K_p -Removable Sequences of Graphs

John P. McSorley London Guildhall University, Dept. of CISM, 100 Minories, London, EC3N 1JY. mcsorley60@hotmail.com

Thomas D. Porter, Department of Mathematics, Southern Illinois University, Carbondale. IL 62901-4408. tporter@math.siu.edu

Abstract

Let $\{G_{pn} \mid n \geq 1\} = \{G_{p1}, G_{p2}, G_{p3}, \ldots\}$ be a countable sequence of simple graphs, where G_{pn} has pn vertices. This sequence is called K_{p} removable if $G_{p1} = K_p$, and $G_{pn} - K_p = G_{p(n-1)}$ for every $n \geq 2$ and for every K_p in G_{pn} . We give a general construction of such sequences. We specialize to sequences in which each G_{pn} is regular; these are called regular (K_p, λ) -removable sequences, λ is a fixed number, $0 \leq$ $\lambda \leq p$, referring to the fact that G_{pn} is $(\lambda(n-1)+p-1)$ -regular. We classify regular $(K_p, 0)$ -, $(K_p, p-1)$ -, and (K_p, p) -removable sequences as the sequences $\{nK_p \mid n \geq 1\}$, $\{K_{p\times n} \mid n \geq 1\}$, and $\{K_{pn} \mid n \geq 1\}$ respectively. Regular sequences are also constructed using 'levelled' Cayley graphs, based on a finite group. Some examples are given.

Keywords: removable, Cayley, isomorphism, reconstruction, clique

1 Notation, K_p -removable sequences of graphs, main results

For $p \ge 1$ and $n \ge 1$ let K_p be the complete graph on p vertices, let nK_p be n disjoint copies of K_p , and let $K_{p \times n} = K_{\underline{n,\dots,n}}$, be the complete p-partite graph

on pn vertices. All graphs G are simple. In the graph G let $G[\{v_1, \ldots, v_m\}] = G[v_1, \ldots, v_m]$ denote the induced subgraph on vertices $\{v_1, \ldots, v_m\}$. Suppose that for some p vertices $\{v_1, \ldots, v_p\}$ in G we have $G[v_1, \ldots, v_p] = K_p$, *i.e.*, $G[v_1, \ldots, v_p]$ is an induced K_p , then $G - K_p$ denotes the subgraph obtained from G by deleting vertices v_i and their incident edges, for every $i = 1, \ldots, p$. If two graphs G and G' are isomorphic we write $G \cong G'$. We often say that two graphs are 'equal' (=) instead of 'isomorphic', and say ' K_p ' instead of 'induced K_p '.

For the countable sequence of graphs $\{G_{pn} | n \ge 1\} = \{G_{p1}, G_{p2}, G_{p3}, \ldots\}$ we use the notation $\{G_{pn}\}$, each graph G_{pn} has pn vertices for a fixed $p \ge 1$.

We call a sequence $\{G_{pn}\}$ K_p -removable if it satisfies the following two properties:

A1 $G_{p1} \cong K_p$,

A2
$$G_{pn} - K_p \cong G_{p(n-1)}$$
 for every $n \ge 2$ and every (induced) K_p in G_{pn} .

In this paper we investigate K_p -removable sequences. In Section 2 we give a general construction for such sequences. In Section 3 we specialize to sequences in which each graph is regular; we call these regular (K_p, λ) -removable sequences, λ is a fixed number, $0 \leq \lambda \leq p$, referring to the fact that G_{pn} is $(\lambda(n-1)+p-1)$ -regular. We classify regular $(K_p, 0)$ -, $(K_p, p-1)$ -, and (K_p, p) -removable sequences as the sequences $\{nK_p\}, \{K_{p\times n}\},$ and $\{K_{pn}\}$ respectively, thus associating three well-known graphs on pn vertices. In Section 4 we construct regular (K_p, λ) -removable sequences starting from a finite group; the graphs in this sequence are similar in construction to Cayley graphs, we also count the number of K_p 's in these graphs.

2 Construction of a K_p -removable sequence for every $p \ge 3$, examples

From A1 and A2 above we see that if $\{G_{pn}\}$ is K_p -removable then $G_{p1} = K_p$ and G_{p2} is the union of this K_p and a 'new' K_p , together with some edges between them. The graph G_{p3} is then formed from G_{p2} by adding another K_p and some suitable set of edges between this new K_p and the previous two K_p 's, and so on. Thus G_{pn} contains at least n disjoint K_p 's. We use this idea of constructing G_{pn} by adding K_p to K_p , up to $n K_p$'s, in the following:

Here $p \geq 3$ and $[p] = \{1, \ldots, p\}$. Let $\Lambda = (\Lambda_1, \ldots, \Lambda_p)$ be an ordered *p*-tuple of subsets of [p], *i.e.*, each $\Lambda_i \subseteq [p]$.

Consider a K_p with vertices labelled $\{(1, 1), \ldots, (p, 1)\} = \{(i, 1) | i \in [p]\};$ call these vertices vertices at level 1, and call this graph H_{p1}^{Λ} . Now consider another K_p with vertices labelled $\{(i, 2) | i \in [p]\}$, vertices at level 2. For any vertex (i, 2) join it to vertices $\{(i', 1) | i' \in \Lambda_i\}$ at level 1; call this graph H_{p2}^{Λ} . Now consider a third K_p with vertices labelled $\{(i, 3) | i \in [p]\}$, at level 3. Join any vertex (i, 3) to vertices $\{(i', 2) | i' \in \Lambda_i\}$ at level 2 and to vertices $\{(i', 1) | i' \in \Lambda_i\}$ at level 1; this is H_{p3}^{Λ} .

For any $n \geq 1$, consider the graph which has been constructed level by level, up to *n* levels, according to the above definition; call this graph H_{pn}^{Λ} . In H_{pn}^{Λ} the vertices are of the form (i, j) for every $i \in [p]$ and every $1 \leq j \leq n$, (where *j* is their level); and the edges are of two types:

(i) fixed-level edges, say at level j

 $((i_1, j), (i_2, j))$ is an edge for all $i_1, i_2 \in [p]$ where $i_1 \neq i_2$; and

(ii) cross-level edges, for j > j'

((i, j), (i', j')) is an edge if and only if $i' \in \Lambda_i$.

For each $i \in [p]$ let $\lambda_i = |\Lambda_i|$ be the number of elements in Λ_i , and let μ_i be the number of sets in Λ which contain *i*. Call Λ uniform if:

$$i \notin \Lambda_i \text{ and } \lambda_i = \mu_i \text{ for each } i \in [p].$$
 (1)

From now on let our Λ be uniform. In Theorem 2.3 we show that if Λ is uniform then $\{H_{pn}^{\Lambda}\}$ is K_p -removable.

For any fixed $i \in [p]$, let $I_i = \{(i, 1), \ldots, (i, n)\} = \{(i, j) | 1 \leq j \leq n\}$ be the set of vertices of H_{pn}^{Λ} in 'column *i*'. Then, because $i \notin \Lambda_i$, this is an independent set of vertices.

Now let W be a K_p in H_{pn}^{Λ} , then each of the p independent sets I_1, \ldots, I_p contains exactly one vertex from W; let I_i contain vertex $(i, w_i) \in W$, a vertex at level w_i , for some $1 \leq w_i \leq n$. Thus $W = H_{pn}^{\Lambda}[(1, w_1), \ldots, (p, w_p)] = K_p$.

Lemma 2.1 Let Λ be uniform. For any $K_p = W$ in H_{pn}^{Λ} the number of edges in $H_{pn}^{\Lambda} - W$ equals the number of edges in $H_{p(n-1)}^{\Lambda}$.

Proof. Consider any vertex (i, j) in H_{pn}^{Λ} , here $1 \leq j \leq n$. It is adjacent to λ_i vertices at each of the j-1 levels lower than level j, *i.e.*, to $\lambda_i(j-1)$ such vertices, and to p-1 vertices at level j, and to $\mu_i(n-j)$ vertices at levels higher than level j. Thus, because $\lambda_i = \mu_i$, its degree is

$$\deg((i,j)) = \lambda_i(n-1) + p - 1.$$
 (2)

So if (i, j) is in $W = K_p$, then its degree 'outside' W is $\lambda_i(n-1)$, which is independent of its level, j.

Now W contains exactly one vertex from each independent set I_i , so, when removing W, we remove $\sum_{i=1}^{p} (\lambda_i (n-1))$ edges 'outside' W, (and $\binom{p}{2}$) 'inside' W). But this equals the number of edges removed if we remove the K_p at level n (because deg((i, n)) is also given by (2)), leaving the graph $H^{\Lambda}_{p(n-1)}$. Hence, the number of edges in $H^{\Lambda}_{pn} - W$ equals the number of edges in $H^{\Lambda}_{p(n-1)}$.

Lemma 2.2 Let Λ be uniform. For any $p \geq 3$, $n \geq 2$, and any $K_p = W$ in H_{pn}^{Λ} , we have

$$H_{pn}^{\Lambda} - W = H_{p(n-1)}^{\Lambda}.$$

Proof. Let the vertices of W be $\{(i, w_i) | 1 \leq i \leq p\}$. We construct a bijection ϕ between the vertices of $H_{pn}^{\Lambda} - W$ and the vertices of $H_{p(n-1)}^{\Lambda}$, and then show that ϕ is an isomorphism. Under ϕ , for a fixed $i \in [p]$, the vertices in the *i*-th independent set of $H_{pn}^{\Lambda} - W$, namely in the set $I_i \setminus \{(i, w_i)\}$, are mapped to the vertices in the *i*-th independent set of $H_{p(n-1)}^{\Lambda}$, namely to the set $\{(i, 1), \ldots, (i, n-1)\}$, as follows:

i.e.,

$$\phi(i,j) = \begin{cases} (i,j-1), & \text{for } w_i < j \le n; \\ (i,j), & \text{for } 1 \le j < w_i. \end{cases}$$

Clearly ϕ is a bijection.

There are two types of edges in H_{pn}^{Λ} : fixed-level edges and cross-level edges. First we deal with fixed-level edges.

A typical fixed-level edge in H_{pn}^{Λ} is $((i_1, j), (i_2, j))$ for some $i_1, i_2 \in [p]$ where $i_1 \neq i_2$ and for some j with $1 \leq j \leq n$. Thus, a typical fixed-level edge in $H_{pn}^{\Lambda} - W$ is $((i_1, j), (i_2, j))$ where $i_1 \neq i_2$, and $j \neq w_{i_1}$ and $j \neq w_{i_2}$, (because the vertices (i_1, w_{i_1}) and (i_2, w_{i_2}) have been removed). Without loss of generality let $w_{i_1} \leq w_{i_2}$.

Now we check that ϕ maps two adjacent vertices at level j in $H_{pn}^{\Lambda} - W$ onto two adjacent vertices in $H_{p(n-1)}^{\Lambda}$. There are three cases to consider: (a) $1 \leq j < w_{i_1} \leq w_{i_2} \leq n$. Then $\phi((i_1, j), (i_2, j)) = (\phi(i_1, j), \phi(i_2, j)) =$ $((i_1, j), (i_2, j))$, which is certainly a (fixed-level) edge in $H_{p(n-1)}^{\Lambda}$. (b) $1 \leq w_{i_1} < j < w_{i_2} \leq n$. Then $\phi((i_1, j), (i_2, j)) = ((i_1, j - 1), (i_2, j))$. Now $w_{i_1} < w_{i_2}$ and $((i_1, w_{i_1}), (i_2, w_{i_2}))$ is an edge in W, and so in H_{pn}^{Λ} , so $i_1 \in \Lambda_{i_2}$; and $1 \leq j - 1 < j \leq n - 1$ and so $((i_1, j - 1), (i_2, j))$ is a (cross-level) edge in $H_{p(n-1)}^{\Lambda}$.

(c) $1 \le w_{i_1} \le w_{i_2} < j \le n$. Then $\phi((i_1, j), (i_2, j)) = ((i_1, j - 1), (i_2, j - 1))$, which, again, is a fixed-level edge in $H^{\Lambda}_{p(n-1)}$.

Cross-level edges in H_{pn}^{Λ} are of the form ((i, j), (i', j')) where j > j' and $i' \in \Lambda_i$. Thus cross-level edges in $H_{pn}^{\Lambda} - W$ are of the form ((i, j), (i', j')), where $j > j', j \neq w_i, j' \neq w_{i'}$, and $i' \in \Lambda_i$.

Now we check that ϕ maps two adjacent vertices at levels j and j' in $H_{pn}^{\Lambda} - W$ onto two adjacent vertices in $H_{p(n-1)}^{\Lambda}$. There are four cases to consider:

(a) $1 \le j < w_i \le n$ and $1 \le j' < w_{i'} \le n$. Then $\phi((i, j), (i', j')) = ((i, j), (i', j'))$, a cross-level edge in $H^{\Lambda}_{p(n-1)}$. (b) $1 \le j < w_i \le n$ and $1 \le w_{i'} < j' \le n$. Then $\phi((i, j), (i', j')) = ((i, j), (i', j'-1))$, again, a cross-level edge in $H^{\Lambda}_{p(n-1)}$. (c) $1 \le w_i < j \le n$ and $1 \le j' < w_{i'} \le n$. Then $\phi((i, j), (i', j')) = ((i, j-1), (i', j'))$; here $j-1 \ge j'$. If j-1 > j' then this is a cross-level edge in $H^{\Lambda}_{p(n-1)}$, or, if j-1=j', then this is a fixed-level edge in $H^{\Lambda}_{p(n-1)}$. (d) $1 \le w_i < j \le n$ and $1 \le w_{i'} < j' \le n$. Then $\phi((i, j), (i', j')) = ((i, j-1), (i', j'-1))$, a cross-level edge in $H^{\Lambda}_{p(n-1)}$.

Thus ϕ moves edges in $H_{pn}^{\Lambda} - W$ to edges in $H_{p(n-1)}^{\Lambda}$.

Now, from Lemma 2.1, the graphs $H_{pn}^{\Lambda} - W$ and $H_{p(n-1)}^{\Lambda}$ have the same number of edges, and so ϕ is an isomorphism.

Thus we have the following existence result for K_p -removable sequences:

Theorem 2.3 Let Λ be uniform. For any $p \geq 3$ the sequence $\{H_{pn}^{\Lambda}\}$ is K_p -removable.

Proof. By construction, for every $n \ge 1$, the graph H_{pn}^{Λ} has pn vertices. Clearly the sequence $\{H_{pn}^{\Lambda}\}$ satisfies **A1**, and, from Lemma 2.2, it satisfies **A2**, hence it is K_p -removable.

Example 1 $p = 3, \Lambda_1 = \{2\}, \Lambda_2 = \{1, 3\}, \Lambda_3 = \{2\}$. Here $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$ is uniform with $\lambda_1 = \mu_1 = 1, \lambda_2 = \mu_2 = 2$, and $\lambda_3 = \mu_3 = 1$. The first 3 graphs in the K_3 -removable sequence $\{H_{3n}^{\Lambda}\}$ are shown in Fig. 1.

The converse of Theorem 2.3 is not true, consider the example: **Example 2** $p = 3, \Lambda_1 = \{2\}, \Lambda_2 = \Lambda_3 = \emptyset$. Here $\Lambda = (\Lambda_1, \Lambda_2, \Lambda_3)$, and it is straightforward to show that $\{H_{3n}^{\Lambda}\}$ is K_3 -removable but $\lambda_1 = 1$ and $\mu_1 = 0$, and so $\lambda_1 \neq \mu_1$ and Λ is not uniform.

We call a K_p -removable sequence $\{G_{pn}\}$ regular if all graphs in the sequence are regular, and *irregular* if at least one graph in the sequence is irregular.

Figure 1: The first 3 graphs in the irregular K_3 -removable sequence $\{H_{3n}^{\Lambda}\}$ where $\Lambda = \{\Lambda_1, \Lambda_2, \Lambda_3\}$ with $\Lambda_1 = \{2\}, \Lambda_2 = \{1, 3\}$, and $\Lambda_3 = \{2\}$. See Examples 1 and 3.

In Section 3 we show that all K_p -removable sequences for p = 1 and p = 2 are regular. As the next example shows, an irregular K_p -removable sequence exists for every $p \ge 3$.

Example 3 For a fixed $p \geq 3$, $\Lambda_1 = \{2\}$, $\Lambda_2 = \{1,3\}$, $\Lambda_3 = \{2\}$, and $\Lambda_i = \emptyset$ for $4 \leq i \leq p$. Then $\Lambda = (\Lambda_1, \ldots, \Lambda_p)$ is uniform and so $\{H_{pn}^{\Lambda}\}$ is K_p -removable. Moreover, $\{H_{pn}^{\Lambda}\}$ is irregular because H_{p2}^{Λ} is irregular: $\deg((1,2)) = p$ but $\deg((2,2)) = p+1$. See Fig. 1 where p = 3, $\deg((1,2)) = 3$ but $\deg((2,2)) = 4$.

We are interested in the K_p 's in H_{pn}^{Λ} . The next theorem gives necessary and sufficient conditions for their existence.

Let $V = H_{pn}^{\Lambda}[(1, v_1), \ldots, (p, v_p)]$ be an arbitrary induced subgraph in H_{pn}^{Λ} with exactly one vertex from each independent set I_i . Let V have vertices at m different levels: ℓ_1, \ldots, ℓ_m where $\ell_1 < \cdots < \ell_m$. For $1 \le k \le m$, let $V_k = \{i \mid v_i = \ell_k\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_k . Then the sets V_1, \ldots, V_m partition $[p] = \{1, \ldots, p\}$, and:

Theorem 2.4 With the above notation $V = K_p$ if and only if for every k, with $1 \le k \le m$, we have

$$V_1 \cup \cdots \cup V_k = \bigcap_{i \in V_{k+1} \cup \cdots \cup V_m} \Lambda_i,$$

where we define $\cap_{i \in \emptyset} \Lambda_i = [p]$.

Proof. Suppose that $V = K_p$, and suppose $i' \in V_1 \cup \cdots \cup V_k$ for some k with $1 \leq k \leq m$. Now vertex $(i', v_{i'})$ is at a lower level than all vertices (i, v_i) where $i \in V_{k+1} \cup \cdots \cup V_m$, so $i' \in \Lambda_i$ for all $i \in V_{k+1} \cup \cdots \cup V_m$. Thus $i' \in \bigcap_{i \in V_{k+1} \cup \cdots \cup V_m} \Lambda_i$, and $V_1 \cup \cdots \cup V_k \subseteq \bigcap_{i \in V_{k+1} \cup \cdots \cup V_m} \Lambda_i$. But, because, $i \notin \Lambda_i$, we have $\bigcap_{i \in V_{k+1} \cup \cdots \cup V_m} \Lambda_i \subseteq [p] \setminus \{V_{k+1} \cup \cdots \cup V_m\} = V_1 \cup \cdots \cup V_k$. Hence $V_1 \cup \cdots \cup V_k = \bigcap_{i \in V_{j+1} \cup \cdots \cup V_m} \Lambda_i$, as required. The converse is straightforward.

Example 4 See Example 1 and Fig. 1. Here p = 3, $\Lambda_1 = \{2\}$, $\Lambda_2 = \{1, 3\}$, and $\Lambda_3 = \{2\}$. Consider the induced graph $H_{33}^{\Lambda}[(1, 1), (2, 3), (3, 1)] = K_3$. This K_3 has vertices at m = 2 levels, *i.e.*, at level $\ell_1 = 1$ and at level $\ell_2 = 3$, so $V_1 = \{1, 3\}$ and $V_2 = \{2\}$. For k = 1 we have

$$V_1 = \bigcap_{i \in V_2} \Lambda_i = \Lambda_2,$$

and for k = 2

$$V_1 \cup V_2 = \bigcap_{i \in \emptyset} \Lambda_i = [3] = \{1, 2, 3\}.$$

Such a K_p with vertices at more than one level is a *cross-level* K_p .

3 Regular sequences, uniqueness of (K_p, λ) removable sequences for $\lambda = 0, p - 1, \text{ or } p$

Here we consider regular K_p -removable sequences $\{G_{pn}\}$, *i.e.*, those which also satisfy:

A3 G_{pn} is regular for every $n \ge 1$.

For such a sequence we use the notation $\{R_{pn}\}$, for every $n \geq 1$ R_{pn} is regular of degree deg (R_{pn}) . We know that $R_{p1} = K_p$, and the second graph in this sequence is R_{p2} , so let us define λ by

$$\lambda = \deg(R_{p2}) - \deg(R_{p1}) = \deg(R_{p2}) - (p-1).$$
(3)

Lemma 3.1 For a fixed $p \ge 1$ let $\{R_{pn}\}$ be K_p -removable with λ defined as above. Then

(i) $0 \le \lambda \le p$, (ii) $deg(R_{pn}) = \lambda(n-1) + p - 1$ for every $n \ge 1$, (iii) $\lambda = deg(R_{pn}) - deg(R_{p(n-1)})$ for every $n \ge 2$.

Proof. (i) By A1 and A2 the graph R_{p2} contains a K_p with $R_{p2} - K_p = R_{p1} = K_p$. By A3 R_{p2} is regular and $\deg(R_{p2}) \ge \deg(K_p) = p - 1$, and so $\lambda = \deg(R_{p2}) - (p - 1) \ge 0$. Also, $\deg(R_{p2}) \le \deg(R_{p1}) + p$ because the degree of a vertex in R_{p1} can be increased by at most p when constructing R_{p2} (if it is made adjacent to each of the p vertices in the new K_p), hence $\lambda \le p$. Thus $0 \le \lambda \le p$, *i.e.*, $\lambda = 0, \ldots, p$.

(ii) Here we use induction on n. For n = 1 (ii) is true by A1, and for n = 2 it is true by (3). So assume that $n \ge 3$ and that (ii) is true for n - 1, *i.e.*, for the graph $R_{p(n-1)}$. Now R_{pn} is obtained from $R_{p(n-1)}$ by adding on a new K_p and some cross-level edges between them. But R_{pn} is regular, so we can count these cross-level edges in two different ways:

$$(n-1)p\left[\deg(R_{pn}) - \deg(R_{p(n-1)})\right] = p\left[\deg(R_{pn}) - (p-1)\right].$$

This gives

$$\deg(R_{pn}) = \frac{(n-1)\deg(R_{p(n-1)}) - (p-1)}{n-2} \\ = \lambda(n-1) + p - 1,$$

using the induction hypothesis. Thus the induction goes through and (ii) is true for every $n \ge 1$.

(iii) This follows directly from (ii).

For a fixed $p \ge 1$ and a fixed λ where $\lambda = 0, \ldots, p$, let $\{R_{pn}\}$ be a K_p removable sequence in which $\deg(R_{pn}) = \lambda(n-1) + p - 1$ for every $n \ge 1$. We
call the sequence $\{R_{pn}\}$ regular (K_p, λ) -removable, and denote it by $\{R_{pn}^{\lambda}\}$.
Lemma 3.1(iii) then says that

$$\lambda = \deg(R_{pn}^{\lambda}) - \deg(R_{p(n-1)}^{\lambda}) \quad \text{for every } n \ge 2, \tag{4}$$

i.e., as we move from $R_{p(n-1)}^{\lambda}$ to R_{pn}^{λ} in the sequence $\{R_{pn}^{\lambda}\}$, the degree of regularity always increases by λ .

Now we look at some small values of p.

Example 5 p = 1, so deg $(R_{1n}^{\lambda}) = \lambda(n-1)$ where $\lambda = 0$ or 1.

- $\lambda = 0$ Here deg $(R_{1n}^0) = 0$. So R_{1n}^0 is the graph with *n* isolated vertices, nK_1 . Clearly $R_{11}^0 = K_1$ and, for $n \ge 2$, the removal of any K_1 from nK_1 gives the graph $(n-1)K_1$, thus $\{R_{1n}^0\} = \{nK_1\}$ is K_1 -removable. It is also clear that $\{nK_1\}$ is the unique regular $(K_1, 0)$ -removable sequence.
- $\lambda = 1$ Here deg $(R_{1n}^1) = n 1$. $\{R_{1n}^1\} = \{K_n\}$ is the unique regular $(K_1, 1)$ -removable sequence.

Example 6 p = 2, so deg $(R_{2n}^{\lambda}) = \lambda(n-1) + 1$ where $\lambda = 0, 1$, or 2.

- $\lambda = 0$ Here deg $(R_{2n}^0) = 1$. $\{R_{2n}^0\} = \{nK_2\}$ is the unique regular $(K_2, 0)$ -removable sequence.
- $\lambda = 1$ Here deg $(R_{2n}^1) = n$. Now $K_{n,n}$, the complete bipartite graph on 2n vertices, has degree n. Also $K_{1,1} = K_2$ and, for every $n \ge 2$, the removal of any K_2 from $K_{n,n}$ results in $K_{n-1,n-1}$, *i.e.* $K_{n,n} K_2 = K_{n-1,n-1}$. So one example of a regular $(K_2, 1)$ -removable sequence is $\{R_{2n}^1\} = \{K_{n,n}\}$, we show in Corollary 3.2 that this is the unique example.

Figure 2: The first 3 graphs in each of the K_2 -removable sequences $\{nK_2\}$, $\{K_{n,n}\}$, and $\{K_{2n}\}$. These are the unique regular $(K_2, 0)$ -, $(K_2, 1)$ -, and $(K_2, 2)$ -removable sequences, respectively. See Example 6.

 $\lambda = 2$ Here deg $(R_{2n}^2) = 2n - 1$. $\{R_{2n}^2\} = \{K_{2n}\}$ is the unique regular $(K_2, 2)$ -removable sequence.

We see that the 1-st graph in each of the three sequences $\{R_{2n}^0\} = \{nK_2\}, \{R_{2n}^1\} = \{K_{n,n}\}, \text{ and } \{R_{2n}^2\} = \{K_{2n}\} \text{ is } K_2, i.e.$ we must think of K_2 as being the three graphs $1K_2 = K_{1,1} = K_{2\cdot1}$. Then the 2-nd graph in each sequence is obtained by changing the 1's in the notation for these graphs into 2's, etc. This is illustrated in Fig. 2, where the first 3 graphs in each of the three sequences $\{nK_2\}, \{K_{n,n}\}, \text{ and } \{K_{2n}\}$ are shown. Note also that the *n*-th graphs in each of the three sequences are well-known graphs on 2n vertices: $nK_2, K_{n,n}$, and K_{2n} , respectively.

Recall that a K_p -removable sequence $\{G_{pn}\}$ is regular if all of its graphs are regular, and is irregular if at least one of its graphs is irregular. The next result shows that all K_p -removable sequences for p = 1 or p = 2 are regular (and are those given in Examples 5 and 6). From Example 3 we see that irregular K_p -removable sequences exist for every $p \ge 3$.

Corollary 3.2 For p = 1 or p = 2 all K_p -removable sequences are regular, (and are given in Examples 5 and 6).

Proof. (p = 2) Let $\{G_{2n}\}$ be a K_2 -removable sequence, then $G_{21} = K_2$. A candidate for G_{22} must be a graph on 4 vertices with at least two disjoint K_2 's, and the removal of any K_2 must leave a K_2 . The only possibilities are: (a) $2K_2$, (b) $K_{2,2}$, or (c) $K_{2,2} = K_4$, all of which are regular.

(a) We prove by induction on n that if $\{G_{2n}\}$ is an arbitrary K_2 -removable sequence which begins $\{K_2, 2K_2, \ldots\}$ then it is the regular sequence $\{nK_2\}$.

Let $n \geq 3$ and suppose that $G_{2(n-1)} = (n-1)K_2$. Now consider G_{2n} which is the union of $(n-1)K_2$ and a 'new' K_2 (and some edges between them); let edge (u, v) be this new K_2 . If (u, v) is an isolated K_2 then we are finished, so, assume that u is adjacent to vertex u_1 in $G_{2(n-1)}$. Now $G_{2(n-1)} = (n-1)K_2$ and $n \geq 3$ so $G_{2(n-1)}$ contains some edge (u_2, u_3) with $u_2 \neq u_1$ and $u_3 \neq u_1$. But $G_{2n} - (u_2, u_3)$ contains the path on the three vertices u_1, u , and v (or triangle if (v, u_1) is also an edge); a contradiction because $G_{2n} - (u_2, u_3) = (n-1)K_2$. Thus (u, v) must be an isolated K_2 and the induction goes through, *i.e.*, $G_{2n} = nK_2$ and so $\{G_{2n}\} = \{nK_2\}$.

(b) Similarly we use induction to show that any K_2 -removable sequence $\{G_{2n}\}$ which begins $\{K_2 = K_{1,1}, K_{2,2}, \ldots\}$ is the regular sequence $\{K_{n,n}\}$.

Let $n \geq 3$ and suppose that $G_{2(n-1)} = K_{n-1,n-1}$; let the 2 independent sets of $G_{2(n-1)}$ be $I_1 = \{u_1, \ldots, u_{n-1}\}$ and $I_2 = \{v_1, \ldots, v_{n-1}\}$, and let the new K_2 of G_{2n} be the edge (u, v). Now (u, v) cannot be isolated so let vertex u be adjacent to some vertices in $G_{2(n-1)}$. Suppose that u is adjacent to vertex $u_{j_1} \in I_1$ and to vertex $v_{j_2} \in I_2$, then $G_{2n}[u, u_{j_1}, v_{j_2}] = C_3$, an odd cycle. Now remove any $K_2 = (u_{j_3}, v_{j_4})$ where $j_3 \neq j_1$ and $j_4 \neq j_2$, then $G_{2n} - (u_{j_3}, v_{j_4}) = K_{n-1,n-1}$ still contains this odd cycle, a contradiction. Thus u is adjacent to vertices from exactly one of I_1 or I_2 , say I_2 .

Now suppose that u is not adjacent to every vertex in I_2 , suppose that it is not adjacent to v_{j_5} , say. Consider the edge (u_1, v_{j_6}) where $j_6 \neq j_5$. In the graph $G_{2n} - (u_1, v_{j_6}) = K_{n-1,n-1}$ the set of vertices $\{u_2, \ldots, u_{n-1}, u\} =$ $\{I_1 \cup \{u\}\} \setminus \{u_1\}$ is one of the independent sets and $\{I_2 \cup \{v\}\} \setminus \{v_{j_6}\}$ is the other. Thus (u, v_{j_5}) is an edge, a contradiction. So u is adjacent to all vertices in I_2 . Similarly v is adjacent to all vertices in I_1 . Thus $G_{2n} = K_{n,n}$ and $\{G_{2n}\} = \{K_{n,n}\}$.

The proofs for (c) $K_{2\cdot 2} = K_4$ and the case p = 1 are similar.

Before the next main result, Theorem 3.4, we need:

Lemma 3.3 For a fixed $p \ge 1$ let $\{R_{pn}^{\lambda}\}$ be regular (K_p, λ) -removable. Then, for every $n \ge 1$, (i) R_{pn}^{λ} contains $\ge n$ disjoint K_p 's, (ii) R_{pn}^{λ} contains no K_{p+1} 's for $0 \le \lambda \le p-1$.

Proof. (i) See the first paragraph of Section 2.

(ii) Let $0 \leq \lambda \leq p-1$. Suppose that for some p+1 vertices $\{v_1, \ldots, v_{p+1}\}$ of R_{pn}^{λ} we have $R_{pn}^{\lambda}[v_1, \ldots, v_{p+1}] = K_{p+1}$. Consider $R_{pn}^{\lambda} - K_p$ where $K_p = R_{pn}^{\lambda}[v_1, \ldots, v_p]$. Clearly $v_{p+1} \in R_{pn}^{\lambda} - K_p$ and deg (v_{p+1}) has decreased by p; but from (4) it should have decreased by λ , a contradiction because $0 \leq \lambda \leq p-1$.

Recall that $K_{p \times n} = K_{\underbrace{n, \dots, n}_{p}}$ denotes the complete *p*-partite graph on *pn*

vertices.

Theorem 3.4 For a fixed $p \ge 2$ there is a unique regular (K_p, λ) -removable sequence for $\lambda = 0, p - 1, or p$:

(i) $\{nK_p\}$ is the unique regular $(K_p, 0)$ -removable sequence,

(ii) $\{K_{p\times n}\}$ is the unique regular $(K_p, p-1)$ -removable sequence,

(iii) $\{K_{pn}\}$ is the unique regular (K_p, p) -removable sequence.

Proof. The proofs of (i) and (iii) are straightforward.

(ii) $(\lambda = p - 1)$ We use induction on n. Let $\{R_{pn}^{p-1}\}$ be an arbitrary regular $(K_p, p-1)$ -removable sequence; for n = 1 we know that $R_{p1}^{p-1} = K_p = K_{p\times 1}$. Let $n \geq 2$, then R_{pn}^{p-1} contains a $K_p = R_{pn}^{p-1}[v_1, \ldots, v_p]$, say. By the induction hypothesis we have $R_{pn}^{p-1} - K_p = R_{p(n-1)}^{p-1} = K_{p\times(n-1)}$. Let I_1, \ldots, I_p be the p independent sets of $R_{p(n-1)}^{p-1}$, each has n-1 vertices. Now suppose that in R_{pn}^{p-1} a vertex from $\{v_1, \ldots, v_p\}$, say v_i , is adjacent to a vertex from each of these p independent sets; call these vertices $\{u_1, \ldots, u_p\}$, where $u_k \in I_k$ for $k = 1, \ldots, p$. Then $R_{pn}^{p-1}[v_i, u_1, \ldots, u_p] = K_{p+1}$, a contradiction to Lemma 3.3(ii). Thus v_i is adjacent to vertices in at most p-1 of the independent sets I_1, \ldots, I_p .

Now v_i is adjacent to (p-1)(n-1) vertices from $I_1 \cup \cdots \cup I_p$, so it must be adjacent to all n-1 vertices in some p-1 of I_1, \ldots, I_p . Suppose that in R_{pn}^{p-1} two distinct vertices from $\{v_1, \ldots, v_p\}$, say v_{i_1} and v_{i_2} , are adjacent to all of the vertices in the same p-1 independent sets, say I_1, \ldots, I_{p-1} . Let $u_k \in I_k$ for $k = 1, \ldots, p-1$. Then $R_{pn}^{p-1}[v_{i_1}, v_{i_2}, u_1, \ldots, u_{p-1}] = K_{p+1}$, again a contradiction. Thus, any two distinct vertices from $\{v_1, \ldots, v_p\}$ are adjacent to all vertices in distinct (p-1)-sets of $\{I_1, \ldots, I_p\}$.

For i = 1, ..., p let v_i be non-adjacent to all vertices in the independent set $I_{i'}$ for some i' = 1, ..., p. By above the mapping $v_i \leftrightarrow I_{i'}$ is a bijection. Then $\{v_i\} \cup I_{i'}$ is an independent set in R_{pn}^{p-1} , and v_i is adjacent to all the vertices in all other independent sets. This is true for every i = 1, ..., p. It is now clear that $R_{pn}^{p-1} = K_{p \times n}$, and so the induction goes through and $\{R_{pn}^{p-1}\} = \{K_{p \times n}\}.$

Note that this theorem connects three well-known graphs on pn vertices: nK_p , $K_{p\times n}$, and K_{pn} . The case p = 2 was discussed in Example 6 and illustrated in Fig. 2. Note also that the three regular sequences (i) $\{nK_p\}$, (ii) $\{K_{p\times n}\}$, and (iii) $\{K_{pn}\}$ are the sequences $\{H_{pn}^{\Lambda}\}$ where (i) $\Lambda = (\underbrace{\emptyset, \ldots, \emptyset}_{p})$,

(ii) $\Lambda = ([p] \setminus \{1\}, \dots, [p] \setminus \{p\})$, and (iii) $\Lambda = ([p], \dots, [p])$, respectively. (In (iii) Λ is not uniform.)

So, for p = 1 or p = 2 and all values of λ , and for every $p \ge 3$ and $\lambda = 0$, p - 1, or p, there is a unique regular (K_p, λ) -removable sequence.

4 Levelled Cayley Graphs, more regular (K_p, λ) removable sequences

Generally our construction of $\{H_{pn}^{\Lambda}\}$ from Section 2 gives irregular sequences. For an arbitrary vertex $(i, j) \in H_{pn}^{\Lambda}$ we have $\deg((i, j)) = \lambda_i(n-1) + p - 1$, see (2). So H_{pn}^{Λ} is regular if and only if λ_i is constant for all $i \in [p]$. We set $\lambda_i = \lambda$ then H_{pn}^{Λ} is regular of degree $\lambda(n-1) + p - 1$, (see Lemma 3.1(ii)), and $\{H_{pn}^{\Lambda}\}$ is a regular (K_p, λ) -removable sequence.

We now construct a regular (K_p, λ) -removable sequence using a finite group. This combines the construction of $\{H_{pn}^{\Lambda}\}$ from Section 2 with the construction of a Cayley graph; see, for example, p. 122 of Biggs [2].

Let $p \geq 3$ and let $\mathcal{G}_p = \{g_1, \ldots, g_p\}$ be a finite group with p elements, where $g_1 = e$ is the identity element. Let $\Lambda \subseteq \mathcal{G}_p$ be a subset of \mathcal{G}_p with $e \notin \Lambda$ and $|\Lambda| = \lambda$.

Now consider the following graph, a *levelled Cayley* graph, $\Gamma_n = \Gamma_n(\mathcal{G}_p, \Lambda)$: It has $n \geq 1$ levels of vertices, each level having p vertices. For any fixed j with $1 \leq j \leq n$ the vertices at level j are $\{(g_1, j), \ldots, (g_p, j)\} = \{(g, j) | g \in \mathcal{G}_p\}$, and the edges are of two types:

(i) *fixed-level* edges, say at level j

((g, j), (h, j)) is an edge for all $g, h \in \mathcal{G}_p$ where $g \neq h$;

 $(i.e., the 'fixed-level' graph is K_p)$, and

(ii) cross-level edges, for j > j'

((g, j), (g', j')) is an edge if and only if $g'g^{-1} \in \Lambda$.

Using Theorem 2.3 it is straightforward to prove:

Theorem 4.1 For any finite group \mathcal{G}_p with p elements and any $\Lambda \subseteq \mathcal{G}_p$ with $e \notin \Lambda$ and $|\Lambda| = \lambda$, the sequence $\{\Gamma_n(\mathcal{G}_p, \Lambda)\}$ is regular (K_p, λ) -removable.

Now, for any \mathcal{G}_p with $p \geq 3$ and for each $\lambda = 0, \ldots, p-1$, there exists a Λ satisfying the requirements in Theorem 4.1, and Theorem 3.4(iii) takes care of $\lambda = p$, so we have the following existence result for regular (K_p, λ) -removable sequences.

Theorem 4.2 For any $p \geq 3$ and any $\lambda = 0, \ldots, p$, there exists a regular (K_p, λ) -removable sequence, namely the sequence $\{\Gamma_n(\mathcal{G}_p, \Lambda)\}$, where \mathcal{G}_p is any finite group of order p and Λ is any subset of \mathcal{G}_p with $e \notin \Lambda$ and $|\Lambda| = \lambda$.

Let $\overline{\Lambda}$ denote the complement of Λ in \mathcal{G}_p and let $\langle \overline{\Lambda} \rangle$ be the subgroup generated by $\overline{\Lambda}$, also let $\langle \overline{\Lambda} \rangle g$ denote a typical coset of this subgroup.

Let $V = \Gamma_n[(g_1, v_1), \ldots, (g_p, v_p)]$ be an arbitrary induced subgraph in $\Gamma_n(\mathcal{G}_p, \Lambda)$ with exactly one vertex from each independent set $I_i = \{(g_i, j) \mid 1 \leq j \leq n\}$, where $i = 1, \ldots, p$. We are interested in the K_p 's in $\Gamma_n(\mathcal{G}_p, \Lambda)$. The next theorem gives a necessary and sufficient condition for this V to be a K_p , this condition is cleaner than the corresponding condition of Theorem 2.4 for the graph H_{pn}^{Λ} ; it also enables us to count the number of K_p 's in $\Gamma_n(\mathcal{G}_p, \Lambda)$.

As in Section 2 let V have vertices at m different levels: $\ell_1 < \cdots < \ell_m$. For $1 \leq k \leq m$, let $V_k = \{g_i | v_i = \ell_k\} \neq \emptyset$ be the set of first coordinates of all vertices of V at level ℓ_k . Then the sets V_1, \ldots, V_m partition \mathcal{G}_p , and we have:

Theorem 4.3 With the above notation $V = K_p$ if and only if for every k, with $1 \le k \le m$, V_k is a union of cosets of $\langle \overline{\Lambda} \rangle$.

Proof. Suppose that $V = \Gamma_n[(g_1, v_1), \ldots, (g_p, v_p)] = K_p$. Now $\ell_m = \max\{v_1, \ldots, v_p\}$ is the highest level of $\Gamma_n(\mathcal{G}_p, \Lambda)$ which contains vertices from V, and $V_m = \{g_i | v_i = \ell_m\}$ is the set of first coordinates of all vertices of V at this highest level.

Let s be an arbitrary element in $V_m \subseteq \mathcal{G}_p$. Now consider the graph $V' = \Gamma_n[(g_1s^{-1}, v_1), \ldots, (g_ps^{-1}, v_p)]$, let us reorder the vertices in V' so that $V' = \Gamma_n[(g_1, v'_1), \ldots, (g_p, v'_p)]$; we use this version of V'. The graph V' is also a K_p and the highest level of its vertices is ℓ_m also. Then $V'_m = \{g_i | v'_i = \ell_m\} = V_m s^{-1}$ is the set of first coordinates of these vertices. We show that V'_m is a union of cosets of $\langle \overline{\Lambda} \rangle$.

First we show that $\overline{\Lambda} \subseteq V'_m$. Now $g_1 = e \in \overline{\Lambda}$ and $s \in V_m$, so certainly $e = ss^{-1} \in V'_m$. So vertex $(g_1, v'_1) = (e, \ell_m) \in V'$ lies at level ℓ_m . Let $g_i \neq e$ and let $g_i \in \overline{\Lambda}$, but suppose that $g_i \notin V'_m$. This means that vertex $(g_i, v'_i) \in V'$ does not lie at level ℓ_m so it must lie at a lower level, *i.e.*, $\ell_m > v'_i$. Now, because $((e, \ell_m), (g_i, v'_i))$ is an edge in V' then $((s, \ell_m), (g_is, v'_i))$ is an edge in V and so in $\Gamma_n(\mathcal{G}_p, \Lambda)$; so $g_i ss^{-1} = g_i \in \Lambda$, a contradiction because $g_i \in \overline{\Lambda}$. Thus for every $g_i \in \overline{\Lambda}$, then $g_i \in V'_m$, *i.e.*, $\overline{\Lambda} \subseteq V'_m$.

Next we show that $\langle \overline{\Lambda} \rangle \subseteq V'_m$. For any $r \geq 1$ let $\prod(r)$ denote a product of r arbitrary elements from $\overline{\Lambda}$. By induction we show, for any fixed $r \geq 1$, that every $\prod(r) \in V'_m$. Now $\overline{\Lambda} \subseteq V'_m$, *i.e.*, every $\prod(1) \in V'_m$. Assume for some r with $r \geq 1$ that every $\prod(r) \in V'_m$. Now suppose that some $\prod(r+1)$, say $h(r+1) = a_1 \cdots a_{r+1} \notin V'_m$, but each $a_1, \ldots, a_{r+1} \in \overline{\Lambda}$. Let $h(r) = a_2 \cdots a_{r+1}$, then, by the induction hypothesis, $h(r) \in V'_m$ so vertex $(h(r), \ell_m) \in V'$ is at the highest level ℓ_m and the vertex in V' with first coordinate h(r+1) is at a lower level. There is an edge between these two vertices so $h(r+1)h(r)^{-1} = a_1 \in \Lambda$, a contradiction because $a_1 \in \overline{\Lambda}$. Thus $h(r+1) \in V'_m$ and the induction goes through, and so $\langle \overline{\Lambda} \rangle \subseteq V'_m$.

Finally we show that V'_m is a union of cosets of $\langle \overline{\Lambda} \rangle$. Let $g \in V'_m$, but suppose that $g \notin \langle \overline{\Lambda} \rangle$. Then, by similar reasoning to before, we see that every $\prod(1)g \in V'_m$, and by induction, that every $\prod(r)g \in V'_m$ for every $r \ge 1$; thus the coset $\langle \overline{\Lambda} \rangle g \subseteq V'_m$. Thus V'_m is a union of cosets of $\langle \overline{\Lambda} \rangle$, and so $V_m = V'_m s$ is also.

Now we return to the graph V and show that V_k is a union of cosets of $\langle \overline{\Lambda} \rangle$ for every $1 \leq k \leq m$. From above this is true for V_m , so assume for all k with $k \leq m$ that V_k is a union of cosets of $\langle \overline{\Lambda} \rangle$, we show that V_{k-1} is also.

Let $g \in V_{k-1}$, we show that the coset $\langle \overline{\Lambda} \rangle g \subseteq V_{k-1}$. As before first we show that every $\prod(1)g \in V_{k-1}$, for, suppose not, then:

Either $\prod(1)g \in V_{k'}$ where k' > k - 1, so, by the induction hypothesis, $V_{k'}$ is a union of cosets of $\langle \overline{\Lambda} \rangle$. Thus $\langle \overline{\Lambda} \rangle \prod(1)g = \langle \overline{\Lambda} \rangle g \subseteq V_{k'}$, so $g \in V_{k'}$, a contradiction because $g \in V_{k-1}$;

Or $\Pi(1)g \in V_{k'}$ where k' < k - 1, *i.e.*, level $\ell_{k'}$ is lower than level ℓ_{k-1} . So vertex $(\Pi(1)g, \ell_{k'}) \in V$ is at a lower level than vertex $(g, \ell_{k-1}) \in V$, so $\Pi(1)gg^{-1} = \Pi(1) \in \Lambda$, again a contradiction.

So $\prod(1)g \in V_{k-1}$, and we proceed by induction as before to show that for any $r \geq 1$ then every $\prod(r)g \in V_{k-1}$ and so $\langle \overline{\Lambda} \rangle g \subseteq V_{k-1}$, and the induction on k goes through; thus V_{k-1} is a union of cosets of $\langle \overline{\Lambda} \rangle$.

So, in conclusion, for any k with $1 \leq k \leq m$, V_k is a union of cosets of $\langle \overline{\Lambda} \rangle$, as required.

For the converse let each V_k be a union of cosets of $\langle \overline{\Lambda} \rangle$. Let (g, ℓ_k) and $(g', \ell_{k'})$ be two arbitrary vertices in V, we show that $((g, \ell_k), (g', \ell_{k'}))$ is an edge in $\Gamma_n(\mathcal{G}_p, \Lambda)$. If $\ell_k = \ell_{k'}$ then, certainly, $((g, \ell_k), (g', \ell_{k'}))$ is an edge by construction of $\Gamma_n(\mathcal{G}_p, \Lambda)$. Otherwise, without loss of generality, let $\ell_k > \ell_{k'}$. Then g and g' are in different cosets of $\langle \overline{\Lambda} \rangle$, so $g'g^{-1} \notin \langle \overline{\Lambda} \rangle$, so $g'g^{-1} \in \langle \overline{\Lambda} \rangle \subseteq \Lambda$, and again $((g, \ell_k), (g', \ell_{k'}))$ is an edge. Thus $V = K_p$ as required.

Now we count the number of K_p 's in $\Gamma_n(\mathcal{G}_p, \Lambda)$; let $|\mathcal{G}_p : \langle \overline{\Lambda} \rangle|$ be the index of $\langle \overline{\Lambda} \rangle$ in \mathcal{G}_p , *i.e.*, the number of cosets of $\langle \overline{\Lambda} \rangle$ in \mathcal{G}_p .

Corollary 4.4 The number of K_p 's in $\Gamma_n(\mathcal{G}_p, \Lambda)$ is given by

$$n^{|\mathcal{G}_p:\langle\overline{\Lambda}\rangle|}$$

Proof. Consider any coset $\langle \overline{\Lambda} \rangle g$, let us 'place' the elements of this coset at any fixed level j, where $1 \leq j \leq n$, in the graph $\Gamma_n(\mathcal{G}_p, \Lambda)$. Each such placement of every coset of $\langle \overline{\Lambda} \rangle$ gives a K_p and every K_p corresponds to such a placement of every coset of $\langle \overline{\Lambda} \rangle$. Hence, the number of K_p 's in $\Gamma_n(\mathcal{G}_p, \Lambda)$ equals the number of such placements of all the cosets of $\langle \overline{\Lambda} \rangle$. There are $|\mathcal{G}_p : \langle \overline{\Lambda} \rangle|$ cosets, and n levels to place each, hence $n^{|\mathcal{G}_p:\langle \overline{\Lambda} \rangle|}$ such placements and so $n^{|\mathcal{G}_p:\langle \overline{\Lambda} \rangle|}$ corresponding K_p 's. **Example 7** (a) Let Sym(3) = {e, (12), (13), (23), (123), (132)} be the symmetric group on {1, 2, 3}, and let $\Lambda = \{(12), (13), (23), (123)\}$. Then $\overline{\Lambda} = \{e, (132)\}$ and $\langle \overline{\Lambda} \rangle = \{e, (123), (132)\}$; the other coset of $\langle \overline{\Lambda} \rangle$ is $\langle \overline{\Lambda} \rangle (12) = \{(12), (13), (23)\}$. Consider the graph $\Gamma_2(\text{Sym}(3), \Lambda)$ shown in Fig. 3(a), we have $|\text{Sym}(3) : \langle \overline{\Lambda} \rangle| = 2$ so this graph has $2^2 = 4 K_6$'s. They are the 2 fixed-level K_6 's, $\Gamma_2[(e, 1), ((123), 1), ((132), 1), ((12), 2), ((13), 2), ((23), 2)]$, and $\Gamma_2[(e, 2), ((123), 2), ((132), 2), ((12), 1), ((13), 1), ((23), 1)]$. This is the 2-nd graph in the regular (K_6 , 4)-removable sequence { $\Gamma_n(\text{Sym}(3), \Lambda)$ }. (b) Let $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ be the additive group (mod 6), and let $\Lambda = \{1, 2, 4, 5\}$. Then $\Lambda = \langle \overline{\Lambda} \rangle = \{0, 3\}$ and the other cosets of $\langle \overline{\Lambda} \rangle$ are {1, 4} and {2, 5}. Thus $|\mathbb{Z}_6 : \langle \overline{\Lambda} \rangle| = 3$ and $\Gamma_2(\mathbb{Z}_6, \Lambda)$ has $2^3 = 8 K_6$'s, see Fig. 3(b). One such K_6 is $\Gamma_2[(0, 2), (3, 2), (1, 1), (4, 1), (2, 1), (5, 1)]$, and another is $\Gamma_2[(0, 2), (3, 2), (1, 1), (4, 1), (2, 2), (5, 2)]$, in which the vertices corresponding to coset {2, 5} have been moved up one level. This is the 2-nd graph in the regular (K_6 , 4)-removable sequence { $\Gamma_n(\mathbb{Z}_6, \Lambda)$ }.

Note that the two graphs in Example 7 are non-isomorphic because they have a different number of K_6 's, they are the 2-nd graphs in two different regular $(K_6, 4)$ -removable sequences. So, in general, regular $(K_p, p-2)$ -removable sequences are not unique.

Figure 3: The non-isomorphic graphs (a) $\Gamma_2(\text{Sym}(3), \Lambda)$ where $\Lambda = \{(12), (13), (23), (123)\}$, and (b) $\Gamma_2(\mathbb{Z}_6, \Lambda)$ where $\Lambda = \{1, 2, 4, 5\}$. See Example 7.

Example 8 Consider the graphs $\Gamma_3(\mathbb{Z}_4, \{1\})$ and $\Gamma_3(\mathbb{Z}_4, \{2\})$, shown in Figs. 4(a) and (b) respectively. Both graphs have 3 K_4 's. In $\Gamma_3(\mathbb{Z}_4, \{1\})$ the union of all edges which lie outside its 3 K_4 's is a C_{12} , however in $\Gamma_3(\mathbb{Z}_4, \{2\})$ this union is $C_6 \cup C_6$. Thus $\Gamma_3(\mathbb{Z}_4, \{1\}) \neq \Gamma_3(\mathbb{Z}_4, \{2\})$ and so $\{\Gamma_n(\mathbb{Z}_4, \{1\})\} \neq \{\Gamma_n(\mathbb{Z}_4, \{2\})\}$, and we have two different regular $(K_4, 1)$ -removable sequences.

Example 8 illustrates that, in general, regular $(K_p, 1)$ -removable sequences are not unique.

Figure 4: The non-isomorphic graphs (a) $\Gamma_3(\mathbb{Z}_4, \{1\})$ and (b) $\Gamma_3(\mathbb{Z}_4, \{2\})$. See Example 8.

Theorem 3.4 states that, for a fixed $p \geq 2$, the only regular $(K_p, 0)$ -, $(K_p, p-1)$ -, and (K_p, p) -removable sequences are unique. Above we give two different examples of a regular $(K_p, 1)$ -removable sequence, and two different examples of a regular $(K_p, p-2)$ -removable sequence; thus, in general, regular (K_p, λ) -removable sequences are not unique unless $\lambda = 0, p-1$, or p.

Some final comments:

If, for some \mathcal{G}_p and Λ we have $|\mathcal{G}_p : \langle \overline{\Lambda} \rangle| = 1$, then the graph $\Gamma_n(\mathcal{G}_p, \Lambda)$ has exactly $n K_p$'s which is the least number allowed by Lemma 3.3(i). Such a graph has no cross-level K_p 's; *e.g.*, $\Gamma_3(\mathbb{Z}_4, \{1\})$ shown in Fig. 4(a).

It is also worth mentioning that for any group \mathcal{G}_p : (see Theorem 3.4) (i) $\{\Gamma_n(\mathcal{G}_p, \emptyset)\} = \{nK_p\}$ is the unique regular $(K_p, 0)$ -removable sequence, (ii) $\{\Gamma_n(\mathcal{G}_p, \mathcal{G}_p \setminus \{e\})\} = \{K_{p \times n}\}$ is the unique regular $(K_p, p-1)$ -removable sequence,

(iii) $\{\Gamma_n(\mathcal{G}_p, \mathcal{G}_p)\} = \{K_{pn}\}\$ is the unique regular (K_p, p) -removable sequence. (Note that in (iii) we do not have $e \notin \Lambda$.) Thus the unique regular (K_p, λ) -removable sequences for $\lambda = 0, p - 1$, or p can all be constructed from an arbitrary group \mathcal{G}_p .

For other papers on graph sequences see Barefoot, Entringer, and Jackson [1], and the references therein; another somewhat related paper is Duchet, Tuza, and Vestergaard [3].

We thank the referees for suggestions and comments which improved this paper.

References

- C.A. Barefoot, R.C. Entringer, D.E. Jackson, Graph theoretic modelling of cellular development II, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 65 (1988) 135–146.
- [2] N. Biggs, Algebraic Graph Theory, 2nd Edition, (Cambridge University Press, 1993).
- [3] P. Duchet, Z. Tuza, P.D. Vestergaard, Graphs in which all spanning subgraphs with r fewer edges are isomorphic, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 67 (1988) 45–57.