K_{p}-Removable Sequences of Graphs

John P. McSorley
London Guildhall University,
Dept. of CISM, 100 Minories, London, EC3N 1JY. mcsorley60@hotmail.com

Thomas D. Porter, Department of Mathematics, Southern Illinois University, Carbondale. IL 62901-4408.
tporter@math.siu.edu

Abstract

Let $\left\{G_{p n} \mid n \geq 1\right\}=\left\{G_{p 1}, G_{p 2}, G_{p 3}, \ldots\right\}$ be a countable sequence of simple graphs, where $G_{p n}$ has $p n$ vertices. This sequence is called $K_{p^{-}}$ removable if $G_{p 1}=K_{p}$, and $G_{p n}-K_{p}=G_{p(n-1)}$ for every $n \geq 2$ and for every K_{p} in $G_{p n}$. We give a general construction of such sequences. We specialize to sequences in which each $G_{p n}$ is regular; these are called regular $\left(K_{p}, \lambda\right)$-removable sequences, λ is a fixed number, $0 \leq$ $\lambda \leq p$, referring to the fact that $G_{p n}$ is $(\lambda(n-1)+p-1)$-regular. We classify regular $\left(K_{p}, 0\right)-,\left(K_{p}, p-1\right)$-, and $\left(K_{p}, p\right)$-removable sequences as the sequences $\left\{n K_{p} \mid n \geq 1\right\},\left\{K_{p \times n} \mid n \geq 1\right\}$, and $\left\{K_{p n} \mid n \geq 1\right\}$ respectively. Regular sequences are also constructed using 'levelled' Cayley graphs, based on a finite group. Some examples are given.

Keywords: removable, Cayley, isomorphism, reconstruction, clique

1 Notation, K_{p}-removable sequences of graphs, main results

For $p \geq 1$ and $n \geq 1$ let K_{p} be the complete graph on p vertices, let $n K_{p}$ be n disjoint copies of K_{p}, and let $K_{p \times n}=K_{\underbrace{}_{n}, \ldots, n}$, be the complete p-partite graph on $p n$ vertices. All graphs G are simple. In the graph G let $G\left[\left\{v_{1}, \ldots, v_{m}\right\}\right]=$ $G\left[v_{1}, \ldots, v_{m}\right]$ denote the induced subgraph on vertices $\left\{v_{1}, \ldots, v_{m}\right\}$. Suppose that for some p vertices $\left\{v_{1}, \ldots, v_{p}\right\}$ in G we have $G\left[v_{1}, \ldots, v_{p}\right]=K_{p}$, i.e., $G\left[v_{1}, \ldots, v_{p}\right]$ is an induced K_{p}, then $G-K_{p}$ denotes the subgraph obtained from G by deleting vertices v_{i} and their incident edges, for every $i=1, \ldots, p$. If two graphs G and G^{\prime} are isomorphic we write $G \cong G^{\prime}$. We often say that two graphs are 'equal' ($=$) instead of 'isomorphic', and say ' K_{p} ' instead of 'induced K_{p} '.

For the countable sequence of graphs $\left\{G_{p n} \mid n \geq 1\right\}=\left\{G_{p 1}, G_{p 2}, G_{p 3}, \ldots\right\}$ we use the notation $\left\{G_{p n}\right\}$, each graph $G_{p n}$ has $p n$ vertices for a fixed $p \geq 1$.

We call a sequence $\left\{G_{p n}\right\} K_{p}$-removable if it satisfies the following two properties:

A1 $G_{p 1} \cong K_{p}$,
A2 $G_{p n}-K_{p} \cong G_{p(n-1)}$ for every $n \geq 2$ and every (induced) K_{p} in $G_{p n}$.
In this paper we investigate K_{p}-removable sequences. In Section 2 we give a general construction for such sequences. In Section 3 we specialize to sequences in which each graph is regular; we call these regular $\left(K_{p}, \lambda\right)$ removable sequences, λ is a fixed number, $0 \leq \lambda \leq p$, referring to the fact that $G_{p n}$ is $(\lambda(n-1)+p-1)$-regular. We classify regular $\left(K_{p}, 0\right)-,\left(K_{p}, p-1\right)$-, and $\left(K_{p}, p\right)$-removable sequences as the sequences $\left\{n K_{p}\right\},\left\{K_{p \times n}\right\}$, and $\left\{K_{p n}\right\}$ respectively, thus associating three well-known graphs on $p n$ vertices. In Section 4 we construct regular $\left(K_{p}, \lambda\right)$-removable sequences starting from a finite group; the graphs in this sequence are similar in construction to Cayley graphs, we also count the number of K_{p} 's in these graphs.

2 Construction of a K_{p}-removable sequence for every $p \geq 3$, examples

From A1 and A2 above we see that if $\left\{G_{p n}\right\}$ is K_{p}-removable then $G_{p 1}=K_{p}$ and $G_{p 2}$ is the union of this K_{p} and a 'new' K_{p}, together with some edges between them. The graph $G_{p 3}$ is then formed from $G_{p 2}$ by adding another K_{p} and some suitable set of edges between this new K_{p} and the previous two K_{p} 's, and so on. Thus $G_{p n}$ contains at least n disjoint K_{p} 's. We use this idea of constructing $G_{p n}$ by adding K_{p} to K_{p}, up to $n K_{p}$'s, in the following:

Here $p \geq 3$ and $[p]=\{1, \ldots, p\}$. Let $\Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{p}\right)$ be an ordered p-tuple of subsets of $[p]$, i.e., each $\Lambda_{i} \subseteq[p]$.

Consider a K_{p} with vertices labelled $\{(1,1), \ldots,(p, 1)\}=\{(i, 1) \mid i \in[p]\}$; call these vertices vertices at level 1 , and call this graph $H_{p 1}^{\Lambda}$. Now consider another K_{p} with vertices labelled $\{(i, 2) \mid i \in[p]\}$, vertices at level 2 . For any vertex $(i, 2)$ join it to vertices $\left\{\left(i^{\prime}, 1\right) \mid i^{\prime} \in \Lambda_{i}\right\}$ at level 1; call this graph $H_{p 2}^{\Lambda}$. Now consider a third K_{p} with vertices labelled $\{(i, 3) \mid i \in[p]\}$, at level 3. Join any vertex $(i, 3)$ to vertices $\left\{\left(i^{\prime}, 2\right) \mid i^{\prime} \in \Lambda_{i}\right\}$ at level 2 and to vertices $\left\{\left(i^{\prime}, 1\right) \mid i^{\prime} \in \Lambda_{i}\right\}$ at level 1 ; this is $H_{p 3}^{\Lambda}$.

For any $n \geq 1$, consider the graph which has been constructed level by level, up to n levels, according to the above definition; call this graph $H_{p n}^{\Lambda}$. In $H_{p n}^{\Lambda}$ the vertices are of the form (i, j) for every $i \in[p]$ and every $1 \leq j \leq n$, (where j is their level); and the edges are of two types:
(i) fixed-level edges, say at level j

$$
\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right) \text { is an edge for all } i_{1}, i_{2} \in[p] \text { where } i_{1} \neq i_{2} ; \text { and }
$$

(ii) cross-level edges, for $j>j^{\prime}$

$$
\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right) \text { is an edge if and only if } i^{\prime} \in \Lambda_{i}
$$

For each $i \in[p]$ let $\lambda_{i}=\left|\Lambda_{i}\right|$ be the number of elements in Λ_{i}, and let μ_{i} be the number of sets in Λ which contain i. Call Λ uniform if:

$$
\begin{equation*}
i \notin \Lambda_{i} \text { and } \lambda_{i}=\mu_{i} \text { for each } i \in[p] . \tag{1}
\end{equation*}
$$

From now on let our Λ be uniform. In Theorem 2.3 we show that if Λ is uniform then $\left\{H_{p n}^{\Lambda}\right\}$ is K_{p}-removable.

For any fixed $i \in[p]$, let $I_{i}=\{(i, 1), \ldots,(i, n)\}=\{(i, j) \mid 1 \leq j \leq n\}$ be the set of vertices of $H_{p n}^{\Lambda}$ in 'column i '. Then, because $i \notin \Lambda_{i}$, this is an independent set of vertices.

Now let W be a K_{p} in $H_{p n}^{\Lambda}$, then each of the p independent sets I_{1}, \ldots, I_{p} contains exactly one vertex from W; let I_{i} contain vertex $\left(i, w_{i}\right) \in W$, a vertex at level w_{i}, for some $1 \leq w_{i} \leq n$. Thus $W=H_{p n}^{\Lambda}\left[\left(1, w_{1}\right), \ldots,\left(p, w_{p}\right)\right]=K_{p}$.

Lemma 2.1 Let Λ be uniform. For any $K_{p}=W$ in $H_{p n}^{\Lambda}$ the number of edges in $H_{p n}^{\Lambda}-W$ equals the number of edges in $H_{p(n-1)}^{\Lambda}$.

Proof. Consider any vertex (i, j) in $H_{p n}^{\Lambda}$, here $1 \leq j \leq n$. It is adjacent to λ_{i} vertices at each of the $j-1$ levels lower than level j, i.e., to $\lambda_{i}(j-1)$ such vertices, and to $p-1$ vertices at level j, and to $\mu_{i}(n-j)$ vertices at levels higher than level j. Thus, because $\lambda_{i}=\mu_{i}$, its degree is

$$
\begin{equation*}
\operatorname{deg}((i, j))=\lambda_{i}(n-1)+p-1 \tag{2}
\end{equation*}
$$

So if (i, j) is in $W=K_{p}$, then its degree 'outside' W is $\lambda_{i}(n-1)$, which is independent of its level, j.

Now W contains exactly one vertex from each independent set I_{i}, so, when removing W, we remove $\sum_{i=1}^{p}\left(\lambda_{i}(n-1)\right)$ edges 'outside' W, (and $\binom{p}{2}$ 'inside' $W)$. But this equals the number of edges removed if we remove the K_{p} at level n (because $\operatorname{deg}((i, n))$ is also given by (2)), leaving the graph $H_{p(n-1)}^{\Lambda}$. Hence, the number of edges in $H_{p n}^{\Lambda}-W$ equals the number of edges in $H_{p(n-1)}^{\Lambda}$.

Lemma 2.2 Let Λ be uniform. For any $p \geq 3, n \geq 2$, and any $K_{p}=W$ in $H_{p n}^{\Lambda}$, we have

$$
H_{p n}^{\Lambda}-W=H_{p(n-1)}^{\Lambda}
$$

Proof. Let the vertices of W be $\left\{\left(i, w_{i}\right) \mid 1 \leq i \leq p\right\}$. We construct a bijection ϕ between the vertices of $H_{p n}^{\Lambda}-W$ and the vertices of $H_{p(n-1)}^{\Lambda}$, and then show that ϕ is an isomorphism. Under ϕ, for a fixed $i \in[p]$, the vertices in the i-th independent set of $H_{p n}^{\Lambda}-W$, namely in the set $I_{i} \backslash\left\{\left(i, w_{i}\right)\right\}$, are mapped to the vertices in the i-th independent set of $H_{p(n-1)}^{\Lambda}$, namely to the set $\{(i, 1), \ldots,(i, n-1)\}$, as follows:

$$
\begin{array}{ccc}
(i, n) & \rightarrow & (i, n-1) \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\left(i, w_{i}+1\right) & \rightarrow & \left(i, w_{i}\right) \\
\left(i, w_{i}-1\right) & \rightarrow & \left(i, w_{i}-1\right) \\
\cdot & & \cdot \\
\cdot & & \cdot \\
\cdot & & \cdot \\
(i, 1) & & (i, 1)
\end{array}
$$

i.e.,

$$
\phi(i, j)= \begin{cases}(i, j-1), & \text { for } w_{i}<j \leq n \\ (i, j), & \text { for } 1 \leq j<w_{i}\end{cases}
$$

Clearly ϕ is a bijection.
There are two types of edges in $H_{p n}^{\Lambda}$: fixed-level edges and cross-level edges. First we deal with fixed-level edges.

A typical fixed-level edge in $H_{p n}^{\Lambda}$ is $\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right)$ for some $i_{1}, i_{2} \in[p]$ where $i_{1} \neq i_{2}$ and for some j with $1 \leq j \leq n$. Thus, a typical fixed-level edge in $H_{p n}^{\Lambda}-W$ is $\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right)$ where $i_{1} \neq i_{2}$, and $j \neq w_{i_{1}}$ and $j \neq w_{i_{2}}$, (because the vertices $\left(i_{1}, w_{i_{1}}\right)$ and $\left(i_{2}, w_{i_{2}}\right)$ have been removed). Without loss of generality let $w_{i_{1}} \leq w_{i_{2}}$.

Now we check that ϕ maps two adjacent vertices at level j in $H_{p n}^{\Lambda}-W$ onto two adjacent vertices in $H_{p(n-1)}^{\Lambda}$. There are three cases to consider:
(a) $1 \leq j<w_{i_{1}} \leq w_{i_{2}} \leq n$. Then $\phi\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right)=\left(\phi\left(i_{1}, j\right), \phi\left(i_{2}, j\right)\right)=$ $\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right)$, which is certainly a (fixed-level) edge in $H_{p(n-1)}^{\Lambda}$.
(b) $1 \leq w_{i_{1}}<j<w_{i_{2}} \leq n$. Then $\phi\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right)=\left(\left(i_{1}, j-1\right),\left(i_{2}, j\right)\right)$. Now $w_{i_{1}}<w_{i_{2}}$ and $\left(\left(i_{1}, w_{i_{1}}\right),\left(i_{2}, w_{i_{2}}\right)\right)$ is an edge in W, and so in $H_{p n}^{\Lambda}$, so $i_{1} \in \Lambda_{i_{2}}$; and $1 \leq j-1<j \leq n-1$ and so $\left(\left(i_{1}, j-1\right),\left(i_{2}, j\right)\right)$ is a (cross-level) edge in $H_{p(n-1)}^{\Lambda}$.
(c) $1 \leq w_{i_{1}} \leq w_{i_{2}}<j \leq n$. Then $\phi\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right)=\left(\left(i_{1}, j-1\right),\left(i_{2}, j-1\right)\right)$, which, again, is a fixed-level edge in $H_{p(n-1)}^{\Lambda}$.

Cross-level edges in $H_{p n}^{\Lambda}$ are of the form $\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)$ where $j>j^{\prime}$ and $i^{\prime} \in \Lambda_{i}$. Thus cross-level edges in $H_{p n}^{\Lambda}-W$ are of the form $\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)$, where $j>j^{\prime}, j \neq w_{i}, j^{\prime} \neq w_{i^{\prime}}$, and $i^{\prime} \in \Lambda_{i}$.

Now we check that ϕ maps two adjacent vertices at levels j and j^{\prime} in $H_{p n}^{\Lambda}-W$ onto two adjacent vertices in $H_{p(n-1)}^{\Lambda}$. There are four cases to consider:
(a) $1 \leq j<w_{i} \leq n$ and $1 \leq j^{\prime}<w_{i^{\prime}} \leq n$. Then $\phi\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)=$ $\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)$, a cross-level edge in $H_{p(n-1)}^{\Lambda}$.
(b) $1 \leq j<w_{i} \leq n$ and $1 \leq w_{i^{\prime}}<j^{\prime} \leq n$. Then $\phi\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)=$ $\left((i, j),\left(i^{\prime}, j^{\prime}-1\right)\right)$, again, a cross-level edge in $H_{p(n-1)}^{\Lambda}$.
(c) $1 \leq w_{i}<j \leq n$ and $1 \leq j^{\prime}<w_{i^{\prime}} \leq n$. Then $\phi\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)=$ $\left((i, j-1),\left(i^{\prime}, j^{\prime}\right)\right)$; here $j-1 \geq j^{\prime}$. If $j-1>j^{\prime}$ then this is a cross-level edge in $H_{p(n-1)}^{\Lambda}$, or, if $j-1=j^{\prime}$, then this is a fixed-level edge in $H_{p(n-1)}^{\Lambda}$.
(d) $1 \leq w_{i}<j \leq n$ and $1 \leq w_{i^{\prime}}<j^{\prime} \leq n$. Then $\phi\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right)=$ $\left((i, j-1),\left(i^{\prime}, j^{\prime}-1\right)\right)$, a cross-level edge in $H_{p(n-1)}^{\Lambda}$.

Thus ϕ moves edges in $H_{p n}^{\Lambda}-W$ to edges in $H_{p(n-1)}^{\Lambda}$.
Now, from Lemma 2.1, the graphs $H_{p n}^{\Lambda}-W$ and $H_{p(n-1)}^{\Lambda}$ have the same number of edges, and so ϕ is an isomorphism.

Thus we have the following existence result for K_{p}-removable sequences:
Theorem 2.3 Let Λ be uniform. For any $p \geq 3$ the sequence $\left\{H_{p n}^{\Lambda}\right\}$ is K_{p}-removable.

Proof. By construction, for every $n \geq 1$, the graph $H_{p n}^{\Lambda}$ has $p n$ vertices. Clearly the sequence $\left\{H_{p n}^{\Lambda}\right\}$ satisfies A1, and, from Lemma 2.2, it satisfies A2, hence it is K_{p}-removable.

Example $1 \quad p=3, \Lambda_{1}=\{2\}, \Lambda_{2}=\{1,3\}, \Lambda_{3}=\{2\}$. Here $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$ is uniform with $\lambda_{1}=\mu_{1}=1, \lambda_{2}=\mu_{2}=2$, and $\lambda_{3}=\mu_{3}=1$. The first 3 graphs in the K_{3}-removable sequence $\left\{H_{3 n}^{\Lambda}\right\}$ are shown in Fig. 1.

The converse of Theorem 2.3 is not true, consider the example:
Example $2 p=3, \Lambda_{1}=\{2\}, \Lambda_{2}=\Lambda_{3}=\emptyset$. Here $\Lambda=\left(\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right)$, and it is straightforward to show that $\left\{H_{3 n}^{\Lambda}\right\}$ is K_{3}-removable but $\lambda_{1}=1$ and $\mu_{1}=0$, and so $\lambda_{1} \neq \mu_{1}$ and Λ is not uniform.

We call a K_{p}-removable sequence $\left\{G_{p n}\right\}$ regular if all graphs in the sequence are regular, and irregular if at least one graph in the sequence is irregular.

Figure 1: The first 3 graphs in the irregular K_{3}-removable sequence $\left\{H_{3 n}^{\Lambda}\right\}$ where $\Lambda=\left\{\Lambda_{1}, \Lambda_{2}, \Lambda_{3}\right\}$ with $\Lambda_{1}=\{2\}, \Lambda_{2}=\{1,3\}$, and $\Lambda_{3}=\{2\}$. See Examples 1 and 3 .

In Section 3 we show that all K_{p}-removable sequences for $p=1$ and $p=2$ are regular. As the next example shows, an irregular K_{p}-removable sequence exists for every $p \geq 3$.
Example 3 For a fixed $p \geq 3, \Lambda_{1}=\{2\}, \Lambda_{2}=\{1,3\}, \Lambda_{3}=\{2\}$, and $\Lambda_{i}=\emptyset$ for $4 \leq i \leq p$. Then $\Lambda=\left(\Lambda_{1}, \ldots, \Lambda_{p}\right)$ is uniform and so $\left\{H_{p n}^{\Lambda}\right\}$ is K_{p}-removable. Moreover, $\left\{H_{p n}^{\Lambda}\right\}$ is irregular because $H_{p 2}^{\Lambda}$ is irregular: $\operatorname{deg}((1,2))=p$ but $\operatorname{deg}((2,2))=p+1$. See Fig. 1 where $p=3, \operatorname{deg}((1,2))=3$ but $\operatorname{deg}((2,2))=4$.

We are interested in the K_{p} 's in $H_{p n}^{\Lambda}$. The next theorem gives necessary and sufficient conditions for their existence.

Let $V=H_{p n}^{\Lambda}\left[\left(1, v_{1}\right), \ldots,\left(p, v_{p}\right)\right]$ be an arbitrary induced subgraph in $H_{p n}^{\Lambda}$ with exactly one vertex from each independent set I_{i}. Let V have vertices at m different levels: $\ell_{1}, \ldots, \ell_{m}$ where $\ell_{1}<\cdots<\ell_{m}$. For $1 \leq k \leq m$, let $V_{k}=\left\{i \mid v_{i}=\ell_{k}\right\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_{k}. Then the sets V_{1}, \ldots, V_{m} partition $[p]=\{1, \ldots, p\}$, and:

Theorem 2.4 With the above notation $V=K_{p}$ if and only if for every k, with $1 \leq k \leq m$, we have

$$
V_{1} \cup \cdots \cup V_{k}=\cap_{i \in V_{k+1} \cup \cdots \cup V_{m}} \Lambda_{i},
$$

where we define $\cap_{i \in \emptyset} \Lambda_{i}=[p]$.
Proof. Suppose that $V=K_{p}$, and suppose $i^{\prime} \in V_{1} \cup \cdots \cup V_{k}$ for some k with $1 \leq k \leq m$. Now vertex $\left(i^{\prime}, v_{i^{\prime}}\right)$ is at a lower level than all vertices $\left(i, v_{i}\right)$ where $i \in V_{k+1} \cup \cdots \cup V_{m}$, so $i^{\prime} \in \Lambda_{i}$ for all $i \in V_{k+1} \cup \cdots \cup V_{m}$. Thus $i^{\prime} \in \cap_{i \in V_{k+1} \cup \ldots \cup V_{m}} \Lambda_{i}$, and $V_{1} \cup \cdots \cup V_{k} \subseteq \cap_{i \in V_{k+1} \cup \ldots \cup V_{m}} \Lambda_{i}$. But, because, $i \notin \Lambda_{i}$, we have $\cap_{i \in V_{k+1} \cup \ldots \cup V_{m}} \Lambda_{i} \subseteq[p] \backslash\left\{V_{k+1} \cup \cdots \cup V_{m}\right\}=V_{1} \cup \cdots \cup V_{k}$. Hence $V_{1} \cup \cdots \cup V_{k}=\cap_{i \in V_{j+1} \cup \ldots \cup V_{m}} \Lambda_{i}$, as required. The converse is straightforward.

Example 4 See Example 1 and Fig. 1. Here $p=3, \Lambda_{1}=\{2\}, \Lambda_{2}=\{1,3\}$, and $\Lambda_{3}=\{2\}$. Consider the induced graph $H_{33}^{\Lambda}[(1,1),(2,3),(3,1)]=K_{3}$. This K_{3} has vertices at $m=2$ levels, i.e., at level $\ell_{1}=1$ and at level $\ell_{2}=3$, so $V_{1}=\{1,3\}$ and $V_{2}=\{2\}$. For $k=1$ we have

$$
V_{1}=\cap_{i \in V_{2}} \Lambda_{i}=\Lambda_{2},
$$

and for $k=2$

$$
V_{1} \cup V_{2}=\cap_{i \in \emptyset} \Lambda_{i}=[3]=\{1,2,3\} .
$$

Such a K_{p} with vertices at more than one level is a cross-level K_{p}.

3 Regular sequences, uniqueness of (K_{p}, λ)removable sequences for $\lambda=0, p-1$, or p

Here we consider regular K_{p}-removable sequences $\left\{G_{p n}\right\}$, i.e., those which also satisfy:

A3 $G_{p n}$ is regular for every $n \geq 1$.
For such a sequence we use the notation $\left\{R_{p n}\right\}$, for every $n \geq 1 R_{p n}$ is regular of degree $\operatorname{deg}\left(R_{p n}\right)$. We know that $R_{p 1}=K_{p}$, and the second graph in this sequence is $R_{p 2}$, so let us define λ by

$$
\begin{equation*}
\lambda=\operatorname{deg}\left(R_{p 2}\right)-\operatorname{deg}\left(R_{p 1}\right)=\operatorname{deg}\left(R_{p 2}\right)-(p-1) \tag{3}
\end{equation*}
$$

Lemma 3.1 For a fixed $p \geq 1$ let $\left\{R_{p n}\right\}$ be K_{p}-removable with λ defined as above. Then
(i) $0 \leq \lambda \leq p$,
(ii) $\operatorname{deg}\left(R_{p n}\right)=\lambda(n-1)+p-1 \quad$ for every $n \geq 1$,
(iii) $\lambda=\operatorname{deg}\left(R_{p n}\right)-\operatorname{deg}\left(R_{p(n-1)}\right) \quad$ for every $n \geq 2$.

Proof. (i) By A1 and A2 the graph $R_{p 2}$ contains a K_{p} with $R_{p 2}-K_{p}=$ $R_{p 1}=K_{p}$. By A3 $R_{p 2}$ is regular and $\operatorname{deg}\left(R_{p 2}\right) \geq \operatorname{deg}\left(K_{p}\right)=p-1$, and so $\lambda=\operatorname{deg}\left(R_{p 2}\right)-(p-1) \geq 0$. Also, $\operatorname{deg}\left(R_{p 2}\right) \leq \operatorname{deg}\left(R_{p 1}\right)+p$ because the degree of a vertex in $R_{p 1}$ can be increased by at most p when constructing $R_{p 2}$ (if it is made adjacent to each of the p vertices in the new K_{p}), hence $\lambda \leq p$. Thus $0 \leq \lambda \leq p$, i.e., $\lambda=0, \ldots, p$.
(ii) Here we use induction on n. For $n=1$ (ii) is true by A1, and for $n=2$ it is true by (3). So assume that $n \geq 3$ and that (ii) is true for $n-1$, i.e., for the graph $R_{p(n-1)}$. Now $R_{p n}$ is obtained from $R_{p(n-1)}$ by adding on a new K_{p} and some cross-level edges between them. But $R_{p n}$ is regular, so we can count these cross-level edges in two different ways:

$$
(n-1) p\left[\operatorname{deg}\left(R_{p n}\right)-\operatorname{deg}\left(R_{p(n-1)}\right)\right]=p\left[\operatorname{deg}\left(R_{p n}\right)-(p-1)\right] .
$$

This gives

$$
\begin{aligned}
\operatorname{deg}\left(R_{p n}\right) & =\frac{(n-1) \operatorname{deg}\left(R_{p(n-1)}\right)-(p-1)}{n-2} \\
& =\lambda(n-1)+p-1,
\end{aligned}
$$

using the induction hypothesis. Thus the induction goes through and (ii) is true for every $n \geq 1$.
(iii) This follows directly from (ii).

For a fixed $p \geq 1$ and a fixed λ where $\lambda=0, \ldots, p$, let $\left\{R_{p n}\right\}$ be a $K_{p^{-}}$ removable sequence in which $\operatorname{deg}\left(R_{p n}\right)=\lambda(n-1)+p-1$ for every $n \geq 1$. We call the sequence $\left\{R_{p n}\right\}$ regular $\left(K_{p}, \lambda\right)$-removable, and denote it by $\left\{R_{p n}^{\lambda}\right\}$. Lemma 3.1(iii) then says that

$$
\begin{equation*}
\lambda=\operatorname{deg}\left(R_{p n}^{\lambda}\right)-\operatorname{deg}\left(R_{p(n-1)}^{\lambda}\right) \quad \text { for every } n \geq 2 \tag{4}
\end{equation*}
$$

i.e., as we move from $R_{p(n-1)}^{\lambda}$ to $R_{p n}^{\lambda}$ in the sequence $\left\{R_{p n}^{\lambda}\right\}$, the degree of regularity always increases by λ.

Now we look at some small values of p.
Example $5 \quad p=1$, so $\operatorname{deg}\left(R_{1 n}^{\lambda}\right)=\lambda(n-1)$ where $\lambda=0$ or 1 .
$\lambda=0$ Here $\operatorname{deg}\left(R_{1 n}^{0}\right)=0$. So $R_{1 n}^{0}$ is the graph with n isolated vertices, $n K_{1}$. Clearly $R_{11}^{0}=K_{1}$ and, for $n \geq 2$, the removal of any K_{1} from $n K_{1}$ gives the graph $(n-1) K_{1}$, thus $\left\{R_{1 n}^{0}\right\}=\left\{n K_{1}\right\}$ is K_{1}-removable. It is also clear that $\left\{n K_{1}\right\}$ is the unique regular $\left(K_{1}, 0\right)$-removable sequence.
$\lambda=1 \operatorname{Here} \operatorname{deg}\left(R_{1 n}^{1}\right)=n-1 .\left\{R_{1 n}^{1}\right\}=\left\{K_{n}\right\}$ is the unique regular $\left(K_{1}, 1\right)$ removable sequence.

Example $6 \quad p=2$, so $\operatorname{deg}\left(R_{2 n}^{\lambda}\right)=\lambda(n-1)+1$ where $\lambda=0,1$, or 2 .
$\lambda=0$ Here $\operatorname{deg}\left(R_{2 n}^{0}\right)=1 . \quad\left\{R_{2 n}^{0}\right\}=\left\{n K_{2}\right\}$ is the unique regular $\left(K_{2}, 0\right)-$ removable sequence.
$\lambda=1$ Here $\operatorname{deg}\left(R_{2 n}^{1}\right)=n$. Now $K_{n, n}$, the complete bipartite graph on $2 n$ vertices, has degree n. Also $K_{1,1}=K_{2}$ and, for every $n \geq 2$, the removal of any K_{2} from $K_{n, n}$ results in $K_{n-1, n-1}$, i.e. $K_{n, n}-K_{2}=K_{n-1, n-1}$. So one example of a regular $\left(K_{2}, 1\right)$-removable sequence is $\left\{R_{2 n}^{1}\right\}=\left\{K_{n, n}\right\}$, we show in Corollary 3.2 that this is the unique example.
$n=3$

$n=2$

$$
n=1
$$

$\left\{\begin{array}{l}\left\{K_{n, n}\right\} \uparrow \\ \lambda=1\end{array}\right\} \begin{aligned} & \bullet \\ & 1 K_{2}=K_{1,1}=K_{2 \cdot 1}\end{aligned}$

$$
\left\{K_{2 n}\right\}
$$

Figure 2: The first 3 graphs in each of the K_{2}-removable sequences $\left\{n K_{2}\right\}$, $\left\{K_{n, n}\right\}$, and $\left\{K_{2 n}\right\}$. These are the unique regular $\left(K_{2}, 0\right)-,\left(K_{2}, 1\right)$-, and ($K_{2}, 2$)-removable sequences, respectively. See Example 6.
$\lambda=2$ Here $\operatorname{deg}\left(R_{2 n}^{2}\right)=2 n-1 .\left\{R_{2 n}^{2}\right\}=\left\{K_{2 n}\right\}$ is the unique regular $\left(K_{2}, 2\right)$ removable sequence.

We see that the 1-st graph in each of the three sequences $\left\{R_{2 n}^{0}\right\}=\left\{n K_{2}\right\}$, $\left\{R_{2 n}^{1}\right\}=\left\{K_{n, n}\right\}$, and $\left\{R_{2 n}^{2}\right\}=\left\{K_{2 n}\right\}$ is K_{2}, i.e. we must think of K_{2} as being the three graphs $1 K_{2}=K_{1,1}=K_{2 \cdot 1}$. Then the 2-nd graph in each sequence is obtained by changing the 1's in the notation for these graphs into 2's, etc. This is illustrated in Fig. 2, where the first 3 graphs in each of the three sequences $\left\{n K_{2}\right\},\left\{K_{n, n}\right\}$, and $\left\{K_{2 n}\right\}$ are shown. Note also that the n-th graphs in each of the three sequences are well-known graphs on $2 n$ vertices: $n K_{2}, K_{n, n}$, and $K_{2 n}$, respectively.

Recall that a K_{p}-removable sequence $\left\{G_{p n}\right\}$ is regular if all of its graphs are regular, and is irregular if at least one of its graphs is irregular. The next result shows that all K_{p}-removable sequences for $p=1$ or $p=2$ are regular (and are those given in Examples 5 and 6). From Example 3 we see that irregular K_{p}-removable sequences exist for every $p \geq 3$.

Corollary 3.2 For $p=1$ or $p=2$ all K_{p}-removable sequences are regular, (and are given in Examples 5 and 6).

Proof. $\quad(p=2)$ Let $\left\{G_{2 n}\right\}$ be a K_{2}-removable sequence, then $G_{21}=K_{2}$. A candidate for G_{22} must be a graph on 4 vertices with at least two disjoint K_{2} 's, and the removal of any K_{2} must leave a K_{2}. The only possibilities are: (a) $2 K_{2}$, (b) $K_{2,2}$, or (c) $K_{2 \cdot 2}=K_{4}$, all of which are regular.
(a) We prove by induction on n that if $\left\{G_{2 n}\right\}$ is an arbitrary K_{2}-removable sequence which begins $\left\{K_{2}, 2 K_{2}, \ldots\right\}$ then it is the regular sequence $\left\{n K_{2}\right\}$.

Let $n \geq 3$ and suppose that $G_{2(n-1)}=(n-1) K_{2}$. Now consider $G_{2 n}$ which is the union of $(n-1) K_{2}$ and a 'new' K_{2} (and some edges between them); let edge (u, v) be this new K_{2}. If (u, v) is an isolated K_{2} then we are finished, so, assume that u is adjacent to vertex u_{1} in $G_{2(n-1)}$. Now $G_{2(n-1)}=(n-1) K_{2}$ and $n \geq 3$ so $G_{2(n-1)}$ contains some edge $\left(u_{2}, u_{3}\right)$ with $u_{2} \neq u_{1}$ and $u_{3} \neq u_{1}$. But $G_{2 n}-\left(u_{2}, u_{3}\right)$ contains the path on the three vertices u_{1}, u, and v (or triangle if (v, u_{1}) is also an edge); a contradiction because $G_{2 n}-\left(u_{2}, u_{3}\right)=(n-1) K_{2}$. Thus (u, v) must be an isolated K_{2} and the induction goes through, i.e., $G_{2 n}=n K_{2}$ and so $\left\{G_{2 n}\right\}=\left\{n K_{2}\right\}$.
(b) Similarly we use induction to show that any K_{2}-removable sequence $\left\{G_{2 n}\right\}$ which begins $\left\{K_{2}=K_{1,1}, K_{2,2}, \ldots\right\}$ is the regular sequence $\left\{K_{n, n}\right\}$.

Let $n \geq 3$ and suppose that $G_{2(n-1)}=K_{n-1, n-1}$; let the 2 independent sets of $G_{2(n-1)}$ be $I_{1}=\left\{u_{1}, \ldots, u_{n-1}\right\}$ and $I_{2}=\left\{v_{1}, \ldots, v_{n-1}\right\}$, and let the new K_{2} of $G_{2 n}$ be the edge (u, v). Now (u, v) cannot be isolated so let vertex u be adjacent to some vertices in $G_{2(n-1)}$. Suppose that u is adjacent to vertex $u_{j_{1}} \in I_{1}$ and to vertex $v_{j_{2}} \in I_{2}$, then $G_{2 n}\left[u, u_{j_{1}}, v_{j_{2}}\right]=C_{3}$, an odd cycle. Now remove any $K_{2}=\left(u_{j_{3}}, v_{j_{4}}\right)$ where $j_{3} \neq j_{1}$ and $j_{4} \neq j_{2}$, then $G_{2 n}-\left(u_{j_{3}}, v_{j_{4}}\right)=K_{n-1, n-1}$ still contains this odd cycle, a contradiction. Thus u is adjacent to vertices from exactly one of I_{1} or I_{2}, say I_{2}.

Now suppose that u is not adjacent to every vertex in I_{2}, suppose that it is not adjacent to $v_{j_{5}}$, say. Consider the edge $\left(u_{1}, v_{j_{6}}\right)$ where $j_{6} \neq j_{5}$. In the graph $G_{2 n}-\left(u_{1}, v_{j_{6}}\right)=K_{n-1, n-1}$ the set of vertices $\left\{u_{2}, \ldots, u_{n-1}, u\right\}=$ $\left\{I_{1} \cup\{u\}\right\} \backslash\left\{u_{1}\right\}$ is one of the independent sets and $\left\{I_{2} \cup\{v\}\right\} \backslash\left\{v_{j_{6}}\right\}$ is the other. Thus $\left(u, v_{j_{5}}\right)$ is an edge, a contradiction. So u is adjacent to all vertices in I_{2}. Similarly v is adjacent to all vertices in I_{1}. Thus $G_{2 n}=K_{n, n}$ and $\left\{G_{2 n}\right\}=\left\{K_{n, n}\right\}$.

The proofs for (c) $K_{2 \cdot 2}=K_{4}$ and the case $p=1$ are similar.
Before the next main result, Theorem 3.4, we need:

Lemma 3.3 For a fixed $p \geq 1$ let $\left\{R_{p n}^{\lambda}\right\}$ be regular $\left(K_{p}, \lambda\right)$-removable. Then, for every $n \geq 1$,
(i) $R_{p n}^{\lambda}$ contains $\geq n$ disjoint K_{p} 's,
(ii) $R_{p n}^{\lambda}$ contains no K_{p+1} 's for $0 \leq \lambda \leq p-1$.

Proof. (i) See the first paragraph of Section 2.
(ii) Let $0 \leq \lambda \leq p-1$. Suppose that for some $p+1$ vertices $\left\{v_{1}, \ldots, v_{p+1}\right\}$ of $R_{p n}^{\lambda}$ we have $R_{p n}^{\lambda}\left[v_{1}, \ldots, v_{p+1}\right]=K_{p+1}$. Consider $R_{p n}^{\lambda}-K_{p}$ where $K_{p}=$ $R_{p n}^{\lambda}\left[v_{1}, \ldots, v_{p}\right]$. Clearly $v_{p+1} \in R_{p n}^{\lambda}-K_{p}$ and $\operatorname{deg}\left(v_{p+1}\right)$ has decreased by p; but from (4) it should have decreased by λ, a contradiction because $0 \leq \lambda \leq p-1$.

Recall that $K_{p \times n}=K_{\underbrace{n, \ldots, n}_{p}}$ denotes the complete p-partite graph on $p n$ vertices.

Theorem 3.4 For a fixed $p \geq 2$ there is a unique regular $\left(K_{p}, \lambda\right)$-removable sequence for $\lambda=0, p-1$, or p :
(i) $\left\{n K_{p}\right\}$ is the unique regular $\left(K_{p}, 0\right)$-removable sequence,
(ii) $\left\{K_{p \times n}\right\}$ is the unique regular $\left(K_{p}, p-1\right)$-removable sequence,
(iii) $\left\{K_{p n}\right\}$ is the unique regular $\left(K_{p}, p\right)$-removable sequence.

Proof. The proofs of (i) and (iii) are straightforward.
(ii) $\quad(\lambda=p-1)$ We use induction on n. Let $\left\{R_{p n}^{p-1}\right\}$ be an arbitrary regular ($K_{p}, p-1$)-removable sequence; for $n=1$ we know that $R_{p 1}^{p-1}=K_{p}=K_{p \times 1}$. Let $n \geq 2$, then $R_{p n}^{p-1}$ contains a $K_{p}=R_{p n}^{p-1}\left[v_{1}, \ldots, v_{p}\right]$, say. By the induction hypothesis we have $R_{p n}^{p-1}-K_{p}=R_{p(n-1)}^{p-1}=K_{p \times(n-1)}$. Let I_{1}, \ldots, I_{p} be the p independent sets of $R_{p(n-1)}^{p-1}$, each has $n-1$ vertices. Now suppose that in $R_{p n}^{p-1}$ a vertex from $\left\{v_{1}, \ldots, v_{p}\right\}$, say v_{i}, is adjacent to a vertex from each of these p independent sets; call these vertices $\left\{u_{1}, \ldots, u_{p}\right\}$, where $u_{k} \in I_{k}$ for $k=$ $1, \ldots, p$. Then $R_{p n}^{p-1}\left[v_{i}, u_{1}, \ldots, u_{p}\right]=K_{p+1}$, a contradiction to Lemma 3.3(ii). Thus v_{i} is adjacent to vertices in at most $p-1$ of the independent sets I_{1}, \ldots, I_{p}.

Now v_{i} is adjacent to $(p-1)(n-1)$ vertices from $I_{1} \cup \cdots \cup I_{p}$, so it must be adjacent to all $n-1$ vertices in some $p-1$ of I_{1}, \ldots, I_{p}. Suppose that in $R_{p n}^{p-1}$ two distinct vertices from $\left\{v_{1}, \ldots, v_{p}\right\}$, say $v_{i_{1}}$ and $v_{i_{2}}$, are adjacent to all of the vertices in the same $p-1$ independent sets, say I_{1}, \ldots, I_{p-1}. Let $u_{k} \in I_{k}$ for $k=1, \ldots, p-1$. Then $R_{p n}^{p-1}\left[v_{i_{1}}, v_{i_{2}}, u_{1}, \ldots, u_{p-1}\right]=K_{p+1}$, again a
contradiction. Thus, any two distinct vertices from $\left\{v_{1}, \ldots, v_{p}\right\}$ are adjacent to all vertices in distinct $(p-1)$-sets of $\left\{I_{1}, \ldots, I_{p}\right\}$.

For $i=1, \ldots, p$ let v_{i} be non-adjacent to all vertices in the independent set $I_{i^{\prime}}$ for some $i^{\prime}=1, \ldots, p$. By above the mapping $v_{i} \leftrightarrow I_{i^{\prime}}$ is a bijection. Then $\left\{v_{i}\right\} \cup I_{i^{\prime}}$ is an independent set in $R_{p n}^{p-1}$, and v_{i} is adjacent to all the vertices in all other independent sets. This is true for every $i=1, \ldots, p$. It is now clear that $R_{p n}^{p-1}=K_{p \times n}$, and so the induction goes through and $\left\{R_{p n}^{p-1}\right\}=\left\{K_{p \times n}\right\}$.

Note that this theorem connects three well-known graphs on $p n$ vertices: $n K_{p}, K_{p \times n}$, and $K_{p n}$. The case $p=2$ was discussed in Example 6 and illustrated in Fig. 2. Note also that the three regular sequences (i) $\left\{n K_{p}\right\}$, (ii) $\left\{K_{p \times n}\right\}$, and (iii) $\left\{K_{p n}\right\}$ are the sequences $\left\{H_{p n}^{\Lambda}\right\}$ where (i) $\Lambda=(\underbrace{\emptyset, \ldots, \emptyset}_{p})$, (ii) $\Lambda=([p] \backslash\{1\}, \ldots,[p] \backslash\{p\})$, and (iii) $\Lambda=([p], \ldots,[p])$, respectively. (In (iii) Λ is not uniform.)

So, for $p=1$ or $p=2$ and all values of λ, and for every $p \geq 3$ and $\lambda=0$, $p-1$, or p, there is a unique regular $\left(K_{p}, \lambda\right)$-removable sequence.

4 Levelled Cayley Graphs, more regular $\left(K_{p}, \lambda\right)$ removable sequences

Generally our construction of $\left\{H_{p n}^{\Lambda}\right\}$ from Section 2 gives irregular sequences. For an arbitrary vertex $(i, j) \in H_{p n}^{\Lambda}$ we have $\operatorname{deg}((i, j))=\lambda_{i}(n-1)+p-1$, see (2). So $H_{p n}^{\Lambda}$ is regular if and only if λ_{i} is constant for all $i \in[p]$. We set $\lambda_{i}=\lambda$ then $H_{p n}^{\Lambda}$ is regular of degree $\lambda(n-1)+p-1$, (see Lemma 3.1(ii)), and $\left\{H_{p n}^{\Lambda}\right\}$ is a regular $\left(K_{p}, \lambda\right)$-removable sequence.

We now construct a regular $\left(K_{p}, \lambda\right)$-removable sequence using a finite group. This combines the construction of $\left\{H_{p n}^{\Lambda}\right\}$ from Section 2 with the construction of a Cayley graph; see, for example, p. 122 of Biggs [2].

Let $p \geq 3$ and let $\mathcal{G}_{p}=\left\{g_{1}, \ldots, g_{p}\right\}$ be a finite group with p elements, where $g_{1}=e$ is the identity element. Let $\Lambda \subseteq \mathcal{G}_{p}$ be a subset of \mathcal{G}_{p} with $e \notin \Lambda$ and $|\Lambda|=\lambda$.

Now consider the following graph, a levelled Cayley graph, $\Gamma_{n}=\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$: It has $n \geq 1$ levels of vertices, each level having p vertices. For any fixed j
with $1 \leq j \leq n$ the vertices at level j are $\left\{\left(g_{1}, j\right), \ldots,\left(g_{p}, j\right)\right\}=\left\{(g, j) \mid g \in \mathcal{G}_{p}\right\}$, and the edges are of two types:
(i) fixed-level edges, say at level j

$$
((g, j),(h, j)) \text { is an edge for all } g, h \in \mathcal{G}_{p} \text { where } g \neq h \text {; }
$$

(i.e., the 'fixed-level' graph is K_{p}), and
(ii) cross-level edges, for $j>j^{\prime}$

$$
\left((g, j),\left(g^{\prime}, j^{\prime}\right)\right) \text { is an edge if and only if } g^{\prime} g^{-1} \in \Lambda
$$

Using Theorem 2.3 it is straightforward to prove:
Theorem 4.1 For any finite group \mathcal{G}_{p} with p elements and any $\Lambda \subseteq \mathcal{G}_{p}$ with $e \notin \Lambda$ and $|\Lambda|=\lambda$, the sequence $\left\{\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)\right\}$ is regular $\left(K_{p}, \lambda\right)$-removable.

Now, for any \mathcal{G}_{p} with $p \geq 3$ and for each $\lambda=0, \ldots, p-1$, there exists a Λ satisfying the requirements in Theorem 4.1, and Theorem 3.4(iii) takes care of $\lambda=p$, so we have the following existence result for regular $\left(K_{p}, \lambda\right)$-removable sequences.

Theorem 4.2 For any $p \geq 3$ and any $\lambda=0, \ldots, p$, there exists a regular $\left(K_{p}, \lambda\right)$-removable sequence, namely the sequence $\left\{\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)\right\}$, where \mathcal{G}_{p} is any finite group of order p and Λ is any subset of \mathcal{G}_{p} with $e \notin \Lambda$ and $|\Lambda|=\lambda$.

Let $\bar{\Lambda}$ denote the complement of Λ in \mathcal{G}_{p} and let $\langle\bar{\Lambda}\rangle$ be the subgroup generated by $\bar{\Lambda}$, also let $\langle\bar{\Lambda}\rangle g$ denote a typical coset of this subgroup.

Let $V=\Gamma_{n}\left[\left(g_{1}, v_{1}\right), \ldots,\left(g_{p}, v_{p}\right)\right]$ be an arbitrary induced subgraph in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$ with exactly one vertex from each independent set $I_{i}=\left\{\left(g_{i}, j\right) \mid 1 \leq\right.$ $j \leq n\}$, where $i=1, \ldots, p$. We are interested in the K_{p} 's in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$. The next theorem gives a necessary and sufficient condition for this V to be a K_{p}, this condition is cleaner than the corresponding condition of Theorem 2.4 for the graph $H_{p n}^{\Lambda}$; it also enables us to count the number of K_{p} 's in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$.

As in Section 2 let V have vertices at m different levels: $\ell_{1}<\cdots<\ell_{m}$. For $1 \leq k \leq m$, let $V_{k}=\left\{g_{i} \mid v_{i}=\ell_{k}\right\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_{k}. Then the sets V_{1}, \ldots, V_{m} partition \mathcal{G}_{p}, and we have:

Theorem 4.3 With the above notation $V=K_{p}$ if and only if for every k, with $1 \leq k \leq m, V_{k}$ is a union of cosets of $\langle\bar{\Lambda}\rangle$.

Proof. Suppose that $V=\Gamma_{n}\left[\left(g_{1}, v_{1}\right), \ldots,\left(g_{p}, v_{p}\right)\right]=K_{p}$. Now $\ell_{m}=$ $\max \left\{v_{1}, \ldots, v_{p}\right\}$ is the highest level of $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$ which contains vertices from V, and $V_{m}=\left\{g_{i} \mid v_{i}=\ell_{m}\right\}$ is the set of first coordinates of all vertices of V at this highest level.

Let s be an arbitrary element in $V_{m} \subseteq \mathcal{G}_{p}$. Now consider the graph $V^{\prime}=\Gamma_{n}\left[\left(g_{1} s^{-1}, v_{1}\right), \ldots,\left(g_{p} s^{-1}, v_{p}\right)\right]$, let us reorder the vertices in V^{\prime} so that $V^{\prime}=\Gamma_{n}\left[\left(g_{1}, v_{1}^{\prime}\right), \ldots,\left(g_{p}, v_{p}^{\prime}\right)\right]$; we use this version of V^{\prime}. The graph V^{\prime} is also a K_{p} and the highest level of its vertices is ℓ_{m} also. Then $V_{m}^{\prime}=\left\{g_{i} \mid v_{i}^{\prime}=\right.$ $\left.\ell_{m}\right\}=V_{m} s^{-1}$ is the set of first coordinates of these vertices. We show that V_{m}^{\prime} is a union of cosets of $\langle\bar{\Lambda}\rangle$.

First we show that $\bar{\Lambda} \subseteq V_{m}^{\prime}$. Now $g_{1}=e \in \bar{\Lambda}$ and $s \in V_{m}$, so certainly $e=s s^{-1} \in V_{m}^{\prime}$. So vertex $\left(g_{1}, v_{1}^{\prime}\right)=\left(e, \ell_{m}\right) \in V^{\prime}$ lies at level ℓ_{m}. Let $g_{i} \neq e$ and let $g_{i} \in \bar{\Lambda}$, but suppose that $g_{i} \notin V_{m}^{\prime}$. This means that vertex $\left(g_{i}, v_{i}^{\prime}\right) \in V^{\prime}$ does not lie at level ℓ_{m} so it must lie at a lower level, i.e., $\ell_{m}>v_{i}^{\prime}$. Now, because $\left(\left(e, \ell_{m}\right),\left(g_{i}, v_{i}^{\prime}\right)\right)$ is an edge in V^{\prime} then $\left(\left(s, \ell_{m}\right),\left(g_{i} s, v_{i}^{\prime}\right)\right)$ is an edge in V and so in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$; so $g_{i} s s^{-1}=g_{i} \in \Lambda$, a contradiction because $g_{i} \in \bar{\Lambda}$. Thus for every $g_{i} \in \bar{\Lambda}$, then $g_{i} \in V_{m}^{\prime}$, i.e., $\bar{\Lambda} \subseteq V_{m}^{\prime}$.

Next we show that $\langle\bar{\Lambda}\rangle \subseteq V_{m}^{\prime}$. For any $r \geq 1$ let $\Pi(r)$ denote a product of r arbitrary elements from $\bar{\Lambda}$. By induction we show, for any fixed $r \geq 1$, that every $\Pi(r) \in V_{m}^{\prime}$. Now $\bar{\Lambda} \subseteq V_{m}^{\prime}$, i.e., every $\Pi(1) \in V_{m}^{\prime}$. Assume for some r with $r \geq 1$ that every $\Pi(r) \in V_{m}^{\prime}$. Now suppose that some $\Pi(r+1)$, say $h(r+1)=a_{1} \cdots a_{r+1} \notin V_{m}^{\prime}$, but each $a_{1}, \ldots, a_{r+1} \in \bar{\Lambda}$. Let $h(r)=a_{2} \cdots a_{r+1}$, then, by the induction hypothesis, $h(r) \in V_{m}^{\prime}$ so vertex $\left(h(r), \ell_{m}\right) \in V^{\prime}$ is at the highest level ℓ_{m} and the vertex in V^{\prime} with first coordinate $h(r+1)$ is at a lower level. There is an edge between these two vertices so $h(r+1) h(r)^{-1}=a_{1} \in \Lambda$, a contradiction because $a_{1} \in \bar{\Lambda}$. Thus $h(r+1) \in V_{m}^{\prime}$ and the induction goes through, and so $\langle\bar{\Lambda}\rangle \subseteq V_{m}^{\prime}$.

Finally we show that V_{m}^{\prime} is a union of cosets of $\langle\bar{\Lambda}\rangle$. Let $g \in V_{m}^{\prime}$, but suppose that $g \notin\langle\bar{\Lambda}\rangle$. Then, by similar reasoning to before, we see that every $\Pi(1) g \in V_{m}^{\prime}$, and by induction, that every $\Pi(r) g \in V_{m}^{\prime}$ for every $r \geq 1$; thus the coset $\langle\bar{\Lambda}\rangle g \subseteq V_{m}^{\prime}$. Thus V_{m}^{\prime} is a union of cosets of $\langle\bar{\Lambda}\rangle$, and so $V_{m}=V_{m}^{\prime} s$ is also.

Now we return to the graph V and show that V_{k} is a union of cosets of $\langle\bar{\Lambda}\rangle$ for every $1 \leq k \leq m$. From above this is true for V_{m}, so assume for all k with $k \leq m$ that V_{k} is a union of cosets of $\langle\bar{\Lambda}\rangle$, we show that V_{k-1} is also.

Let $g \in V_{k-1}$, we show that the coset $\langle\bar{\Lambda}\rangle g \subseteq V_{k-1}$. As before first we show that every $\Pi(1) g \in V_{k-1}$, for, suppose not, then:
Either $\Pi(1) g \in V_{k^{\prime}}$ where $k^{\prime}>k-1$, so, by the induction hypothesis, $V_{k^{\prime}}$ is a union of cosets of $\langle\bar{\Lambda}\rangle$. Thus $\langle\bar{\Lambda}\rangle \Pi(1) g=\langle\bar{\Lambda}\rangle g \subseteq V_{k^{\prime}}$, so $g \in V_{k^{\prime}}$, a contradiction because $g \in V_{k-1}$;
Or $\Pi(1) g \in V_{k^{\prime}}$ where $k^{\prime}<k-1$, i.e., level $\ell_{k^{\prime}}$ is lower than level ℓ_{k-1}. So vertex $\left(\Pi(1) g, \ell_{k^{\prime}}\right) \in V$ is at a lower level than vertex $\left(g, \ell_{k-1}\right) \in V$, so $\Pi(1) g g^{-1}=\Pi(1) \in \Lambda$, again a contradiction.
So $\Pi(1) g \in V_{k-1}$, and we proceed by induction as before to show that for any $r \geq 1$ then every $\Pi(r) g \in V_{k-1}$ and so $\langle\bar{\Lambda}\rangle g \subseteq V_{k-1}$, and the induction on k goes through; thus V_{k-1} is a union of cosets of $\langle\bar{\Lambda}\rangle$.

So, in conclusion, for any k with $1 \leq k \leq m, V_{k}$ is a union of cosets of $\langle\bar{\Lambda}\rangle$, as required.

For the converse let each V_{k} be a union of cosets of $\langle\bar{\Lambda}\rangle$. Let $\left(g, \ell_{k}\right)$ and $\left(g^{\prime}, \ell_{k^{\prime}}\right)$ be two arbitrary vertices in V, we show that $\left(\left(g, \ell_{k}\right),\left(g^{\prime}, \ell_{k^{\prime}}\right)\right)$ is an edge in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$. If $\ell_{k}=\ell_{k^{\prime}}$ then, certainly, $\left(\left(g, \ell_{k}\right),\left(g^{\prime}, \ell_{k^{\prime}}\right)\right)$ is an edge by construction of $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$. Otherwise, without loss of generality, let $\ell_{k}>\ell_{k^{\prime}}$. Then g and g^{\prime} are in different cosets of $\langle\bar{\Lambda}\rangle$, so $g^{\prime} g^{-1} \notin\langle\bar{\Lambda}\rangle$, so $g^{\prime} g^{-1} \in \overline{\langle\bar{\Lambda}\rangle} \subseteq \Lambda$, and again $\left(\left(g, \ell_{k}\right),\left(g^{\prime}, \ell_{k^{\prime}}\right)\right)$ is an edge. Thus $V=K_{p}$ as required.

Now we count the number of K_{p} 's in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$; let $\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|$ be the index of $\langle\bar{\Lambda}\rangle$ in \mathcal{G}_{p}, i.e., the number of cosets of $\langle\bar{\Lambda}\rangle$ in \mathcal{G}_{p}.

Corollary 4.4 The number of K_{p} 's in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$ is given by

$$
n^{\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|} .
$$

Proof. Consider any coset $\langle\bar{\Lambda}\rangle g$, let us 'place' the elements of this coset at any fixed level j, where $1 \leq j \leq n$, in the graph $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$. Each such placement of every coset of $\langle\bar{\Lambda}\rangle$ gives a K_{p} and every K_{p} corresponds to such a placement of every coset of $\langle\bar{\Lambda}\rangle$. Hence, the number of K_{p} 's in $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$ equals the number of such placements of all the cosets of $\langle\bar{\Lambda}\rangle$. There are $\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|$ cosets, and n levels to place each, hence $n^{\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|}$ such placements and so $n^{\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|}$ corresponding $K_{p}{ }^{\prime}$ s.

Example 7 (a) Let $\operatorname{Sym}(3)=\{e,(12),(13),(23),(123),(132)\}$ be the symmetric group on $\{1,2,3\}$, and let $\Lambda=\{(12),(13),(23),(123)\}$. Then $\bar{\Lambda}=$ $\{e,(132)\}$ and $\langle\bar{\Lambda}\rangle=\{e,(123),(132)\}$; the other coset of $\langle\bar{\Lambda}\rangle$ is $\langle\bar{\Lambda}\rangle(12)=$ $\{(12),(13),(23)\}$. Consider the graph $\Gamma_{2}(\operatorname{Sym}(3), \Lambda)$ shown in Fig. 3(a), we have $|\operatorname{Sym}(3):\langle\bar{\Lambda}\rangle|=2$ so this graph has $2^{2}=4 K_{6}$'s. They are the 2 fixed-level K_{6} 's, $\Gamma_{2}[(e, 1),((123), 1),((132), 1),((12), 2),((13), 2),((23), 2)]$,
and $\Gamma_{2}[(e, 2),((123), 2),((132), 2),((12), 1),((13), 1),((23), 1)]$. This is the 2nd graph in the regular $\left(K_{6}, 4\right)$-removable sequence $\left\{\Gamma_{n}(\operatorname{Sym}(3), \Lambda)\right\}$.
(b) Let $\mathbb{Z}_{6}=\{0,1,2,3,4,5\}$ be the additive group $(\bmod 6)$, and let $\Lambda=$ $\{1,2,4,5\}$. Then $\Lambda=\langle\bar{\Lambda}\rangle=\{0,3\}$ and the other cosets of $\langle\bar{\Lambda}\rangle$ are $\{1,4\}$ and $\{2,5\}$. Thus $\left|\mathbb{Z}_{6}:\langle\bar{\Lambda}\rangle\right|=3$ and $\Gamma_{2}\left(\mathbb{Z}_{6}, \Lambda\right)$ has $2^{3}=8 K_{6}$'s, see Fig. 3(b). One such K_{6} is $\Gamma_{2}[(0,2),(3,2),(1,1),(4,1),(2,1),(5,1)]$, and another is $\Gamma_{2}[(0,2),(3,2),(1,1),(4,1),(2,2),(5,2)]$, in which the vertices corresponding to coset $\{2,5\}$ have been moved up one level. This is the 2-nd graph in the regular $\left(K_{6}, 4\right)$-removable sequence $\left\{\Gamma_{n}\left(\mathbb{Z}_{6}, \Lambda\right)\right\}$.

Note that the two graphs in Example 7 are non-isomorphic because they have a different number of K_{6} 's, they are the 2-nd graphs in two different regular $\left(K_{6}, 4\right)$-removable sequences. So, in general, regular $\left(K_{p}, p-2\right)$ removable sequences are not unique.

(a)

(b)

Figure 3: The non-isomorphic graphs (a) $\Gamma_{2}(\operatorname{Sym}(3), \Lambda)$ where $\Lambda=$ $\{(12),(13),(23),(123)\}$, and (b) $\Gamma_{2}\left(\mathbb{Z}_{6}, \Lambda\right)$ where $\Lambda=\{1,2,4,5\}$. See Example 7 .

Example 8 Consider the graphs $\Gamma_{3}\left(\mathbb{Z}_{4},\{1\}\right)$ and $\Gamma_{3}\left(\mathbb{Z}_{4},\{2\}\right)$, shown in Figs. 4(a) and (b) respectively. Both graphs have $3 K_{4}$'s. In $\Gamma_{3}\left(\mathbb{Z}_{4},\{1\}\right)$ the union of all edges which lie outside its $3 K_{4}$'s is a C_{12}, however in $\Gamma_{3}\left(\mathbb{Z}_{4},\{2\}\right)$ this union is $C_{6} \cup C_{6}$. Thus $\Gamma_{3}\left(\mathbb{Z}_{4},\{1\}\right) \neq \Gamma_{3}\left(\mathbb{Z}_{4},\{2\}\right)$ and so $\left\{\Gamma_{n}\left(\mathbb{Z}_{4},\{1\}\right)\right\} \neq$ $\left\{\Gamma_{n}\left(\mathbb{Z}_{4},\{2\}\right)\right\}$, and we have two different regular $\left(K_{4}, 1\right)$-removable sequences. Example 8 illustrates that, in general, regular $\left(K_{p}, 1\right)$-removable sequences are not unique.

Figure 4: The non-isomorphic graphs (a) $\Gamma_{3}\left(\mathbb{Z}_{4},\{1\}\right)$ and (b) $\Gamma_{3}\left(\mathbb{Z}_{4},\{2\}\right)$. See Example 8.

Theorem 3.4 states that, for a fixed $p \geq 2$, the only regular $\left(K_{p}, 0\right)$-, $\left(K_{p}, p-1\right)$-, and ($\left.K_{p}, p\right)$-removable sequences are unique. Above we give two different examples of a regular $\left(K_{p}, 1\right)$-removable sequence, and two different examples of a regular ($K_{p}, p-2$)-removable sequence; thus, in general, regular $\left(K_{p}, \lambda\right)$-removable sequences are not unique unless $\lambda=0, p-1$, or p.

Some final comments:
If, for some \mathcal{G}_{p} and Λ we have $\left|\mathcal{G}_{p}:\langle\bar{\Lambda}\rangle\right|=1$, then the graph $\Gamma_{n}\left(\mathcal{G}_{p}, \Lambda\right)$ has exactly $n K_{p}$'s which is the least number allowed by Lemma 3.3(i). Such a graph has no cross-level K_{p} 's; e.g., $\Gamma_{3}\left(\mathbb{Z}_{4},\{1\}\right)$ shown in Fig. 4(a).

It is also worth mentioning that for any group \mathcal{G}_{p} : (see Theorem 3.4)
(i) $\left\{\Gamma_{n}\left(\mathcal{G}_{p}, \emptyset\right)\right\}=\left\{n K_{p}\right\}$ is the unique regular $\left(K_{p}, 0\right)$-removable sequence,
(ii) $\left\{\Gamma_{n}\left(\mathcal{G}_{p}, \mathcal{G}_{p} \backslash\{e\}\right)\right\}=\left\{K_{p \times n}\right\}$ is the unique regular $\left(K_{p}, p-1\right)$-removable sequence,
(iii) $\left\{\Gamma_{n}\left(\mathcal{G}_{p}, \mathcal{G}_{p}\right)\right\}=\left\{K_{p n}\right\}$ is the unique regular $\left(K_{p}, p\right)$-removable sequence. (Note that in (iii) we do not have $e \notin \Lambda$.) Thus the unique regular (K_{p}, λ)removable sequences for $\lambda=0, p-1$, or p can all be constructed from an arbitrary group \mathcal{G}_{p}.

For other papers on graph sequences see Barefoot, Entringer, and Jackson [1], and the references therein; another somewhat related paper is Duchet, Tuza, and Vestergaard [3].

We thank the referees for suggestions and comments which improved this paper.

References

[1] C.A. Barefoot, R.C. Entringer, D.E. Jackson, Graph theoretic modelling of cellular development II, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 65 (1988) 135-146.
[2] N. Biggs, Algebraic Graph Theory, 2nd Edition, (Cambridge University Press, 1993).
[3] P. Duchet, Z. Tuza, P.D. Vestergaard, Graphs in which all spanning subgraphs with r fewer edges are isomorphic, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 67 (1988) 45-57.

