
choosing the set(s) whose Sl sequence is the first (i.e., the least) in this list. I f  two (or 
more) sets have identical S1 sequences, we choose the one with the least $2 sequence 
using the same ordering. I f  two (or more) sets have identical Sl and $2 sequences then 
we compare their $3 sequences and order them lexicographically using the natural < 
ordering on [v], and choose the least. I f  still identical, we compare their $4 sequences, 
with the < ordering, and choose the least. Two such sets with identical $1, $2, $3, 
and $4 sequences can easily be shown to correspond to standardized forms that are 
identical. 

By this process we arrive at the particular sf(Ml) with the least set of sequences 
according to our lexicographic orderings; we take this particular standardized form 
as the representative standardized form of M, rsf(M). For example, rsf(8) shown in 
Fig. 3(c), is sf(g8); and rsf(~3) is shown in Fig. 15(d). 

Two scccd( v, k, b )s M and M ~ are isomorphic, (M TM Mr), if we can apply a permu- 
tation of [v] combined with a cyclic shift of  the blocks of  M to obtain M r. Similarly, 
an automorphism of a scccd(v,k,b) M is a permutation of [v] which, when applied 
to M, produces a cyclic shift of  M. For example, the permutation (1,2, 3, 4, 5) is an 
automorphism of ~3. 
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Theorem 4.1. Let ~ and ~ '  be two scccd(v,k,b)s. Then ,~ ~- ,~' i f  and only if 
rsf(:8) = rs f f~ ' ) .  

Proof. Suppose :8 ~ :8' ,  then, for any i E (1 . . . . .  b}, there exists a j E { 1 . . . . .  b} such 

that :8,, the ith cyclic shift o f  :8, can be changed into ~/' using only a permuta- 

tion on v, i.e., with no cyclic shift of  the blocks o f  ~i .  So s f ( ~ i ) = s f ( ~ ) ,  and so 
{ s f (~ , )  . . . . .  sf(~b)} C_ {sf(:8~) . . . . .  sf(:sb) }. Similarly, ( s f (~ ' l )  . . . . .  s f (~ , )}  c_ {sf(.~, ), 

. . . .  sf(:sb)} and this gives: {sf(:s1) . . . . .  sf(:sb)} = {sf(:8'~ ) . . . . .  sf(:8~)}. Hence rsf(:~) = 

r s f (~ '  ). 

Now suppose that rsff:8) = rsff:8'  ), then ~°A ~ rsff.~) = rsff~J) ' ) ~ .~'. as 
required. [] 

The reverse of  the scccd : 8 =  {BI,B2 . . . .  ,Bb} is the scccd obtained by reversing the 

order of  the blocks o f  :8; we denote this design by r e v ( : 8 ) =  {Bh, Bh-i . . . . .  Bt }. The 

reverse o f  ~ is shown in Fig. 3(d). I f  :8 ~ rev(:8) we say that :8 is self=reverse. 

5. Lower bounds on b.(v, k); constructions of designs for k + 1 <~v~2k 

Lemma 5.1. For v>~4 and k~>3, the value of  b . (v ,k  ), the minimum number of  blocks 
in a scccd(v,k), satisfies 

iv(v- 1) 
b * ( v ' k ) > ~ m a x { v - l ' | 2 ( k  i ~ l } "  

Proof. In a scccd(v,k) exactly one element is introduced per block, so, if b . ( v , k ) <  
v -  1, then at most v -  2 distinct elements are introduced. Hence at least 2 distinct ele- 

ments are not introduced, and the pair containing them is not covered, a contradiction. 

So b . ( v , k )>~v -  1. 
A scccd(v,k) must cover all v(v - 1 )/2 pairs o f  [v], and k - 1 pairs are covered per 

block. Thus b . ( v , k ) .  ( k -  1)>~v(v -  1)/2, and so the result. [] 

Corollary 5.2. For v>~4 and k >~3 we have 

{il b.(v,k)>~ v ( v -  1) 
2(k -[~ for v > Z k - 2 .  

(1) 

I f  b. (v ,k )  satisfies equation (1) with equality, then we say that the corresponding 

scccd(v,k) is economical; except that if b , ( v , k ) = v ( v -  1 ) / [ 2 ( k -  1)] then the corre- 

sponding scccd(v,k) is tight. An economical and a tight scccd are shown in Fig. 1. 
Consider the first case o f  Corollary 5.2. I f  a scccd(v,k) with k + 1 ~<v~<2k - 2 

and with the minimal number o f  v - 1 blocks exists, then a total of  v - 1 elements 

are introduced in the design; from the proof of  Lemma 5.1 these v - 1 elements are 
distinct. Hence, without loss of  generality, in such a design the elements 1 . . . . .  v - 1 



568 J.P. McSorley / Discrete Mathematics 197/198 (1999) 561-588 

are each introduced exactly once; the element v is not introduced, and so appears in 

every block. The following construction satisfies these requirements: 

Arrange the elements o f  [ v -  1] in a circle and call this arrangement the circular 

[v - 1]. Now, for 1 <~i<~v - 1, let Ai be the block beginning at i and containing k - 1 

consecutive elements taken clockwise from the circle; i.e., Az = (i, i + 1 . . . . .  i + k - 2), 

where addition is taken modulo v -  1 with v -  1 replacing 0. Now let Bi =Ai U {v} 

and ~ =  {Bt . . . . .  B~,-1}. 

Theorem 5.3. For k >~3 and k +  l ~ < v ~ < 2 k - 2  the blocks ~J4~={BI . . . . .  B~, 1} where 

Bi = Ai U {v} form an economical scccd(v, k, v - 1 ). 

ProoL We need only show that ~ is a scccd(v,k) .  It then follows, since [~1 = 

v -  1, that it is an economical  scccd(v , k , v -  1). We show that .~ satisfies ( i ) - ( i i i )  of  

Lemma 2.1. 

(i)  This is clear from the definition of  .~. 

(i i)  Now B i - ( i , i  + 1 . . . . .  i + k -  2 )U { v} ,  where addition is taken modulo v -  1 

with v - 1 replacing 0. So element i + k - 2 is introduced in Bi, i.e., element i is 

introduced in Bi k+2. Hence, for 1 ~< i~<v-  1, pair {i,v} is covered by Bi k+2. This 

deals with pairs that contain v. 

Now consider the pair {i , j}  where l<<.i<j<<.v- 1 and let v -  1 be odd. The pair 

{i , j}  can be covered by a ' run '  o f  elements starting either at i or at j and containing 

v/2 consecutive elements of  the circular [ v - 1 ] .  But v < , 2 k -  2 and so v /2<~k-  1, i.e., 

such a run is contained in Ai or A/, so in Bi or B/. Hence {i , j}  is covered by N. A 

similar argument works when v -  1 is even. 

( i i i)  Let {i , j}  be in every block; then, without loss o f  generality, we have 1 ~<i~< 

v -  1. But i is introduced in Bg k+2, and so cannot be in the previous block, a contra- 

diction. Hence no pair is in every block. 

Thus N is an economical scccd (v , k , v -  1). [] 

An economical  scccd(5, 4, 4) constructed using Theorem 5.3 is shown in Fig. 4(a). 

For  a fixed k>~3 the only tight designs amongst the economical scccd (v , k , v -  1)s 

with k + 1 <<.v<<.2k-2 occur when v ( v -  1 ) / 2 = ( k -  1 ) ( v -  1), i.e., when v = 2 k - 2 .  
So Theorem 5.3 with v = 2k - 2 yields tight designs: 

Theorem 5.4. For k >~3 and v = 2 k - 2  the blocks N = { B I  . . . . .  B2k_3} where Bi=Ag U 
{2k - 2} form a tight scccd(2k - 2,k,2k - 3). 

See Fig. 4(b)  for a tight scccd(6 ,4 ,5)  constructed using Theorem 5.4. 

So far, for a fixed k ~> 3, we have constructed economical scccds when k + 1 ~< v ~< 

2 k - 2 .  We now consider v = 2 k -  1 and v = 2 k ,  so we are in the second case of  

Corollary 5.2 in which a scccd has b>~ [v(v - 1)/[2(k - 1)]] blocks. 

v = 2 k  - 1: Here b />2k  - 1. Consider the circular [2k - 1]. For 1 ~<i~<2k - 1 let 

Bg = (i, i + 1 . . . . .  i + k - 1 ), where addition is taken modulo 2k - 1 with 2k - 1 replacing 
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B~ 1234 
B2 2345  

B1 1236 /33 3456  
Bl 1235  B2 2346  B4 4 5 6 7  
B2 2345  B3 3456  B5 5671 
/?3 3415  B 4 4516  /36 6712  
B4 4125  /35 5126  Br 7123  

an econonfical a tight a tight 
s,:,:cd(5, 4, 4) s,:ccd(6, 4, 5) sc,,~:d(7, 4, 71 

(a) (b) (c) 

Fig. 4. Designs with k -  4 constructed using Theorems 5.3 5.5. 

131 1, 
/32 2: 

Bl~-i  k -- 1, 
(7 2k, 
Bk  k, 

B2k-1 2 k -  1, 
C '  2k - 1, 
C" 2k, 

2, 3, k 
3, 4, k + l  

k, k + l ,  2 k - 2  
k, k + 1, 2k - 2 

k + l , k + 2 ,  2 k - 1  

1, 2, , k - 1 
2k, 2, . . . , I ; -  1 
1, 2, . . . , k -  1 

scccd(2k,  k , 2 k + 2 )  

/31 1 2 3 4  
/32 2 3 4 5  
B3 3 4 5 6  
C 8 4 5 6  
/~4 4 5 6 7  
B5 5 6 7 1  
B6 6 7 1 2  
B7 7 1 2 3  
C'  7 8 2 3  
C" 8 1 2 3  

scccd(8, 4, 10) 

(a) (b) 

Fig. 5. The economical scccd(2k, k, 2k 4-2) of Theorem 5.6 (tight only for k = 2), this design for k 4. 

0. Then we have the fol lowing result. This  construct ion and the next also work fbr 

k 2. 

Theorem 5.5. For  k >~ 2 a n d  v = 2 k -  1 the b locks  ~ = { B1 . . . . .  B:~. i } where  Bi = ( i, i+ 

1 . . . . .  i + k 1 ) j b r m  a t ight  scccd(2k 1, k, 2k  1 ). 

See Fig. 4(c)  for a tight scccd(7 ,4 ,7 )  constructed using Theorem 5.5. 

v = 2 k :  Here b>>,2k + 2. To construct  an economical  scccd(2k ,  k, 2k  + 2) based on 

[2k] we take the blocks {Bl . . . . .  B2t. I} of  the s c c c d ( 2 k -  l , k , 2 k -  1) in Theorem 5.5 

above and add on finally 3 new blocks: C between B~ i and & ,  then C'  after B:/, t, 

and C"  after C t, i.e., be tween C t and BI; see Fig. 5(a). 
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As the elements introduced in Bl and Bk are unchanged, the pairs covered by these 
blocks are unchanged, and pairs containing the element 2k are covered in the 3 new 
blocks. Using Lemma 2.1 it is clear this is an economical scccd(2k, k,2k + 2). This 
economical design is tight only when 2k + 2 = 2 k ( 2 k -  1 ) / [ 2 ( k -  1 )], i.e., when k = 2. 

Theorem 5.6. For k>>,2 and v = 2 k  the blocks ~ =  {B1,B2 . . . . .  Bk-l ,C,  Bk . . . . .  B2k-1, 

C I, C"} form an economical scccd(2k, k,2k + 2), which is tight when k = 2. [] 

See Fig. 5(b) for an economical scccd(8,4, 10) constructed using Theorem 5.6. 
The theorem below summarizes this section, cf., Corollary 5.1 of [4]. 

Theorem 5.7. For k >1 3 we have 

v - 1  for  k + l <.v<~2k-  2; 

b . ( v , k ) =  v for  v : 2 k -  1; 
v + 2  for  v =  2k. 

So, in this section, we have constructed scccds with a minimal number of blocks 
for k/> 3 and k + 1 ~< v ~<2k, and have given examples for k- -4 .  From now on we 
concentrate mainly on tight designs. 

6. Some families of tight designs 

Tight scccds are of special interest; they are analogous to tight single-change cov- 
eting designs, see [2]. 

So far we have three infinite families of tight scccds with a fixed k, see Theorem 3.1: 
(i) scccd(v,2) for all v~>3; 

(ii) scccd(v,3) for all v - 0  (mod 4), v>~4; 
(iii) scccd(v, 3) for all v-- 1 (mod 4), v>~5. 
For the tight designs of  [2] infinite families are not known to exist with k variable, 
except in the case v = k, here we have two infinite families with k variable: 
(iv) ~ --{Y'k: 5Tk is the tight scccd(2k-  2 , k , 2 k -  3) from Theorem 5.4, k~>3}; 
(v) ffi= {~k: ~k is the tight scccd(2k-  1 , k , 2 k -  1) from Theorem 5.5, k~>2}. 

(Note that ~3 is shown in Fig. l(b).) 
If a scccd has the same parameters as a member of one of these two families it is 

isomorphic to that member: 

Theorem 6.1. For a f ixed k >~3 let Y" be a s c c c d ( 2 k - 2 , k , 2 k - 3  ). Then Yf~-Y'k E q~. 

Proof. The parameters of Y" indicate that it is tight. Let ~ be based on [v] where 
v = 2 k  - 2. 

Now ~ has v -  1 blocks, so, from the comments preceding Theorem 5.3, it contains 
some element, say v, in every block. Any other element 1 . . . . .  v -  1 is introduced exactly 
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once and remains in k - 1 successive blocks because it must appear in v - 1 = 2k - 3, 

covered pairs; it appears in k - 1 covered pairs in its first block and in one covered 

pair in each o f  its k -  2 successive blocks. 

Hence, up to a permutation of  [v], we may construct f as follows: first, put v in 

every block; then, for i =  1 , . . . , v  - 1, introduce i in Bi, and leave it there for k - 1 

successive blocks. Then block Bk-1 will be then block Bk- i  will be (1,2 . . . . .  k - 1. i'~ 

and a cyclic shift of  the blocks making this the first block will produce J},. Hencc 

Similarly for the family ~ .  

Theorem 6.2. For a f i x e d  k >~2 let ~¢ be a scccd(2k - l ,k ,  2 k -  1). Then ~ ~- ~ ~_ (¢). 

7. The numbers tj and ~ for a tight design 

Now we consider constructions o f  tight scccds for v > 2 k .  First we need some 

preparatory material, much o f  which is similar to that of  Section 4 in [2]. 

In an arbitrary tight scccd(v,k)  let ~C_[v] denote the set o f  elements which are 

introduced j times, j ~> 0, and let tj = I T/I. 

Now consider to, the number o f  elements not introduced. From the proof  o f  

Lemma 5.1 we must have t 0 = 0  or 1. Let ~ be a tight scccd(v,k)  in which t 0 -  1, 

and call v the element not introduced. Any other element z = 1 . . . . .  v -  1 is introduced 

exactly once, for, i f  some z is introduced twice or more, then the pair {z, v} is cov-- 

ered twice or more; a contradiction because LT( is tight. Hence, each o f  1 , . . . ,  r 1 i,; 

introduced exactly once, and b = v -  1 =  v ( v -  1 ) / [ 2 ( k -  1)], i.e., v = 2 k -  2. Thus 

is a tight s c c c d ( 2 k -  2 , k , 2 k -  3) and, by Theorem 6.1, lies in ~ .  

Thus, all tight scccds with to = 1 are known; they are members o f  ~ with v = 2k - 2. 

As we are interested in tight designs with v > 2 k ,  we assume that to = 0 and restrict 

ourselves to j >~ 1. 

Let cg be an arbitrary tight scccd( v, k, b ), and, for any x E [ v ] ,  let f~,} denote the 

number o f  blocks that contain x. 

Let x C ~ .  Each time x is introduced k - 1 pairs containing x are covered. There are 

v - 1 pairs containing x to be covered, so we may let j ~< k(v - 1 ) / (k  - 1 )j = A because 

( / = 0  for j > A .  

Now x E ~ ,  so there are j blocks in which x is introduced; (k - 1 ) pairs containing x 

are covered in each o f  these blocks. There are f{x} - J  blocks that contain x but in 

which it is not introduced; only 1 pair containing x is covered in each o f  these blocks. 

This gives v - 1  = j ( k - 1 ) +  ( f { x } - j ) l ,  i.e., f{x} = ( v - 1 ) - j ( k - 2 ) .  Hence )'i~} is 

constant on Tj, so we let f j  = ( v -  1 ) - j ( k -  2) be the number o f  blocks that contain 

any fixed element from ~ .  In particular, Ji = v -  k + 1. 
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We have, for 1 <~j<~A, 

A =  v -  1 , ~-~ t j = v ,  ~ j t j = b ,  
/=1 ./=1 

~ = ( v -  1) - j ( k  - 2). (2) 

Some further properties of  the numbers t/ and ~. are given below. 

Lemma 7.1. For k > 2 and any j satisfyin9 1 <~j <.A, we have 

(i) j ~ < J ~  1< " '"  < f 2 < j ~ ;  
(ii) f j  >>-j, and, i f  f j  <j ,  then t /=  0 for  all l >~j; 

(iii) i f ~ = j ,  then t j = 0  or 1; 
(iv) i f ~ = j  + 1, then t j=O, 1, or 2. 

Proof. (i) Clear because ~ = (v - 1) - j ( k  - 2) and k > 2. 
(ii) For each of  the j times when x E Tj is introduced it appears in at least 1 block, 

so fj~>j.  So, clearly, if  ~ < j  then t j=O. Also, for any l > j ,  we have J ~ < ~ < j < l  
by (i), hence, tl = 0. 

(iii) For a fixed j ,  suppose ~ = j  but tj = ~ ~>2, and let x and y C  ~.. Now, because 
x is introduced j times and appears in j blocks, each time it is introduced it must be 
immediately removed; similarly for y. But pair {x, y} must appear in some block, 
hence both x and y must be introduced in this block, a contradiction. 

(iv) Now suppose ~. = j  + 1 but (i>~3, and let x ,y ,  and z E ~.. By the pigeonhole 
principle, for one of  the j times when x is introduced it must stay for 2 successive 
blocks; similarly for y and z. So the configurations x y z x ,  , and z occur once each. In 

XZ" 
order to cover the pairs {x,y},  {x,z},  and {y , z }  we must have the arrangement xy.  

zy .  

in the design, i.e., b = 3. But there are only 2 tight scccds with b = 3: one is Y'3 E 5 ,  
which we have excluded; the other is ~/2 E (5, which is also excluded because this 
design has k = 2 and we are restricted to k > 2. [] 

8. Start-Finish arrays for a tight design; Criteria for a tight design with v>2k 

This section is mainly concerned with the subset T1 of  elements introduced exactly 
once in cg, an arbitrary tight scccd(v,k).  

Suppose T i ¢  (~ and let x E Tn, and consider the f{.,_}--- J] = v -  k + 1 successive 
blocks in W which contain x; call these blocks ~ x = { B , . i  . . . . .  Bx. li),  see Fig. 6(a). 
We may write x as the leftmost element in each of  these blocks. We say that x starts, 
S, in Bx.l (i.e., is introduced there), and finishes, F,  in Bx, ji, see Fig. 6(a). Call this 
occurrence of  x in J~ successive blocks the run containing x. Now let y be some other 
element in T1. The pair {x, y} must be covered in ~x and so, because f{~.} = J] also, 
either the S or the F of  y must appear in ~ .  Similarly for all the other elements 
in Ti. 
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[da:A --+ /~:x:,l :r 5' 
B:,:,2 ~ [~,,.2 :r 12 

32 R3,1 3S R4,1 4 S F  123 
31 Ra ,2  3 -  R4,2 4-  234 R~,I . rHF 
3 4 R3,3 3 F S /'~4,3 4 F 3 4 5 1{~,2 :r .b" F 

B x , f  t I ~ R:r , f l -1  X 24 451  [q:r,a :r:b'H 
B~r,fl ~ [~z.J'~ x F 14 5 1 2  

~'F~ sF3 sF4 .s' £ 

a tight scccd(4, 2, 6) y:~ 
'/1 - {3,4} :c E '/71 = {1,2,3,4,5} 

(a) (b) (,! 

Fig. 6. SF-arrays and examples. 

Thus, as we run through the elements in T,, each adds its S or its F to the array in 

the final column of  (a). We call this the Start-Finish array, or SF-array,  for element x, 

and denote it by SF,.. Call the Ss and Fs  symbols. 
In Fig. 6(a), block B,.i gives rise to the ith row, R~.,, of  SF,, which contains x 

and, perhaps, some symbols we write B,-,i --+ R,j .  If  a row contains no symbols it is 

empty ( - ) .  
Fig. 6(b) shows a tight scccd(4 ,2 ,6)  with elements 3 and 4 ~ Ti. The SF-array for 

element 3, SF3, is shown first; here the S in R3.3 appears because element 4 starts in 

B3,3. The array S F 4  is shown next; here F c R4. j because element 3 finishes in /74,1. 

Fig. 6(c) shows the tight scccd(5, 3, 5), ~ it has Tt {1 ,2 ,3 ,4 ,5}  and, for all .x-C rl, 
the arrays S £  are identical. 

The main idea o f  this section is to place restrictions on the structure o f  an SF-array 

of  a tight scccd(v, k)  when v>2k .  In the following section we 'extend '  these SF-arrays 

to tight scccds for ( v , k ) = ( 9 , 4 )  and (10,4).  

So, let us assume that a tight scccd(v, k, b), <6, exists whose set o f  elements introduced 

exactly once is TI, and let x C Ti. Then, using the following 10 Observations, we will 

establish 10 Criteria that SF, must satisfy. In the Observations, R denotes an arbitrary 

row of  S~-, with corresponding block in ?A.,. denoted by Bte. 

Observations 
(1) Each row R o f  S ~  contains at most one S and at most one F.  For suppose 

R contains two or more Ss say, then two or more elements are introduced in B~, 

a contradiction. Similarly for the F s  because the reverse o f  a scccd is again a scccd. 

Clearly the order o f  the symbols in a row does not matter. 

(2) The number o f  empty rows between any row containing F and the next (different) 

row containing S as we go down SF, is > ~ b -  2]i  + 1. To see this let y C  irl finish in 

any row of  S £  and let z E T~ start in a later one, with :~ empty rows between them. 

Now, the pair {y , z }  is not covered in ~,. ,  so the runs containing y and z must meet 

outside ~ , .  That is, c~ + .f{~.} + j}:} ~>h + 1, so a ~ > b -  2J] + 1. 
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B~ , I  x p q  . R~ , I  x S  x p q  . R~,x x S  

Bz ,2  x y q • Rx ,2  x S x y q • Rx ,2  x S 

B~,3 x y z . R~,3 x S x y z . 

. . . .  • . . .  R x , . f l - 1  x F 

B~ ,y  t x y z .  R~,f~ x F  x y z .  R~,I~ x F  

• y z .  p y z .  

• - z .  p q z .  

(a) (b) (c) (d) 

Fig. 7. Persistent triples and their corresponding forbidden configurations. 

Furthermore, let FS(v,k)=b - 2fi  + 1. Now FS(v,k)>~O with equality if  and 
only if v = 2k - 2 or 2k - 1. Because we are interested only in v > 2k, we may assume 
that FS(v,k)>~ 1, i.e., that there is always at least 1 empty row between any F and the 
next S. 

(3) Suppose the three elements x,y, and z E Tl (where, without loss of  generality, 
the first is the x of  our SF~) are introduced in three successive blocks in (g. See 
Fig. 7(a) where y starts in Bx,2 ' changing '  p,  and z starts in Bx,3 changing q; see (b) 
for the SF-array so formed. To cover the pairs {p,y} and {q,z} the elements p and 

q must occur in the two blocks immediately succeeding Bx, A, as shown in (c). Hence, 
pair {p,q} must be in all remaining blocks outside ~x,  for, if  not, it will be covered 
more than once. So both p and q E T1, which forces b = 2)'] - 1, i.e., v = 2 k -  2 or 

S 
2 k -  1. So, with our restriction of  v > 2k, we may assume that the configurations S and 

S 
F 
F do not appear (in cg and so) in SFx. (Such a triple {x,y,z} is called a persistent 
F 
triple, it persists through v -  k -  1 blocks, see Phillips and Wallis [1]. Here we have 
shown that if  a tight scccd contains a persistent triple then it must belong to one of  the 
families ~ or (fi; see the constructions in Section 5 and in the proof  of  Theorem 6.1; 
all designs in both these families contain persistent triples.) 

Similarly, the configuration shown in Fig. 7(d) cannot occur in SF~; for, if  it did, 

then the element which starts in Bx,2 must finish in the block succeeding B~,f~, thus 
r y  

producing the forbidden configuration ~" (in cg). 
F 

(4) The S o f x  lies in Rx, l and the F in R~,A; and then each of  the remaining tl - 1 

elements in T~ have either their S or their F present in SF~, (but not both, for, i f  
element y, say, has both its S and its F present, then its S must appear after its F 
and so pair {x, y} is covered twice). This gives a total o f  tl + 1 symbols. 

(5) Consider R, an arbitrary row of  SF~; for each S in or above R there will be an 
element from TI in BR; similarly for each F in or below R, except that the S and F of  
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 iflt Yl 

f 1 = 2  f S SF} 
F fl = 2  

12 
32 3SF 
31 3FS 

scccd(3,2,3) 

(a) (b) 

Fig. 8. Configurations corresponding to a persistent pair. 

x contribute only one element (x itself) to BR. Now cd has block size k, so we must 

have 

{t 0number of  ){  eoum e of s} 
in or aboveR + in or be lowR 

Call the left-hand side of  the above equation the weight of R, wt(R); it is the number 
of  elements from T1 in Be. 

(6) Let R be the last row of S~;  then wt(R) is the number of  Ss in S~,  which 

is ~<k by Observation (5). Similarly, the number of  Fs  in SF~ is ~<k. Also, using 
Observation (4), the total number of  symbols, tl + 1, is ~<2k. Thus, tl ~<2k - 1. 
There is a tight scccd(4, 2, 6) with (tl,tz,t3)=(3,0, 1) for which this inequality is 
sharp; it is also sharp for any design in the family 05. (Cf. Section 4 of  [2], where 
tl ~<k.) 

(7) Suppose that two rows of weight k are adjacent, and the single-change between 
their corresponding two blocks is caused by y finishing in the first block and z starting 
in the successive block. Then there are no empty rows between the row containing the 
F of y and the row containing the S of z, a contradiction to Observation (2). Hence, 
two rows of weight k cannot be adjacent. 

S 
(8) The configuration S does not occur in S ~  so the number of  configurations 

t ~  

ill 

SE, is ~< ~k/2j, otherwise the first inequality of Observation (6) is violated. Similarly 

for the configuration F F" 
(9) A persistent pair in c~, see [1] and Section 4 of  [2], is a pair of  elements from TI 

which start in successive blocks; thus they persist together through v -  k blocks. Each 

persistent pair has a configuration ~ and ~7. We claim that our SE~ contains exactly 

one of the configurations ~ or ~ for each persistent pair of cg, except if ~ E ~ 

or 05. 
For any persistent pair {y,z} of  ¢g its configurations S and ; can be arranged 

in one of the two ways shown in Fig. 8(a), where the upper S belongs to y. Our 
claim is clearly true if x = y or z, so assume x ~ y, z. Now, the f l  rows of SE~ must 
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include either the S or the F of  y, and either the S or the F of  z. That is, they must 

include either the upper S or the upper F in (a), and either the lower S or the lower 
F,  not both in each case. I f  we choose our f l  rows of  S~. such that this is true and 

that neither the whole of  the } nor the whole of  the ~ is included, then, without loss 

of  generality, the first row must be the row containing the lower F and, as it 
proceeds downwards and cycles around, its last row must be the row containing the 
upper S. Hence, b = 2 f l  - 1, i.e., v = 2 k -  2 or 2 k -  1, so (6'E ~ or (fi, as in Ob- 
servation (3). Hence, because v>2k,  we may assume that, for any persistent pair o f  

~ ,  our SF~ contains either the whole of  the pair 's  } or the whole of  the pair 's  ~ ,  

but not both. 
Now, because each persistent pair in cg contains 2 elements from T1 and different 

persistent pairs contain distinct elements and tl ~ < 2 k -  1 from Observation (6), the 

total number of  appearances of  S and F in SF~ is ~< ~t,/Zj <~ L(Zk - 1)/2J = k  - 1. 
For even k this upper bound is 1 smaller than the upper bound of  2 [k/2j obtained by 

adding the upper bounds for the number of  appearances of  ~ and f7 in Observation 
(8); for odd k they are the same. 

(10) From Observation (4) SE~ contains a total of  tl + 1 symbols, of  which at least 
1 is F.  Hence, the number of  appearances of  S is ~<tl. So, via Observation (6), the 

number of  appearances of  S is ~ min{t l ,k}.  Hence, the number of  appearances of  F 
is ~>tl + 1 - m i n { t l , k } ;  similarly for the number of  appearances of  S. So, finally, we 
have: t, + 1  - m i n { t l , k } ~ <  IS t ~< min{t , ,k},  and similarly for IF[. 

So, to summarize our 10 Observations, let ~ be an arbitrary tight scccd(v, k, b) with 
v > 2k, and let x E TI and let R be an arbitrary row in SE,-. Then, corresponding to the 
10 Observations above, SFx must satisfy Criteria ( 1 ) - ( 1 0 )  below, where ICI denotes 
the number of  appearances of  configuration C. 

Criteria 
(1) R contains at most one S and at most one F.  
(2) Between any F and the next S there are > ~ F S ( v , k ) = b - 2 f l  + 1 ~>1 empty rows. 

S F 
(3) The configurations S F S '  F '  and the configuration of  Fig. 7(d) do not appear. 

(4) SERx.~, FER~.I  i, ]S[ + IFI----t~ + 1. 
(5) wt(R) ~<k. 
(6) 1 ~<tt ~ < 2 k -  1. 
(7) Two rows of  wt(k)  cannot be adjacent. 

(8) ,S ~<Lk/2], F <~Lk/ZJ. 

(9) S + F ~ k - 1 .  

(10) tl + 1 - min{t,,k}<<,]S], IF[ ~< min{t l ,k}.  
Finally, some comments relevant to Observation (9). 
To see that our claim fails in a design from ~ or (fi, consider the tight scccd(3,2,3)  

Y/2 c (fi shown in Fig. 8(b). (This corresponds to the second arrangement in (a) where 
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f l  = 2 ,  so b = 3 . )  All 3 pairs {1,2}, {1.3}, and {2,3} are persistent pairs; however 

k -  1 = 1. The array S ~  contains the ~ of  persistent pair {1,3 } and the ~ of  persistent 

pair {2,3}, but neither the S nor the F of  persistent pair {1,2}. Similarly tbr all other 

designs in ~ or (~, where the number of  persistent pairs is equal to the number o71" 
blocks. 

When t ,>2k,  because S~. must contain either the ~ or the ~ of  every persistcm 

pair in (6, the total number of  persistent pairs in ~'~ is also ~ < k -  1; this upper bound 
is sharp for the tight scccd(9,4,12), ~//2, which contains 3 persistent pairs, see Section 
9. (Cf. Section 4 of  [2], where the number of  persistent pairs is <~k/2.) 

9. Constructions of tight scccd(9,4,12)s and scccd(10A,15)s using SF-arrays 

We now illustrate the method of  constructing tight designs with c > 2 k  using: 

SF-arrays. 
(~ , , k )= (9 ,4 )  First we construct all non-isomorphic tight scccd(9,4, 12)s. To start. 

we must find all SF-arrays for (v, k ) =  (9, 4) that satisfy Criteria ( 1 ) - ( 1 0 )  of  Section 8. 

Eq. (2) of  Section 7 gives A=2,  tl + t 2 = 9 ,  and tl + 2 t , =  12; hence tl =-O and 
t 2 = 3 .  We also have f l  = 6  and f 2 = 4 .  From Criterion (2), F S ( 9 , 4 ) =  1, i.c., there 
must be at least 1 empty row between any F and the next S in our SF-arrays. Le! 

ic~ = {1,2 ,3 ,4 ,5 ,6}  and T2 = {7,8,9}, and let x ~  Tt. 
There are exactly 8 SF-arrays that satisfy Criteria (1 ) - (10 ) .  Of  these, 6 are shown 

in Fig. 9 ( a ) - ( f ) ,  and the remaining 2 in (a) and (b) of  Fig. 12. 
In a arbitrary sccdC each of  the tl elements of  T~ has 2 symbols, an S and an 

F; this gives 2h symbols of  which tt + 1 appear in SF,. We now consider the tt - 1 

~missing' symbols. 
Now consider the S ~  in Fig. 10(a). Let us enlarge this SF, from .fl = 6 rows to 

b = 12 rows by including the t~ - 1 = 5 'missing'  symbols and dropping every x, see 
Fig. 10(b). For example, the element which starts in row Rv,4 of (a), i.e., in R4 of  (b), 
must finish f l  = 6 rows later in R9. Call this new array with b rows a SF-skeleton: 
note that the SF-skeleton (b) is uniquely determined from thc SF-array (a). 

Now, in Fig. 10(b), let the S E Rl correspond to element 1, the S C R4 correspond 
to 2, the S ~ R 6  to 3, the S ~ R s  to 4, the S cR~ to 5, and, finally, the S ~ R ~  to 
element 6. 

In the SF-skeleton of  Fig. 10(b) the SF-array Sb3 (i.e., Fig. 9(a) with x = 1 ) appears 
as rows R1-R(~; also, SF2 (Fig. 9(b) with x = 2) appears as rows R4-Ru; SFa as rows 
Rc~-Rii; SF4 as rows Rs-RI; S ~  as rows Rg-R2; and, finally, SF~, (which is Fig. 9(f) 
with x = 6 )  appears as rows RII-R4. Thus all 6 of  the SF-arrays in Fig. 9 occur in the 
SF-skeleton of  Fig. 10(b). We say that these 6 SF-arrays are equivalent ( ~ )  to one 
another. 

In order to begin extending Fig. 10(b) to a tight scccd(9,4, 12), consider Fig. 10(c), 
which is a potential tight scccd(9,4, 12) with all elements from TI = { l, 2, 3, 4.5, 6} 
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R. , I  x S F  x S F  x S F  x S  x S F  x S F  
Rx,2 x F x -  x -  x S F x -  x -  
R~,3 x -  x S F  x S  x -  x S F  x S F  
Rx,4 x S F  x -  x S F  x S F  x -  x F  
R~,5 x -  x S x -  x -  x S F x - 
Rx,6 x F S  x F S  x F S  x F S  x F  x F S  

(a) (b) (c) (d) (e) (f) 

Fig. 9.6 of the 8 SF-arrays which satisfy criteria (1)-(10) when (v, k)=  (9, 4). These 6 form an equivalence 
class of SF-arrays. 

Rx,1 x S  F 
Rx,2 x F 
Rx,3 X - -  

R,x,4 x S  F 
Rx, 5 2: - -  

R~:,6 x F S 

R1 S F  B1 1 4 6 5  Ra - 
R2 F B2 1 * 65 R2 S F  

--+ R3 - B3 1 . 6 .  R3 - 
R4 S F  B4 1 2 6 .  R4 S F  
R5 - B5 12 • * R5 F 
R6 S F  B6 1 2 3 .  R6 - 
R7 - B7 . 2 3 .  R7 S F  
R8 S Bs 4 2 3 .  R8 - 
R9 S F B9 4 2 3 5  R9 S F 
Rio - Bxo 4 . 3 5  Rio - 
Rl l  S F B l l  4 6 3 5  R l l  S 
R12 - B12 46  * 5 R12 S F  

SFx  SF-skeleton of SFx  reverse of (b) 

(a) (b) (c) (d) 

Fig. 10. An SF-array, its SF-skeleton, and the corresponding potential fight scccd(9,4); the reverse of the 
SF-skeleton of SFx. 

present. (For example, element 2 starts in B4 and finishes in B9 because SF2 appears 

as rows Ra-R9 in (b),  etc.) 

We  must now add on the elements in T2 = {7, 8, 9}; each is introduced twice, and 

appears in f2 = 4 blocks. 

See Fig. l l ( a ) .  Without  loss o f  generality start element 7 in B2, then 7EB3;  for, i f  

not, then both 7 and 5 finish in B2, a contradiction. Without  loss o f  generality start 8 

in B3; this produces (a). 

See Fig. l l ( b ) .  Now not both 7 and 8 can finish in B3, so we must have 7EB4 or 

8 E B4. I f  7 C B4 then (because 7 E T2 and f2 -- 4) 7 must start once more in a block 

containing elements 3, 4, and 9 because pairs {7,3}, {7,4}, and {7,9} will  not have 

been covered, but this is impossible; hence 8 c B 4. Further, we have (b)  by similar 

reasoning to the above. 

See Fig. 11(c). Now i f  8 EBT, then pair {8,9} will be covered twice; so 7 cB7  and 

7 must occur for 2 successive blocks because f 2 - - 4  and it has already occurred in 2 

blocks. To finish we must have 8EB10 and 9EB12, producing Fig. l l ( c ) .  
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/31 1 4 6 5  B1 1 4 6 5  /31 1 4 6 5  
B2 1 7 6 5  B2 1 7 6 5  B2 1 7 6 5  
B3 1 7 6 8  B3 1 7 6 8  B3 1 7 6 8  
/34 12 6"  B4 1 2 6  8 B4 12 6 8 
B5 1 2 . *  B5 1 2 9 8  B5 1 2 9 8  
B6 1 2 3  * B6 1 2 3 9  B6 1 2 3 9  
B7 * 2 3 *  B7 * 2 3 9  B7 7 2 3 9  
B8 4 2 3 *  Bs 4 2 3 *  Bs 4 2 3 7  
B9 4 2 3 5  B9 4 2 3 5  B9 4 2 3 5  
Bxo 4 * 3 5  Blo 4 * 3 5  B10 4 8 3 5  
Bxl 4 6 3 5  Bll 4 6 3 5  Bll 4 6 3 5  
B12 46 * 5 B12 46 * 5 B12 4 6 95  

/'/1, scccd(9, 4, 12) 

(~) (b) (c) 

Fig. 11. Extending a potential tight scccd(9,4, 12) to a tight scccd(9,4, 12). 

Let ~//1 denote this tight scccd(9,4, 12); clearly, by its construction, it is unique up 

to labelling. 

In general, for a given (v,k) with v > 2 k ,  let 5 P denote the set of  SF-arrays that 

satisfy Criteria ( 1 ) - ( 1 0 )  and let SFx and SF~ be two arbitrary SF-arrays in J~. We 

define an equivalence relation ~ on 5 p as follows: 

SE,. ~ SF~ if and only if SE~ appears as consecutive rows 

in the SF-skeleton determined by SF~. 

But, because the skeleton determined by an arbitrary SF-array in 5 z is unique, we can 

redefine ~ as 

SF,-~ SF~ if and only if the SF-skeleton determined by S ~  

is a cyclic shift o f  the SF-skeleton 

determined by SF~. 

It is straightforward to prove that ~ is an equivalence relation. 

Each equivalence class of  SF-arrays gives rise to one SF-skeleton; we say that this 

SF-skeleton represents the class. Instead of  attempting to extend all SF-arrays (or, 
rather, their SF-skeletons) from a particular equivalence class to tight designs, we 

need only attempt to extend the SF-skeleton that represents this class. Also, if two 
SF-skeletons represent different classes, and both can be extended to tight designs, 

then these designs are non-isomorphic. However, a single SF-skeleton can some times 

be extended to Non-isomorphic designs, see Fig. 14. 
The remaining 2 SF-arrays for (v,k) = (9,4) are shown in (a) and (b) o f  Fig. 

12; they form another equivalence class. The SF-skeleton of  (b) is (c) which extends 

uniquely (up to labelling) to the tight scccd(9,4, 12) shown in (d); call it q/2. The 
SF-arrays (a) and (b) each occur 3 times each amongst the tl = 6 SF-arrays of  oY2. 
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R~, ,3 
/~X,4 
-~X,5 
Rx,6 

x S F  x S  RI S B1 1 9 5 6  
x F  x S F  R2 S F  B2 1 2 5 6 
x -  x F -4 Ra F B3 1 2 7 6  
x S x -  R4 B 4 1 2 7 8 
x S F  x S  R5 S B~ 1 2 3 8  
x F  x F S  R6 S F  B 6 1 2 3 4 

Rr F B7 9 2 3 4  
R8 - B8 9 7 3 4  
R9 S B9 5 7 3 4  
Rio S F  Blo 5 6 3 4  
Rll F Bll 5 6 8 4  
R12 - B12 5 6 8 9  

SF-skeleton of (b) /.12, scccd(9, 4, 12) 

(~) (b) (~) (d) 

Fig. 12. The remaining 2 SF-arrays for (v ,k )=  (9,4), which form another equivalence class; the SF-skeleton 
which represents this class and the corresponding tight scccd(9,4, 12). 

This tight design contains k -  1 = 3 persistent pairs, which, by the comments at the 
end of  Section 8, is the maximum number allowed in a tight scccd(v,k) with v>2k .  

Now, because the SF-skeletons from which ~1 and "//2 were formed represent dif- 
ferent equivalence classes, we have "//1 ~g aT2. This gives us: 

Theorem 9.1, There are 2 non-isomorphic tight scccd(9,4, 12)s, namely "//1 and "//2 

shown above. 

Now, as mentioned at the end of  Section 4, the reverse of  a scccd( v, k, b ), ~ ,  is 
another scccd( v, k, b ), rev(~) ;  and, if a scccd ~ is tight then rev(Cd) is also tight. 
Hence, from Theorem 9.1, rev("//i ) ~  °//l or ~//2. 

To obtain the SF-skeleton of  rev(C1 ) from the SF-skeleton of  C we reverse the 
order of  its rows and switch S ~-~ F.  

The SF-skeleton of  "//i is shown in Fig. 10(b) and the SF-skeleton of  rev(~l ) in 
Fig. 10(d); it is a cyclic shift of  the SF-skeleton of  ~&. Hence, because the extension of  
the SF-skeleton of  qgl to a tight design is unique up to labelling, we have rev(~l ) ~ °//1. 

Thus a& and "//x are self-reverse. 

(v, k) = ( l 0, 4). We now construct all non-isomorphic tight scccd(10, 4, 15 )s. 
Eq. (2) of  Section 7 yields the three solutions: ( t t , t2 , t3)=(7,  l ,2) ,  (6,3,1) ,  and 

(5,5,0). Here f3 = 3 ,  so Lemma 7.1(iii) with j =  3 disposes of  the first solution. For 
the remaining two let ~: be a tight scccd(10,4, 15). 

(i) ( t l , t e , t3 )=(6 ,3 ,1 ) .  We could use SF-arrays here but, for variety, we prefer 
the following approach which is justified by the result: there are 2 non-isomorphic 
tight scccd(10, 4,15 )s, both of  which can be constructed by 'expanding' "//2 of  
Fig. 12(d). 
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First some definitions, see Section 7 of  [2]. For any scccd( v, k, b ), ~ =  {Bi . . . . .  BI,}, 
and for any i = 1 . . . . .  b -  1 let Ui be the subset of  k - 1 elements which survives from 
B, to B,=t; we call 6~ the unchanged subset at location i. Also, let /.]/, be the subset 
of  k - 1 elements which survives from B/, to Bj, the unchanged subset at location h. 

Again, let TI = {1 . . . . .  6}, ~ = {7,8.9}, and let /~ = {10}. Now, because .}'~ 3, 

each time element 10 is introduced into a block it is immediately changed. So the 
arrangement of  blocks shown below must occur 3 times, at the pairs of  consecutive 
locations: l~, Ii + 1 and 12, l~ + 1 and l~, 13 + 1. We have shown the arrangement at 
the pair of  locations l, l +  1 for any l ~  {ll,12, l~,}. 

B/ x IX2x3X4 u / U / :  {X2,X3,X4} 

B/;I 10x2x3 x4 

Bl+2 x 5 x 2 x 3 x 4  ~'x U/ - I  = {x2 ,x3 ,x4}  

l + 1  

Here U / =  Ul+l, i.e., the two unchanged subsets for this arrangement of  blocks are 
equal. Hence, each of  the 3 pairs o f  locations produces an unchanged subset which 
survives through the pair o f  locations. Then, because ;~ is tight, these 3 unchanged 

subsets partition the set {1,2 . . . . .  9}. 
I f  we remove the 3 blocks B/,+I, B/2+l, and B/,.~ that contain element 10 from ~' 

we obtain a tight scccd(9,40 12) with 3 unchanged subsets which partition { 1,2 . . . . .  9}, 

i.e., with an expansion set o f  locations, see Section 7 of  [2]. Of  4/1 and 4~, only J//_, 
has an expansion set o f  locations, in fact it has two: 

{1,2,7} at location 3, { 1,2, 8} at location 4, 

{9,3,4} at location 7, and {7,3,4} at location 8, 

{5, 6, 8} at location 11, {5,6,9} at location 12. 

Expanding ~/L at the first expansion set above with element 10 gives us the tight 
scccd(10,4,15), ;¢i, shown in Fig. 13(a): similarly, ~_; in (b) comes from using the 
second expansion set. 

Now we show that ~/) and ~2 are non-isomorphic even though their SF-skeletons 
are cyclic shifts of  each other. 

See Fig. 13. Consider the complete SF-skeleton shown to the right of  the SF- 
skeletons. In any block of  a scccd one element starts and one finishes. Suppose that an 
element from ~ starts and that one from ~, finishes, then the corresponding row of  
the complete SF-skeleton is Sj F/,. Thus, the complete SF-skeleton includes start-finish 
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B1 1 9 5 6 S SxF2 B1 1 9 5 6 S $1F2 
B2 1 2 5 6 S F  S1F1 B2 1 2 5 6 S F  S;F1 
B3 I 2 7 6 F $2F1 B3 1 2 7 6 F $2F1 
B4 1 2 710 - $3F3 B4 1 2 7 8 - $2F2 
B5 1 2 7 8 - $2F2 Bs 1 210 8 - $3F3 
B6 1 2 3 8 S $1F2 B6 1 2 3 8 S S1F2 
B7 1 2 3 4 S F  S1F1 B7 1 2 3 4 S F  S~F~ 
B8 9 2 3 4 F S2F1 B8 9 2 3 4 F S2F~ 
B9 9103  4 - $3F3 B9 9 7 3 4 - $2F2 
B~o 9 7 3 4 - $2F2 B~o 107 3 4 - $3F3 
B ~  5 7 3 4 S S~F2 B ~  5 7 3 4 S SxF2 
B~2 5 6 3 4 S F S~F1 B12 5 6 3 4 S F S~F~ 
B~3 5 6 8 4 F S~F~ B13 5 6 8 4 F S2F~ 
B~4 5 6 810 - $3F3 B~4 5 6 8 9 - S2F2 
B15 5 6 8 9 - $2F2 B~5 5 6109  - $3F3. 

V1, scccd(10,4,15) V2, scccd(10,4,15) 

(~) (u) 

Fig. 13. The 2 non-isomorphic tight scccd(10, 4, 1 5)s with (0, t2, t3 )= (6, 3, 1 ), their SF-skeletons and com- 
plete SF-skeletons. Both of these designs come from expanding q/e of Fig. 12(d). 

information about all elements in [v], not just those in T1. Clearly, if two designs are 
isomorphic, then their complete SF-skeletons must be cyclic shifts of  one another; this 
is not so for ~ and ~2, hence ~ ~ ~z. So there are exactly 2 non-isomorphic tight 
scccd(10,4, 15)s with (tl, t2, t 3 )=  (6, 3, 1), namely ~( and ~ .  

The reverse of  a tight scccd(v,k), c£, is another tight scccd(v,k), rev(Cg). Moreover, 
for j - -  1 . . . . .  A, we have equality amongst the sets Tj for cg and rev(Cg), and so equality 
amongst the numbers tj for cg and rev(Cg). 

So r e v ( ~ )  also has (h,  t2, t3 ) =  (6, 3, 1 ), and thus r e v ( ~ ) ~  ~ or ~/@ Now if  rev(~/~l ) 
~fi'l, then the complete SF-skeleton of  rev(~/~l) must be a cyclic shift of  the complete 

SF-skeleton of  ~/~l, but this is not the case. Hence, rev(~/~'l ) TM ~2. So ~ is not isomorphic 
to its reverse, similarly for ~ .  

For two scccds, ~ and 9~ ~, we write ~rg~' if 9~ ~ ~ ' ,  but r ev (~ )  ~ ~' (or, equiv- 
aleutly, r e v ( ~ ' )  ----- ~ ) .  Thus ~ r  ~/@ 

(ii) (q ,  t2, t 3 ) :  (5, 5, 0). There are 32 SF-arrays that satisfy Criteria (1 ) - (10) ,  and 8 
equivalence classes of  SF-arrays, 6 of  size 5 and 2 of  size 1. 

The SF-skeletons of  the 8 classes are shown in Fig. 14; underneath each is the 
number of  its extensions to non-isomorphic designs, and the names of  the designs. 

So there are 10 non-isomorphic tight scccd(10, 4)s with (tl, t2, t 3 )=  (5, 5, 0), namely 
~m for 3~<m~<12. We also have: V33 r'/~'5, ~44r~66, ~77r~88, ~99r ~/il0, and ~1 r~l12. 

The 2 designs from the previous case give us: 

Theorem 9.2. There are 12 non-isomorphic tight scccd(10,4,15)s, namely ~m for  

m = l  . . . .  ,12. 
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S F  - S F  - S F  F S F  S F  

F - F F F - F - 

- S F  . . . . . .  

F . . . . . . .  S F  

- F S F  S F  S S F  - - 

F - F F F S - 

S F  - F - F - S F  S F  

S F  - S - S - - 

S - S - S S S S F  

S - S F  S F  S F  F S - 

- S . . . .  F - 

S F  . . . . .  F S F  

- S S S - S - - 

- S F  - S F  S S F  - - .  

2 2 1 1 1 1 0 2 

~3, ~4 Vs, ~6 ~7 ~8 V9 ~1o ~ l ,  ~12 

Fig. 14. The 8 SF-skeletons which represent the 8 equivalence classes of SF-arrays for (v, k)= (10 4) and 
(tl,  t2, t3) = (5 5 0). Underneath each SF-skeleton is the number of its extensions to non-isomorphic designs. 
and the names of the designs. 

10. Non-existence of some tight designs 

In this section we consider three parameter sets for (v, k): 

(i) { ( 3 k -  3,k): k even and ~>2}; 

(ii) { ( 3 k -  2,k):  k even and ~>2}; 
(iii) {((i + 1)2/4,(i 2 + 7)/8): i odd and >~3}. 

Every (v, k) in ( i ) - ( i i i )  above satisfies the division requirement 2 ( k -  1 ) ]v (v -  1 for 

a tight design to exist, however, for (i) and (ii), tight designs only exist when k = 2 

or 4; and, for (iii), only when i = 3 or 5. 

Using the notation o f  [5], we denote by S C D ( v ,  k, b) a single-change (non-circular) 

covering design on [v] with b blocks o f  size k. We let f ( v , k )  be the smallest b for 

which there exists a S C D ( v , k , b ) .  The function f ( v , k )  is studied in [3-5] .  
Now a scccd(v, k, b) is also a S C D ( v ,  k ,  b ) .  In particular, a minimal scccd(v,k, b.(v,  k))  

is a S C D ( v , k , b . ( v , k ) ) ,  so we have b . ( v , k ) > > . f ( v , k ) .  (There are many (v,k)s for which 

equality holds.) 

In Sections 5 and 6 we considered ~ and ffi, two families o f  tight scccd(v,k)s for 
v = 2 k - 2  and 2 k - 1  respectively. In the following two theorems we consider v = 3 k - 3  

((i)) and 3k - 2 ((ii)) respectively. 

Theorem 10.1. A t i g h t  s c c c d ( 3 k -  3 , k , ( 9 k -  12)/2) e x i s t s  o n l y  w h e n  k = 2 o r  4. 

Proof. Here k must be even. Consider the pair ( 3 k -  3,k)  for k~>6, from 

Theorem 3.3 of  [5] we have f ( 3 k -  3 , k ) = 5 k -  8. If  a tight s c c c d ( 3 k -  3,k)  exists 
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then b . ( v , k ) =  ( 9 k -  12)/2, in which case the inequality b . (3k  - 3 ,  k ) > ~ f ( 3 k -  3,k) 
fails. Thus, a tight s c c c d ( 3 k -  3,k)  does not exist for k>~6. 

For k = 2  we have a tight scccd(3,2,3),  ~2, and for k = 4  a tight scccd(9,4, 12), 

e.g., ~//1. [] 

So we have infinitely many pairs ( v , k ) = ( 3 k -  3,k) where k is even and >~6, for 
which 2 ( k - l ) ] v ( v - 1 )  but a tight scccd(v, k) does not exist, e.g., a tight scccd(15, 6, 21 ) 
does not exist. 

Similarly for v = 3 k -  2: 

Theorem 10.2. A tight s c c c d ( 3 k -  2 , k , ( 9 k -  6)/2)  exists only when k = 2  or 4. 

When k = 2  we have a tight scccd(4, 2, 6) and k = 4  a tight scccd(10, 4, 15), e.g., T{. 
Theorems 10.1 and 10.2 can also be proved using SF-arrays. 
The final result in this section, Theorem 10.4, will, for variety and interest, be proved 

using the following lemma, although it can also be proved in a similar manner to the 

above. 

Lemma 10.3. Let ~ be a tight scccd(v,k) with v>2k,  x E T l ,  tl =]Ti] ,  and f l  = 

v - k  ÷ l. Then 

(i) the total number o f  symbols in any r successive rows o f  S ~  is ~ r  + 1; 

(ii) t, ~<fl. 

Proof. (i) A straightforward proof by induction on r. 

(ii) For any x E  Ti, the SF-array SFx has f l  rows, hence ~<fl + 1 symbols. But, by 
Criterion (4), it has exactly tl + 1 symbols. Hence tl ~<fl. [] 

The inequality tl ~<fl is sharp for both of  the tight scccd(9,4, 12)s U#l and d~' 2 of  
Section 9. 

Let (g be a tight scccd(v, k). From Observation (2) we have 2f l  ~ b +  1, with equality 
if and only if cg E ~ or 15. So, for tight designs other than those in ~ or 15, we have 

2f l  ~<b. 
We now classify tight designs with 2f l  = b, so v ~>2k. 

Theorem 10.4. A tight scccd(v,k,b) with 2fL = b  is a tight scccd(4,2,6) or a tight 

scccd(9, 4, 12). 

Proof. Let ~ be a tight scccd(v,k) with 2f l  = b  and v>~2k. 

We have 2(v - k + 1 ) = v(v - 1 )/[2(k - 1 )], i.e., v = (4k - 3 + X/(8k - 7))/2. So let 
k = ( i 2 +  7)/8 where i is odd and />3. Hence, ( v , k ) = ( ( i  + 1)2/4,(i2 + 7)/8)  ((iii)), 
and f l  = (i 2 + 4i + 3)/8. 

Eq. (2) from Section 7 then gives f3 = ( v  - 1) - 3(k - 2 ) = ( 2 1  + 4i - i 2 ) / 8 .  So ,  

for i~>7, we have f3 ~<0<3. Thus, from Lemma 7.1(ii) with j = 3 ,  we have tl = 0  for 
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1 2 3  
1 2 4  
1 5 4  
1 6 4  
7 6 4  12 
7 8 4  13 

L~ 1 2 3  1 2 3  7 3 4  43  
L2 1 2 4  1 2 4  7 3 5  53  
L3 1 5 4  1 5 4  8 3 5  52  
L4 1 6 4  1 5 2  6 3 5  1 2 3  51 
L~, 3 6 4  6 5 2  6 2 5  1 2 4  41 
L6 3 6 5  6 5 3  6 2 8  1 5 4  45  
L7 2 6 5  6 4 3  1 2 8  3 5 4  42  
Ls 2 6 3  6 1 3  1 2 7  3 5 2  32  

sf(Ei) sf(£5) scccd(8, 3, 14) rsf(Y3) scccd(5, 2, 10) 
A1 = [3, 2, 3] A2 = [1,4, 3] 

(a) (b) (el (d) (~,) 

Fig. 15. Standardized designs and their column-arrays, and other properties. (a) sf(£1 ), (b) sf(&), (c) 
the representative standardized form of a perfect scccd(8,3, 14): each Ai is a permutation of ,41- [4,5,5]. 
(d) rsfU#~): each Ai is a permutation of Ai -- [2,1,2], not perfect, element-regular with tL-1. (c) 
scccd(5,2, 10): column-regular with q -  5, perfect, element-regular with I~- 2. 

1~>3, i.e., every  e lement  in ~ is in t roduced once or twice.  So, Eq. (2)  yields:  

( i +  1) 2 ( i 2 + 4 i + 3 )  
tl + t2 = v - -  tl + 2t2 b - -  

4 4 

This gives tl = ( i 2  _ 1)/4. Now,  for i~>7 we have v > 2 k ,  so, via L e m m a  10.3(ii),  we 

must  have tl ~<fl ;  but this is false when i>~7. Thus, a tight s c c c d ( ( i +  1)2/4, ( i 3 +  7)/8 

does  not exist  for i ~> 7. 

For  i = 3 a t ight scccd(4 ,2 ,  6) exists  and for i = 5 a tight scccd(9 ,4 ,  12) exists. 

11. Perfect designs; column-regular designs; element-regular designs 

Again,  let ~ =  {BI . . . . .  Bt,} be an arbi t rary scccd( v, k, b ), and, for each i =  1 . . . . .  b, 

let sf(,Ni) be the s tandardized  form of  its ith cycl ic  shift ,~,, see Sect ion 4. 

N o w  cons ider  s f (N i )  for any  f ixed i - 1  . . . . .  b; its first b lock  is (1 ,2  . . . . .  k) .  For 

r - - l  . . . . .  k, let its r th  co lumn be the co lumn beginning  with r, and let ;li,,- be the 

number  o f  e lements  in t roduced into this column.  Now let A, be the ordered  k- tuple  

[~/,.l . . . . .  r/i.~]; call this the column-array o f  s f ( ~ i ) .  

Cons ider  again d"=  {Bi . . . . .  B8}, the s c c c d ( 6 , 3 , 8 )  from Fig. 3(a)  and its s tandard-  

ized tbrrn s f ( N 1 ) =  {Li . . . . .  Ls} from Fig. 3(b)  shown again  in Fig. 15(a); we have 

A i -  [3,2, 3]. N o w  cons ider  Fig. 15(b),  which  shows sf(~5) ,  the s tandardized form o f  

d5 = {Bs,B6,  BT,B~,BI ,B2 ,B3,B4} ,  this design has A5 = [ 1 , 4 , 3 ] .  So, for a fixed ,~, we 

m a y  have different Ais for different is. 
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A standardized scccd(v,k,b) ~ = {B1 . . . . .  Bb} is perfect if  each of  the unchanged 
elements between Bb and BI is in the same column in Bb as in B~. So, the two ends of  
a perfect standardized scccd can be ' joined-up'  to give a circular version of  requirement 

(4) in the definition of  standardization (Section 4). For any M, all o f  its b standardized 
forms are perfect or none are. Hence, a standardized ~ is perfect i f  and only if  rsf(M) 

is perfect. The standardized form of  ~13 (from Fig. l (b ) )  is shown in Fig. 15(d); this 
is also rsf(~3), it is not perfect. See Fig. 15(c) for the representative standardized form 
of  a perfect scccd(8, 3, 14). 

An interesting property of  perfect standardized scccds is: 

Theorem 11.1. Let A 1 , . . . , A b  be the column-arrays of  a perfect standardized 
scccd(v,k,b). Then each Ai is a permutation of  A1, for i=  1 . . . . .  b. 

Proof .  For any fixed r = 1 . . . . .  k, consider the rth column in a perfect standardized 

scccd(v,k,b) ~-- -  s f ( ~ l ) - - { B l  . . . . .  Bb}. The elements in this column in Bb and B1 
are either the same, or different if  the single-change between Bh and B~ occurs in 

this column. In either case, we may write the elements of  this column in a circle. 

Then rll,r, the number of  introductions in this column, is counted starting at BI; this 
number is fixed no matter where on the circle we start. Now let s f (~2)  be formed 
from ~ 2 = { B z , B 3  . . . . .  Bb,Bl} by a permutation of  [v] and a permutation ~b of  [k], 
i.e., o f  the columns. Then r/z,,., the number of  introductions in column r o f  sf(~2) ,  
is equal to the number of  introductions in column ~b-l(r)  o f  sf(Ml) when starting 
counting at B2, which is the same as starting at BI; this number is q~,~-~(r). Thus 
r/2,r =t /k~-~(r  ) for r =  1 . . . . .  k. That is, A 2 is a permutation of  Al, and so on for Ai, 
i = 3  . . . . .  b. [] 

For example, in the perfect standardized scccd(8,3, 14) in Fig. 15(c), each Ai is a 
permutation of  A1 = [4 ,5 ,5 ] .  The scccd(5, 3, 5) shown in Fig. 15(d) is rsf(~3). Each 
column-array of  this design is a permutation of  A1 = [2, 1,2], even though it is not 
perfect, so the converse of  Theorem 11.1 is not true. 

Consider s f (~ i )  for a fixed i, if  the number of  introductions into each column is the 
same, then we say that s f (~ i )  is column-regular, see Section 4 of  [2]. So ?]i,r = 71 = b/k 
for each r = 1 . . . . .  k, and Ai = [r/ . . . . .  r/]. Also, ~ itself is column-regular if  s f (~ i )  is 
column-regular for each i = 1 . . . .  , b. So a scccd(v, k, b) is column-regular if  each of  its 
b standardized forms is itself column-regular. 

Although we have defined a column-array only for a standardized scccd we can also 
define it for a column-strict scccd. So, the column-array of  a column-strict scccd(v, k, b), 
~ ,  is the ordered k-tuple [r/1 . . . .  ,~/k] where 17,- is the number of  elements introduced 
into the rth column of  ~ ,  for each r = 1 . . . . .  k. 

The definitions of  'perfect '  and 'column-regular '  can also be carried over to column- 
strict scccds; and a scccd( v, k, b ), ~ =  {B1,. . . ,Bb},  is column-regular if  the column- 
strict representation of  each ~ i  is itself column-regular. 

We can now prove: 
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Fig. 16. Figure for Theorem 11.2. 

Theorem 11.2, A standardized column-regular scccd(v,k ,b)  is perfect. 

Proof.  Let M = sf(Mi ) =  {B1 . . . . .  Bh} be a standardized column-regular scccd(v, k, b), 

and let r l=b/k .  Now Bl = ( 1  . . . . .  k), without loss o f  generality let element 1 be intro- 

duced in Bl and let 1' be changed from Bb, and suppose that 1 and 1' are in different 

columns; let 1' be in the sth column where s ¢ 1. Now M is column-regular and so 

the column-array o f  the column-strict representation of  each Mi is A 1 = [r/ . . . . .  r/]. 

Now consider the column-strict ~'2 = {B2,B3 . . . . .  Bl,,BI}, where the elements in B2 
are in the same order as they were in M, element 1 is now in the same column as 1', 

the sth column; hence the sth element in the column-array o f  the column-strict ~2 is 
r /÷  1, a contradiction. So l and I '  are in the same column in ~ .  

Now consider element r for any fixed r E  {2 . . . . .  k } = B l  ABh; let it be changed 

first from Bi,. and replaced by r t in Bi,+l. See the column-strict arrangement ~i,+1 = 

{Bir+l . . . . .  B~,B1 . . . . .  Bi,} in Fig. 16(a); elements r ~ and r lie in the same column by the 

previous argument. Moreover, r EBb and r EB1 . . . . .  Bi,, so we must have Fig. 16(b). 

Now we can retrieve M = { B 1  . . . . .  Bh} from (b) without changing the columns in 

which r and r '  appear. Hence, in M, the r E Bl lies in the same column as the r C B~,, 

and, because r was arbitrarily chosen from Bl ABt,, so M is perfect. [] 

Combining Theorems 11.1 and 1 1.2 we have the following theorem in which all 

designs are assumed to be column-strict. 

Theorem 11.3. Let  ~ = { B l  . . . . .  Bb} be an arbitrary scccd(v,k,b).  Then 

(i) /f  ~ is perfect  the column-array o f  ~ i  is a permutation o f  the column-array o f  

f o r  each i = 1 . . . . .  b; 
(ii) t f  ~ is column-regular then ~ is perfect. 

An arbitrary scccd( v, k, b ), M, is element-regular if each of  the v elements from [v] 
is introduced the same number o f  # = b/v times. In the notation o f  Section 7 we have 

t~, = t;. 
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Fig. 17. Table showing some of the numbers of non-isomorphic tight scccd(v, k)s for v/> 2 k -  2 and v <~ 10, 
(k = 2, v ~> 3). The number of  perfect designs is shown in parenthesis () .  For k ~> 3 the 1 in column v = 2 k -  2 
corresponds to Y~ C 5 ,  and for k ~> 2 the 1 in column v = 2k - 1 to '.~k E (ft. The symbol - -  means that 
2 ( k -  1 ) X v ( v -  1) and so a tight design with parameters (v,k) cannot exist. The missing numbers are 
currently being computed. 

I f  cg is tight and element-regular with p = 1 then v - b  = 2k - 1, and so cg is a 
s c c c d ( 2 k -  1,k,2k- 1) and, by Theorem 6.2, is isomorphic to ~k E (5. 

Our final example is shown in Fig. 15(e). It is the representative standardized form of  

a tight scccd(5,2, 10) which is column-regular with r /=  5, and so perfect, and element- 
regular with p = 2. 

Fig. 17 gives some of  the numbers of  non-isomorphic tight scccd(v,k)s for v~< 10. 
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