Clique-Symmetric Uniform Hypergraphs

John P. McSorley
Department of CCTM, London Metropolitan University, 100 Minories, London. EC3N 1JY mcsorley60@hotmail.com

Thomas D. Porter
Department of Mathematics, Southern Illinois University, Carbondale. IL 62901-4408
tporter@math.siu.edu

Abstract

Let H be an r-uniform hypergraph of order p, and $\left\{H_{p 1}, H_{p 2}, \ldots\right\}$ be a countable sequence of r-uniform hypergraphs with $H_{p n}$ having $p n$ vertices. The sequence is H-removable if $H_{p 1} \cong H$ and $H_{p n}-S \cong$ $H_{p(n-1)}$ where S is any vertex subset of $H_{p n}$ that induces a copy of H. This paper deals with the case $H=K_{p}^{r}$. It provides a construction of hypergraphs with a high degree of symmetry; where for any such hypergraph, all the ways of removing the vertices of any fixed number of disjoint K_{p}^{r},s yields the same subgraph. The case $r=2$ was studied by the authors in [3]. This paper gives the generalization to r-uniform hypergraphs for all $r=2,3, \ldots$.

Keywords: clique, eulerian digraph, hypergraph, m-partite, Stirling number

1 The Case $\mathbf{r}=2$

We first briefly list the previous ideas in [3] and [4] concerning the case $r=2$. The same vocabulary and definitions will be needed in our subsequent sections.

In general we follow the notation in [5]. In particular if W is a subset of the vertices of a graph G, then $G[W]$ denotes the subgraph of G induced by W. The digraphs and graphs we consider are loopless and without multiple arcs or edges. We also use $[p]=\{1, \ldots, p\}$.

Call a countable sequence of graphs $\left\{G_{p n}\right\}=\left\{G_{p 1}, G_{p 2}, \ldots\right\} K_{p}$-removable if it satisfies the following two properties:
P1: $G_{p 1} \cong K_{p}$
P2: $G_{p n}-W \cong G_{p(n-1)}$ for every $n \geq 2$ and every vertex subset $W \subset V\left(G_{p n}\right)$ that induces a K_{p} in $G_{p n}$, i.e., $G_{p n} \cong K_{p}$.
We often write $G_{1}=G_{2}$ in place of $G_{1} \cong G_{2}$.
Let \vec{D} be a digraph of order p, with $d^{+}(u)=d^{-}(u)$ for every vertex u in $V(\vec{D})$. Then \vec{D} is an eulerian digraph if \vec{D} 's underlying 'undirected' graph is of one component, otherwise \vec{D} is eulerian on each of its underlying components. Let $N^{+}(i)$ denote the out-neighborhood of vertex i.

Consider a copy of K_{p} with vertices labelled $\{(1,1), \ldots,(p, 1)\}=\{(i, 1) \mid i \in$ $[p]\}$; call these vertices vertices at level 1, and call this graph $D_{1}\left(K_{p}\right)$. Now consider another copy of K_{p} with vertices labelled $\{(i, 2) \mid i \in[p]\}$, these are vertices at level 2 . For any vertex $(i, 2)$ join it to the vertices $\left\{\left(i^{\prime}, 1\right) \mid i^{\prime} \in N^{+}(i)\right\}$ at level 1 , so we see that these edges are derived from the digraph \vec{D}. We call the graph so formed $D_{2}\left(K_{p}\right)$. Now consider a third K_{p} with vertices labelled $\{(i, 3) \mid i \in[p]\}$, at level 3. Join any vertex $(i, 3)$ to vertices $\left\{\left(i^{\prime}, 2\right) \mid i^{\prime} \in N^{+}(i)\right\}$ at level 2 and to vertices $\left\{\left(i^{\prime}, 1\right) \mid i^{\prime} \in N^{+}(i)\right\}$ at level 1 ; this is $D_{3}\left(K_{p}\right)$.

Now, for any $n \geq 1$, consider the graph which has been constructed level by level, up to n levels, according to the previous definition; call this graph $D_{n}\left(K_{p}\right)$ or simply D_{n} when p is clear. We say the digraph \vec{D} generates the sequence $\left\{D_{n}\right\}$. The vertices of $D_{n}, V\left(D_{n}\right)$, are of the form (i, j) for every $i \in[p]$ and every $1 \leq j \leq n$, where j is their level; and the edges are of two types:
(i) fixed-level edges, say at level j

$$
\left(\left(i_{1}, j\right),\left(i_{2}, j\right)\right) \text { is an edge for all } i_{1}, i_{2} \in[p] \text { where } i_{1} \neq i_{2} ; \text { and }
$$

(ii) cross-level edges, for $j>j^{\prime}$

$$
\left((i, j),\left(i^{\prime}, j^{\prime}\right)\right) \text { is an edge if and only if } i^{\prime} \in N^{+}(i)
$$

For any fixed $i \in[p]$, let $I_{i}=\{(i, 1), \ldots,(i, n)\}=\{(i, j) \mid 1 \leq j \leq n\}$ be the set of vertices of D_{n} in 'column i '. Then, because $i \notin N^{+}(i)$, i.e., because \vec{D} doesn't have loops, this is an independent set of vertices. Now let W be a subset of $V\left(D_{n}\right)$ that induces a p-clique; then each of the p independent sets I_{1}, \ldots, I_{p} contain exactly one vertex from W.

Let $W=\left\{\left(1, v_{1}\right), \ldots,\left(p, v_{p}\right)\right\}$ be an arbitrary vertex subset in D_{n} with exactly one vertex from each independent set I_{i}. Let W have vertices at m different levels: $\ell_{1}, \ldots, \ell_{m}$ where $\ell_{1}<\cdots<\ell_{m}$. For $1 \leq k \leq m$, let $V_{k}=\left\{i \mid v_{i}=\ell_{k}\right\} \neq \emptyset$ be the set of first coordinates of all vertices of W at level ℓ_{k}. Then the sets V_{1}, \ldots, V_{m} partition $[p]$.

In D_{n} consider two levels of vertices, V_{i} and V_{j} with $l_{i}<l_{j}$ and let $y \in V_{i}$ and $x \in V_{j}$. Then if the edge $e=x y$ is in the induced subgraph $D_{n}[W]$ of D_{n} we call the arc (x, y) in our original generating digraph \vec{D} a W-skew arc. Hence a W-skew arc of \vec{D} gives rise to edges in D_{n} which join different levels of W.

Let (A, B) denote the set of arcs in D from A to B, i.e., all $\operatorname{arcs}(a, b)$ with $a \in A$ and $b \in B$.

Theorem 1.1 ([4]). With the above notation: a set W of vertices of D_{n} with level-partition $V_{1}, V_{2}, \ldots, V_{m}$, induces a p-clique iff the associated W skew arcs form a complete symmetric m-partite subdigraph in \vec{D}.

Theorem 1.2 ([4]). Let \vec{D} be any eulerian digraph of order p. Then its generated sequence of graphs $\left\{D_{n}\right\}$ is K_{p}-removable.

2 The Hypergraph Construction

The ideas and results in Section 1 lead to the following extension to hypergraphs. A hypergraph consists of a collection of vertices and a collection of edges; if the vertex set is V, then the edges are subsets of V. A hypergraph is r-uniform if all of its edges have size r. The complete r-uniform hypergraph of order p, denoted by K_{p}^{r}, is the hypergraph with vertex set $V=[p]$ and with edges all of the $\binom{p}{r} r$-subsets of V.

For a fixed pair p and r, with $p \geq r \geq 2$, let $\left\{H_{p n}^{r}\right\}=\left\{H_{p 1}^{r}, H_{p 2}^{r}, H_{p 3}^{r}, \ldots\right\}$ be a sequence of r-uniform hypergraphs where $H_{p n}^{r}$ has $p n$ vertices. Such a sequence is called K_{p}^{r}-removable if it satisfies the following properties:

P1 $H_{p 1}^{r} \cong K_{p}^{r}$
P2 $H_{p n}^{r}-K_{p}^{r} \cong H_{p(n-1)}^{r}$ for every $n \geq 2$ and for every (induced) K_{p}^{r} in $H_{p n}^{r}$.
For each pair p and r, with $p \geq r \geq 2$, we show the existence of K_{p}^{r} removable sequences.

Let $\left(A_{1}, \ldots, A_{m}\right)$ denote a partition of $[p]$. We define the complete m partite r-uniform hypergraph of order p, denoted $K_{\left|A_{1}\right|, \ldots,\left|A_{m}\right|}^{r}$, as follows: The vertex set is $[p]$, and an r-subset, Q, of $[p]$ is an edge if and only if Q contains at most $r-1$ members from any class A_{j}. So, eg., $K_{n, n}^{r}$ has $2 n$ vertices and

$$
\binom{n}{1}\binom{n}{r-1}+\binom{n}{2}\binom{n}{r-2}+\cdots+\binom{n}{r-1}\binom{n}{1}=\binom{2 n}{r}-2\binom{n}{r}
$$

edges. Notice that for $r=2$ we have the usual $K_{n, n}^{2}$, the complete bipartite graph with n^{2} edges. The number of edges in $K_{\left|A_{1}\right|, \ldots,\left|A_{m}\right|}^{r}$ is

$$
e\left(K_{\left|A_{1}\right|, \ldots,\left|A_{m}\right|}^{r}\right)=\sum\binom{\left|A_{1}\right|}{k_{1}} \cdots\binom{\left|A_{m}\right|}{k_{m}}
$$

where the sum is over all $k_{1}+\cdots+k_{m}=r$, with $0 \leq k_{j}<r$ for all $1 \leq j \leq m$.
Motivated by Theorem 1.1 we now construct K_{p}^{r}-removable sequences, $\left\{H_{p n}^{r}\right\}$, from each fixed partition $\left(A_{1}, \ldots, A_{m}\right)$ of $[p]$.

With $\left\{H_{p n}^{r}\right\}=\left\{H_{p 1}^{r}, H_{p 2}^{r}, \ldots\right\}$ the construction is as follows:

1. $H_{p(m-1)}^{r} \cong(m-1) K_{p}^{r}$, i.e., we first start with $m-1$ disjoint levelled copies of K_{p}^{r}.
2. For $n \geq m$, the graph $H_{p n}^{r}$ is defined as follows. First, take n disjoint levelled copies of K_{p}^{r}; the notation for the vertices introduced at level 1 , level $2, \ldots$, level n, is the same as in Section 1, eg., the copy of K_{p}^{r} at level j has vertex set $\{(1, j),(2, j), \ldots,(p, j)\}$. From the given partition $\left(A_{1}, \ldots, A_{m}\right)$ of $[p]$, to each $A_{j}, 1 \leq j \leq m$, we select a distinct level $l_{A_{j}}$, where $1 \leq l_{A_{j}} \leq n$. We use $\left(A_{1}, \ldots, A_{m}\right) \rightarrow\left(l_{A_{1}}, \ldots, l_{A_{m}}\right)$ to denote the selected levels. Notice that to the partition $\left(A_{1}, \ldots, A_{m}\right)$ there are $m!\binom{n}{m}$ such level $\left(l_{A_{1}}, \ldots, l_{A_{m}}\right)$ selections.
To each fixed level selection $\left(A_{1}, \ldots, A_{m}\right) \rightarrow\left(l_{A_{1}}, \ldots, l_{A_{m}}\right)$ we identify the set A_{j} with their corresponding vertices in level $l_{A_{j}}$. The identification is through the first coordinates of the vertices in $l_{A_{j}}$. For example, if $A_{j}=\left\{x_{1}, \ldots, x_{\left|A_{j}\right|}\right\}$, then we identify A_{j} with the vertices, $\tilde{A}_{j}=\left\{\left(x_{1}, l_{A_{j}}\right),\left(x_{2}, l_{A_{j}}\right), \ldots,\left(x_{\left|A_{j}\right|}, l_{A_{j}}\right)\right\}$ in level $l_{A_{j}}$ of $H_{p n}^{r}$. We then have $\left(A_{1}, \ldots, A_{m}\right) \cong\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right)$ with $\left|\tilde{A}_{1}\right|+\cdots+\left|\tilde{A}_{m}\right|=p$, for each of the $m!\binom{n}{m}$ such $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right)$'s. We then add to the initial n disjoint copies of K_{p}^{r}, all edges in $\bigcup E\left(K_{\left|\tilde{A}_{1}\right|, \ldots,\left|\tilde{A}_{m}\right|}^{r}\right)$, where the union is over all $m!\binom{n}{m}$ such $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right)$'s. We call this graph $H_{p n}^{r}$, the hypergraph generated by the partition $\left(A_{1}, \ldots, A_{m}\right)$.

We use the symbol gen $\left(A_{1}, \ldots, A_{m}\right)^{r}$ to denote such a sequence $\left\{H_{p n}^{r}\right\}$. Notice by the construction, from $\left(A_{1}, \ldots, A_{m}\right)$ and a chosen level- $\left(\tilde{A}_{1}, \ldots, \tilde{A}_{m}\right)$, the vertices $\tilde{A}_{1} \cup \tilde{A}_{2} \ldots \cup \tilde{A}_{m}$ in $V\left(H_{p n}^{r}\right)$ induce a K_{p}^{r}. The other K_{p}^{r} 's in $H_{p n}^{r}$ are 'fixed-level' cliques, i.e., the K_{p}^{r} introduced at each level $1, \ldots, n$. For the vertex subsets I_{i}, as defined earlier, the construction yields edges which contain at most one vertex from any 'column i '. Hence I_{i} is an independent set in $H_{p n}^{r}$. Also notice that each induced K_{p}^{r} contains exactly one vertex from each $I_{i}, 1 \leq i \leq p$.

For $r=2$, the connection to digraph \vec{D} in Theorem 1.2 is as follows: Consider any complete m-partite graph $G=K_{\left|A_{1}\right|, \ldots,\left|A_{m}\right|}^{2}$. Let \vec{D} be the digraph formed from G by replacing each edge $x y$ in G with two $\operatorname{arcs}(x, y)$ and (y, x). Then \vec{D} is eulerian and it generates the K_{p}^{2}-removable sequence $\left\{D_{n}\right\}$ as in Theorem 1.2. Suppose W induces a K_{p}^{r} in $H_{p n}^{r}$. Let the vertices of W be $\left\{\left(i, w_{i}\right) \mid 1 \leq i \leq p\right\}$. In the graph $H_{p n}^{r}-W$, the set $I_{i} \backslash\left\{\left(i, w_{i}\right)\right\}$ is
an independent set: call this the i-th independent set of $H_{p n}^{r}-W$. Now we construct an isomorphism ϕ between the vertices of $H_{p n}^{r}-W$ and the vertices of $H_{p(n-1)}^{r}$. Under ϕ, for a fixed $i \in[p]$, the vertices in the i-th independent set of $H_{p n}^{r}-W$, namely in the set $I_{i} \backslash\left\{\left(i, w_{i}\right)\right\}$, are mapped to the vertices in the i-th independent set of $H_{p(n-1)}^{r}$, namely to the set $\{(i, 1), \ldots,(i, n-1)\}$, as follows:

$$
\phi(i, j)= \begin{cases}(i, j-1), & \text { for } w_{i}<j \leq n \\ (i, j), & \text { for } 1 \leq j<w_{i}\end{cases}
$$

In [3] it is shown that ϕ is an isomorphism. It is straightforward to show that ϕ moves edges in $H_{p n}^{r}-W$ to edges in $H_{p(n-1)}^{r}$. We have:

Theorem 2.1. Let $p \geq r \geq 2$, and let $\left(A_{1}, \ldots, A_{m}\right)$ be any partition of $[p]$. Then the sequence of hypergraphs gen $\left(A_{1}, \ldots, A_{m}\right)^{r}$ is a K_{p}^{r}-removable sequence.

In the following let $S(m, t)$ be the Stirling numbers of the second kind.
Notice, by the above construction of $\operatorname{gen}\left(A_{1}, \ldots, A_{m}\right)^{r}=\left\{H_{p n}^{r}\right\}, H_{p n}^{r}$ contains essentially two types of induced K_{p}^{r} 's, either fixed-level or crosslevel. The vertices of a K_{p}^{r} are either all at a fixed level, or are at exactly m different levels. However, by the isomorphism ϕ, the removal of any one of these two types of induced K_{p}^{r} 's yields up to isomorphism the same subhypergraph. So, the hypergraph construction gives the clique-symmetric uniform hypergraph we were searching for that does not simply possess n fixed-level type K_{p}^{r} 's.

We remark that the gen $\left(A_{1}, \ldots, A_{m}\right)^{r}$ construction can be slightly modified to also contain cross-level K_{p}^{r} 's containing vertices from exactly t levels, for all $2 \leq t \leq m-1$, as follows: The partition $\left(A_{1}, \ldots, A_{m}\right)$ of $[p]$ is given. For fixed $t, 2 \leq t \leq m-1$, let $\left(b_{1}, \ldots, b_{t}\right)$ be a partition of $[m$]. From $\left(b_{1}, \ldots, b_{t}\right)$ define the corresponding $\left(B_{1}, \ldots, B_{t}\right)$ where $B_{j}=\bigcup_{k \in b_{j}} A_{k}$. Notice that $\left(B_{1}, \ldots, B_{t}\right)$ is then a partition of $[p]$. Also notice that $K_{\left|B_{1}\right|, \ldots,\left|B_{t}\right|}^{r}$ is a complete t-partite sub-hypergraph of $K_{\left|A_{1}\right|, \ldots,\left|A_{m}\right|}^{r}$; and there are $t!S(m, t)$ such possible $\left(b_{1}, \ldots, b_{t}\right)$'s, and hence $t!S(m, t)$ such possible $\left(B_{1}, \ldots, B_{t}\right)$'s. We remark that in general, for any complete m-partite graph, where $m \geq 3$, there are $S(m, t)$ complete t-partite spanning subgraphs, where $2 \leq t \leq m-1$. As before, each $\left(B_{1}, \ldots, B_{t}\right)$ is assigned a level-selection $\left(\ell_{B_{1}}, \ldots, \ell_{B_{t}}\right)$ producing the corresponding $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$. Now define $X_{t}=\bigcup E\left(K_{\left|\tilde{B}_{1}\right|, \ldots,\left|\tilde{B}_{t}\right|}^{r}\right)$, where the union is over all $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$'s. For the generalized construction from a
given $\left(A_{1}, \ldots, A_{m}\right)$, we again start with n disjoint levelled K_{p}^{r},s. We add to these the edges $X_{2} \cup X_{3} \cdots \cup X_{m}$. It can be shown the isomorphism ϕ works for this graph as well.

We call such a K_{p}^{r}-removable sequence $\left\{H_{p n}^{r}\right\}$ as constructed above a t gen $\left(A_{1}, \ldots, A_{m}\right)^{r}$ sequence. We note that for a given $\left(B_{1}, \ldots, B_{t}\right)$ and its associated $t!\binom{n}{t}$ corresponding $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$'s, that any permutation $\sigma\left(B_{1}, \ldots, B_{t}\right)$ of $\left(B_{1}, \ldots, B_{t}\right)$, yields the same set of $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$'s as $\left(B_{1}, \ldots, B_{t}\right)$ does. Hence there are $t!S(m, t)\binom{n}{t}$ such $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$'s, for each $2 \leq t \leq m$. By the construction every K_{p}^{r} in $H_{p n}^{r}$ is in one-to-one correspondence with a fixed $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$. For the case $t=1$, we interpret the $\left(\tilde{B}_{1}\right)$'s as the beginning n-level copies of K_{p}^{r}, so $X_{1} \cong n K_{p}^{r}$. Hence we have a rather nice formula for the number of K_{p}^{r} 's in $H_{p n}^{r}$.

Theorem 2.2. Let $\left(A_{1}, \ldots, A_{m}\right)$ be a partition of $[p]$. For the K_{p}^{r}-removable sequence t-gen $\left(A_{1}, \ldots, A_{m}\right)^{r}=\left\{H_{p n}^{r}\right\}$, the hypergraph $H_{p n}^{r}$ has $\sum_{t=1}^{m} t!S(m, t)\binom{n}{t}$ $=n^{m} \quad K_{p}^{r}$'s.

More directly, the value n^{m} in Theorem 2.2 can be interpreted as follows: From the given initial partition $\left(A_{1}, \ldots, A_{m}\right)$ of $[p]$ we embed each A_{j} (by our definition of \tilde{A}_{j}) into any of the n levels, level $1, \ldots$, level n, thus creating $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$. Hence there are n^{m} such embeddings. We remark also that, by the defined construction, for each embedding $\left(\tilde{B}_{1}, \ldots, \tilde{B}_{t}\right)$ the vertices $\tilde{B}_{1} \cup \cdots \cup \tilde{B}_{t}$ induce a K_{p}^{r} in $H_{p n}^{r}$.
Example Let $p=5, r=3$, and $\left(A_{1}, A_{2}, A_{3}\right)$ be the partition of $\{1,2,3,4,5\}$ with $A_{1}=\{1,2\}, A_{2}=\{3,5\}$, and $A_{3}=\{4\}$. Consider the t-gen $\left(A_{1}, A_{2}, A_{3}\right)^{3}=$ $\left\{H_{5 n}^{3}\right\}$ sequence. The graph for $n=3$, i.e., $H_{(5)(3)}^{3}$ has $1!S(3,1)\binom{3}{1}+2!S(3,2)\binom{3}{2}+$ $3!S(3,3)\binom{3}{3}=27$ induced K_{5}^{3} 's. An example of one of these cliques for $t=2$ is as follows: with $\left(B_{1}, B_{2}\right)=\left(A_{1} \cup A_{3}, A_{2}\right)$, let $\left(B_{1}, B_{2}\right) \rightarrow\left(\ell_{B_{1}}, \ell_{B_{2}}\right)=(3,2)$ be a level-selection, giving $\left(\tilde{B}_{1}, \tilde{B}_{2}\right)$. Then the vertices in $V\left(H_{(5)(3)}^{3}\right)$, namely, $\tilde{B}_{1} \cup \tilde{B}_{2}=\{(3,1),(3,2),(3,4),(2,3),(2,5)\}$, induce a K_{5}^{3} in $H_{(5)(3)}^{3}$.
$K_{p n}^{r}$ is the complete r-uniform hypergraph on $p n$ vertices.
We end by showing, with the exception of $\left\{K_{p n}^{r}\right\}$, that for any $K_{p}^{r}{ }^{-}$ removable sequence $\left\{H_{p n}^{r}\right\}$, with $p \geq r \geq 2$, any member $H_{p n}^{r}$ of the sequence does not contain a K_{p+1}^{r}. So, e.g., for the case $r=2$, the clique number is always $\omega\left(H_{p n}^{2}\right)=p$ for all n. We remark that the constructions given in this paper produce ways to generate K_{p}^{r}-removable sequences, we do not
claim these are the only K_{p}^{r}-removable sequences. However, our final theorem applies to any K_{p}^{r}-removable sequence.
Theorem 2.3. Suppose the n-th member $H_{p n}^{r}$ of a K_{p}^{r}-removable sequence contains a K_{p+1}^{r}, then $H_{p n}^{r}$ is $K_{p n}^{r}$.
Proof. Suppose that $H_{p n}^{r}$ contains a K_{p+1}^{r}. Without loss of generality, we assume $V\left(H_{p n}^{r}\right)$ is partitioned into $n K_{p}^{r}$'s: $L_{1}, L_{2}, \ldots, L_{n}$, so that some vertex y in L_{2} is such that $L_{1} \cup\{y\}$ is an induced K_{p+1}^{r} in $H_{p n}^{r}$. Let x be any vertex in L_{1}. Deleting the $n-1 K_{p}^{r}$'s: $L_{3}, L_{4}, \ldots, L_{n}, L_{1}+\{y\}-\{x\}$, in this order, we obtain $L_{2}+\{x\}-\{y\}$. Since $\left\{H_{p n}^{r}\right\}$ is K_{p}^{r}-removable, $L_{2}+\{x\}-\{y\}$ is necessarily a K_{p}^{r}. Hence, $L_{2} \cup\{x\}$ is a K_{p+1}^{r}, and the union of L_{1} and L_{2} is $K_{2 p}^{r}$. Consequently the removal of any $n-2$ disjoint K_{p}^{r} 's must produce $K_{2 p}^{r}$. This implies that the union of every two levels L_{i} and L_{j} induce a $K_{2 p}^{r}$; therefore, $H_{p n}^{r}$ is $K_{p n}^{r}$.

For other papers on graph sequences see Barefoot, Entringer, and Jackson [1], and its bibliography; see also Duchet, Tuza, and Vestergaard [2].

References

[1] C.A. Barefoot, R.C. Entringer, D.E. Jackson, Graph theoretic modelling of cellular development II, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 65 (1988) 135-146.
[2] P. Duchet, Z. Tuza, P.D. Vestergaard, Graphs in which all spanning subgraphs with r fewer edges are isomorphic, Proc. 19-th Southeastern Internat. Conf. on Combinatorics, Graph Theory, and Computing, (Baton Rouge, LA, 1988), Congr. Numer. 67 (1988) 45-57.
[3] J.P. McSorley and T.D. Porter, K_{p}-removable sequences of graphs, to appear, Journal of Combinatorial Mathematics and Combinatorial Computing.
[4] J.P. McSorley and T.D. Porter, Generating sequences of clique-symmetric graphs via Eulerian digraphs, to appear, Discrete Mathematics.
[5] D.B. West, Introduction to Graph Theory, 2nd Edition, (Prentice Hall, 2001).

