Constructing t-designs from t-wise balanced designs

John P. McSorley and Leonard H. Soicher

Abstract

We give a construction to obtain a t-design from a t-wise balanced design. More precisely, given a positive integer k and a t $\left(v,\left\{k_{1}, k_{2}, \ldots, k_{s}\right\}, \lambda\right)$ design \mathcal{D}, with with all block-sizes k_{i} occurring in \mathcal{D} and $1 \leq t \leq k \leq k_{1}<k_{2}<\cdots<k_{s}$, the construction produces a $t-(v, k, n \lambda)$ design \mathcal{D}^{*}, with $n=\operatorname{lcm}\left(\binom{k_{1}-t}{k-t}, \ldots,\binom{k_{s}-t}{k-t}\right.$. We prove that $\operatorname{Aut}(\mathcal{D})$ is a subgroup of $\operatorname{Aut}\left(\mathcal{D}^{*}\right)$, with equality when both $\lambda=1$ and $t<k$. We employ our construction in another construction, which, given a $t-(v, k, \lambda)$ design with $1 \leq t<k<v$, and a point of this design, yields a $t-(v-1, k-1,(k-t) \lambda)$ design. Many of the t-designs coming from our constructions appear to be new.

1 Introduction

For t a positive integer, a t-wise balanced design \mathcal{D} is an ordered pair (X, \mathcal{B}), where X is a finite non-empty set (of points) and \mathcal{B} is a finite non-empty multiset of subsets of X (called blocks), such that every t-subset of X is contained in a constant number $\lambda>0$ of blocks. If $v=|X|$ and K is the set of sizes of the blocks, then we call \mathcal{D} a $t-(v, K, \lambda)$ design. If all blocks of \mathcal{D} have the same size k (i.e. $K=\{k\}$), then \mathcal{D} is called a t-design or a $t-(v, k, \lambda)$ design.

In this note we give a construction (the $*$-construction) to obtain a t design from a t-wise balanced design. More precisely, given a positive integer k and a $t-\left(v,\left\{k_{1}, k_{2}, \ldots, k_{s}\right\}, \lambda\right)$ design \mathcal{D}, with with all block-sizes k_{i} occurring in \mathcal{D} and $1 \leq t \leq k \leq k_{1}<k_{2}<\cdots<k_{s}$, the $*$-construction produces a $t-(v, k, n \lambda)$ design \mathcal{D}^{*}, with $\left.n=\operatorname{lcm}\binom{k_{1}-t}{k-t}, \ldots,\binom{k_{s}-t}{k-t}\right)$. We prove that $\operatorname{Aut}(\mathcal{D})$ is a subgroup of $\operatorname{Aut}\left(\mathcal{D}^{*}\right)$, with equality when both $\lambda=1$ and $t<k$.

We employ the $*$-construction in another construction (the \#-construction), which, given a $t-(v, k, \lambda)$ design with $1 \leq t<k<v$, and a point of this design, yields a $t-(v-1, k-1,(k-t) \lambda)$ design. Many of the t-designs coming from our constructions appear to be new, and although they usually have repeated blocks, they often, via their constructions, have quite large automorphism groups.

2 The *-construction

The input to the $*$-construction consists of positive integers t and k, and a t - $\left(v,\left\{k_{1}, k_{2}, \ldots, k_{s}\right\}, \lambda\right)$ design \mathcal{D}, with all block-sizes k_{i} occurring in \mathcal{D} and $1 \leq t \leq k \leq k_{1}<k_{2}<\cdots<k_{s}$. Now for $i=1,2, \ldots, s$ define

$$
\begin{equation*}
n_{i}=\binom{k_{i}-t}{k-t}, \quad n=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{s}\right), \quad m_{i}=\frac{n}{n_{i}} . \tag{1}
\end{equation*}
$$

The output of the $*$-construction is a block design \mathcal{D}^{*}, which we prove below to be a $t-(v, k, n \lambda)$ design.

The point-set of \mathcal{D}^{*} is that of \mathcal{D}, and to construct the block-multiset \mathcal{B}^{*} of \mathcal{D}^{*} we proceed as follows:

- start by setting \mathcal{B}^{*} to be the empty multiset;
- for each $i=1,2, \ldots, s$ and for each block $B \in \mathcal{B}$ of size k_{i} (including repeats) do:
- insert m_{i} copies of every k-subset of B into \mathcal{B}^{*}.

Clearly, \mathcal{D}^{*} depends on the choice of k as well as on \mathcal{D}. Less obviously, since the t-wise balanced design \mathcal{D} may be t^{\prime}-wise balanced for some $t^{\prime} \neq t$, \mathcal{D}^{*} may depend on the choice of t. When we wish to make these dependencies explicit, we shall use the notation $\mathcal{D}^{*}(t, k)$ instead of \mathcal{D}^{*}.

Theorem 2.1 Let k be a positive integer and let $\mathcal{D}=(X, \mathcal{B})$ be at- $\left(v,\left\{k_{1}, k_{2}, \ldots, k_{s}\right\}, \lambda\right)$ design, with all block-sizes k_{i} occurring in \mathcal{D} and $1 \leq t \leq k \leq k_{1}<k_{2}<$ $\cdots<k_{s}$. Then $\mathcal{D}^{*}=\mathcal{D}^{*}(t, k)=\left(X, \mathcal{B}^{*}\right)$ is a $t-(v, k, n \lambda)$ design, where $n=\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{s}\right)$ and $n_{i}=\binom{k_{i}-t}{k-t}$.

Proof. Let T be any t-subset of X. Suppose that B is a block of \mathcal{B} of size k_{i} containing T. Then the number of k-subsets of B which contain T is $n_{i}=\binom{k_{i}-t}{k-t}$. Each of these k-subsets is added to \mathcal{B}^{*} exactly $m_{i}=n / n_{i}$ times. Hence B contributes exactly $n_{i} m_{i}=n$ blocks containing T to \mathcal{B}^{*}. Now T is contained in exactly λ blocks in \mathcal{B}, and so in exactly $n \lambda$ blocks in \mathcal{B}^{*}.

We have defined n to be $\operatorname{lcm}\left(n_{1}, n_{2}, \ldots, n_{s}\right)$. We could have chosen n to be any common multiple of $\left\{n_{1}, n_{2}, \ldots, n_{s}\right\}$, but, in order to keep $n \lambda$ as small as possible, we choose the least common multiple. We also remark that the *-construction works perfectly well when $s=1$, that is, when \mathcal{D} is a t-design.

Example 1 Let \mathcal{D} be the 2-(11, $\{3,5\}, 1)$ design with point-set $X=\{1,2, \ldots, 9, T, E\}$ (here $T=10$ and $E=11$), and block-multiset $\mathcal{B}=$
[167, 18E, 19T, 268, 279, 2TE, 369, 37E, 38T, 46T, 478, 49E, 56E, 57T, 589, 12345]
(see [1, p.187]).
(a) Suppose $t=k=2$. Here $k_{1}=3, k_{2}=5$, and each $n_{i}=n=m_{i}=1$. So $\mathcal{D}^{*}(2,2)$ is the 2 - $(11,2,1)$ design consisting of all the 2 -subsets of X.
(b) The case $t=2, k=3$ is more interesting. Here $k=k_{1}=3, k_{2}=5$, $n_{1}=1, n_{2}=3, n=3, m_{1}=3$, and $m_{2}=1$. So $\mathcal{D}^{*}=\mathcal{D}^{*}(2,3)$ is a 2 $(11,3,3)$ design, an $(11,55,15,3,3)$-BIBD. The block-multiset of \mathcal{D}^{*} consists of three copies of each block of \mathcal{D} of size 3 , together with all the 3 -subsets of $\{1,2,3,4,5\}$.

The *-construction was found as a result of looking for 2-designs with repeated blocks to help fill up Preece's catalogue [4]. Many new examples coming from this construction have since gone into the catalogue.

3 The \#-construction

Let $\mathcal{T}=(X, \mathcal{B})$ be a $t-(v, k, \lambda)$ design with $1 \leq t<k<v$, and let $x \in X$. We employ the $*$-construction in a new construction (the \#-construction) which produces a $t-(v-1, k-1,(k-t) \lambda)$ design when given input \mathcal{T} and x. The \#-construction proceeds as follows:

Let $X^{\prime}=X \backslash\{x\}$, and let \mathcal{B}^{\prime} be the multiset consisting of all $B \backslash\{x\}$ with $B \in \mathcal{B}$ (counting repeats). Denote the resulting block design ($X^{\prime}, \mathcal{B}^{\prime}$)
by $\mathcal{T} \backslash x$, which is a $t-(v-1,\{k-1, k\}, \lambda)$ design (whose isomorphism class may depend on the choice of x). Next, apply the $*$-construction with input $t, k-1$ and $\mathcal{T} \backslash x$ to obtain $(\mathcal{T} \backslash x)^{*}(t, k-1)$, a $t-(v-1, k-1,(k-t) \lambda)$ design. We denote this output of the $\#$-construction by $\mathcal{T}^{\#}(t, x)$.

Example 2 Start with the large Witt design \mathcal{W}, the unique (up to isomorphism) $5-(24,8,1)$ design; see [3, Chapter 8], where \mathcal{W} is called the Mathieu design \mathcal{M}_{24}. Now \mathcal{W} is also a $4-(24,8,5)$ design, a $3-(24,8,21)$ design, and a $2-(24,8,77)$ design. Let x be a point of \mathcal{W} (it matters not which one, since the automorphism group M_{24} of \mathcal{W} acts transitively (in fact 5-transitively) on the point-set of $\mathcal{W})$. Then $\mathcal{W}^{\#}(5, x)$ is a $5-(23,7,3)$ design, $\mathcal{W}^{\#}(4, x)$ is a $4-(23,7,20)$ design, $\mathcal{W}^{\#}(3, x)$ is a $3-(23,7,105)$ design, and $\mathcal{W}^{\#}(2, x)$ is a 2 -(23, 7,462$)$ design.

Example 3 Start with a projective plane $\mathcal{P}=(X, \mathcal{B})$ of order $m \geq 2$, a $2-\left(m^{2}+m+1, m+1,1\right)$ design. Now, given any $x \in X$, construct $\mathcal{P} \#(2, x)$, which is a $2-\left(m^{2}+m, m, m-1\right)$ design.

4 Automorphism groups

The automorphism group of a t-wise balanced design $\mathcal{D}=(X, \mathcal{B})$, denoted $\operatorname{Aut}(\mathcal{D})$, is the group consisting of all the permutations of X which leave the block-multiset \mathcal{B} invariant. We now investigate the relationship of the automorphism groups of \mathcal{D} and $\mathcal{D}^{*}(t, k)$. For a block $B \in \mathcal{B}$, we let mult (B) denote its multiplicity in \mathcal{B}.

Theorem 4.1 Let k be a positive integer, let $\mathcal{D}=(X, \mathcal{B})$ be at- $\left(v,\left\{k_{1}, k_{2}, \ldots, k_{s}\right\}, \lambda\right)$ design, with all block-sizes k_{i} occurring in \mathcal{D} and $1 \leq t \leq k \leq k_{1}<k_{2}<$ $\cdots<k_{s}$, and let $\mathcal{D}^{*}=\mathcal{D}^{*}(t, k)=\left(X, \mathcal{B}^{*}\right)$ be the t-design obtained from the *-construction. Then
(i) $\operatorname{Aut}(\mathcal{D}) \subseteq \operatorname{Aut}\left(\mathcal{D}^{*}\right)$;
(ii) if $\lambda=1$ and $t<k$, then $\operatorname{Aut}(\mathcal{D})=\operatorname{Aut}\left(\mathcal{D}^{*}\right)$.

Proof. (i) Let $\alpha \in \operatorname{Aut}(\mathcal{D})$. Let B^{*} be an arbitrary block in \mathcal{B}^{*}, hence there is a block $B \in \mathcal{B}$ which contains B^{*} as a k-subset. Suppose that $\alpha(B)=C$ for some block $C \in \mathcal{B}$, and that $\alpha\left(B^{*}\right)=C^{*}$. Then clearly C^{*} is a k-subset of C, a block of \mathcal{B}, hence $C^{*} \in \mathcal{B}^{*}$. Now we must show that $\operatorname{mult}\left(C^{*}\right)=\operatorname{mult}\left(B^{*}\right)\left(\right.$ in $\left.\mathcal{B}^{*}\right)$ to conclude that $\alpha \in \operatorname{Aut}\left(\mathcal{D}^{*}\right)$.

Fix i. Let $B_{1}, B_{2}, \ldots, B_{d}$ be the distinct blocks of \mathcal{B} of size k_{i} which contain B^{*}, and let $C_{1}, C_{2}, \ldots, C_{e}$ be the distinct blocks of \mathcal{B} of size k_{i} which contain C^{*}. Now, because $\alpha \in \operatorname{Aut}(\mathcal{D})$, we must have $d=e$ and for every j with $1 \leq j \leq d$ there must exist a unique j^{\prime} with $1 \leq j^{\prime} \leq d$ for which $\alpha\left(B_{j}\right)=$ $C_{j^{\prime}}$. Hence $\operatorname{mult}\left(B_{j}\right)=\operatorname{mult}\left(C_{j^{\prime}}\right)$ since α preserves block multiplicities.

Now let f_{i} be the number of blocks (counting multiplicities) of \mathcal{B} of size k_{i} which contain B^{*}, and let g_{i} be the number of blocks (counting multiplicities) of \mathcal{B} of size k_{i} which contain C^{*}. Then $g_{i}=\sum_{j^{\prime}=1}^{d} \operatorname{mult}\left(C_{j^{\prime}}\right)=$ $\sum_{j=1}^{d} \operatorname{mult}\left(B_{j}\right)=f_{i}$, and so, in \mathcal{B}^{*}, we have mult $\left(C^{*}\right)=\sum_{i=1}^{s} g_{i} m_{i}=$ $\sum_{i=1}^{s} f_{i} m_{i}=\operatorname{mult}\left(B^{*}\right)\left(m_{i}\right.$ defined in (1)), as required. Hence $\alpha \in \operatorname{Aut}\left(\mathcal{D}^{*}\right)$.
(ii) We first note that, because $\lambda=1$, then $\operatorname{mult}(B)=1$ for every block $B \in \mathcal{B}$. Secondly, if R^{*} is an arbitrary block in \mathcal{B}^{*} then, again because $\lambda=1$, there is a unique block $R \in \mathcal{B}$, with $R^{*} \subseteq R$.

Now let $\gamma \in \operatorname{Aut}\left(\mathcal{D}^{*}\right)$. We must show that, for every block $B \in \mathcal{B}$, we have $\gamma(B) \in \mathcal{B}$. Then, from above, $\operatorname{mult}(\gamma(B))=1=\operatorname{mult}(B)$, so $\gamma \in \operatorname{Aut}(\mathcal{D})$. This will show that $\operatorname{Aut}\left(\mathcal{D}^{*}\right) \subseteq \operatorname{Aut}(\mathcal{D})$; part (i) then gives the result.

Fix i. Let B be an arbitrary block of \mathcal{B} of size k_{i}, and let B^{*} be an arbitrary k-subset of B, and let $\gamma\left(B^{*}\right)=C^{*}$. Now, because $\gamma \in \operatorname{Aut}\left(\mathcal{D}^{*}\right)$, then $C^{*} \in \mathcal{B}^{*}$. So, from above, there is a unique block $C \in \mathcal{B}$, with $C^{*} \subseteq C$. We will show that $\gamma(B)=C$.

First we show that $\gamma(B) \subseteq C$. Suppose that $\gamma(B) \nsubseteq C$, then there is an element $x \in B \backslash B^{*}$ with $\gamma(x) \notin C$. Let D be a $(k-1)$-subset of $B^{*} \subseteq B$, then $D^{*}=\{x\} \cup D$ is a k-subset of $B \in \mathcal{B}$, so $D^{*} \in \mathcal{B}^{*}$. Hence $E^{*}=\gamma\left(D^{*}\right) \in \mathcal{B}^{*}$, and there is a block $E \in \mathcal{B}$ with $E^{*} \subseteq E$. Now $E \neq C$ because $\gamma(x) \in E$ but $\gamma(x) \notin C$. Hence E and C are distinct blocks of \mathcal{B}. However, $\gamma(D) \subseteq E$, and $D \subseteq B^{*}$ so $\gamma(D) \subseteq \gamma\left(B^{*}\right)=C^{*} \subseteq C$. Now $t<k$ so $t \leq k-1=|\gamma(D)|$. Now let T be any t-subset of $\gamma(D)$, then the distinct blocks E and C both contain T, a contradiction since $\lambda=1$. Hence $\gamma(B) \subseteq C$.

To show that $C \subseteq \gamma(B)$ we show that $\gamma^{-1}(C) \subseteq B$ by noting that $\gamma^{-1}\left(C^{*}\right)=B^{*}$, and so the proof follows as above. Hence $\gamma(B)=C$ and, since i was arbitrary, the result is proved.

Example 4 We take \mathcal{D} to be the 2- $(11,\{3,5\}, 1)$ design of Example 1. Then $|\operatorname{Aut}(\mathcal{D})|=120$; indeed $\operatorname{Aut}(\mathcal{D})$ is isomorphic to $\operatorname{Sym}(5)$, and acts naturally as this group on the subset $\{1,2,3,4,5\}$ of the point-set (checked using GAP [2] and its DESIGN package [5]).
(a) $\quad \mathcal{D}^{*}(2,2)$ is the complete 2-(11, 2, 1) design. Hence $\operatorname{Aut}(\mathcal{D}) \subseteq \operatorname{Aut}\left(\mathcal{D}^{*}(2,2)\right)=$ $\operatorname{Sym}(11)$, illustrating Theorem 4.1(i), and also showing that if $\lambda=1$ and $t=k$ then $\operatorname{Aut}(\mathcal{D}) \neq \operatorname{Aut}\left(\mathcal{D}^{*}(t, k)\right)$ is possible (see Theorem 4.1(ii)).
(b) $\quad \mathcal{D}^{*}=\mathcal{D}^{*}(2,3)$ is a $2-(11,3,3)$ design with $\left|\operatorname{Aut}\left(\mathcal{D}^{*}\right)\right|=120$ (double checked with the DESIGN package). This illustrates Theorem 4.1(ii).

Example 5 This example shows that if $\lambda>1$ then $\operatorname{Aut}(\mathcal{D}) \neq \operatorname{Aut}\left(\mathcal{D}^{*}(t, k)\right)$ is possible, even when $t<k$. We apply the \#-construction to the projective plane \mathcal{P} of order 4 , to obtain a $2-(20,4,3)$ design $\mathcal{P}^{\#}=\mathcal{P}^{\#}(2, x)=(X, \mathcal{B})$, which has a point-transitive automorphism group of order 5760 . Then, we take $x \in X$ and obtain a $2-(19,\{3,4\}, 3)$ design $\mathcal{D}=\mathcal{P}^{\#} \backslash x$ (using the notation of Section 3). (The choice of x does not affect the isomorphism class of \mathcal{D} since $\mathcal{P} \#$ is point-transitive). Finally, construct a $2-(19,3,6)$ design $\mathcal{D}^{*}=\mathcal{D}^{*}(2,3)$. It turns out that $|\operatorname{Aut}(\mathcal{D})|=288$, but $\left|\operatorname{Aut}\left(\mathcal{D}^{*}\right)\right|=576$. The construction of these designs and the determination of their automorphism groups was done using the DESIGN package.

Example 6 The DESIGN package shows that, up to isomorphism, there are exactly four $2-(11,\{4,5\}, 2)$ designs (not counting the unique $2-(11,5,2)$ design). These designs \mathcal{D} have automorphism groups of orders $6,8,12$, and 120, as do the corresponding $\mathcal{D}^{*}(2,4)$, which are (believed to be new) 2-(11, 4, 6) designs. Note that these examples show that the converse of Theorem 4.1(ii) does not hold.

References

[1] Charles J. Colbourn and Jeffrey H. Dinitz (Editors), The CRC Handbook of Combinatorial Designs, CRC Press, 1996.
[2] The GAP Group, GAP - Groups, Algorithms, and Programming, Version 4.4; Aachen, St Andrews, 2004, http://www.gap-system.org/
[3] D.R. Hughes and F.C. Piper, Design Theory, Cambridge University Press, 1985, paperback edition, 1988.
[4] D. A. Preece, A selection of BIBDs with repeated blocks, $r \leq 20$, $\operatorname{gcd}(b, r, \lambda)=1$, preprint, 2003.
[5] Leonard H. Soicher, The DESIGN package for GAP, Version 1.1, 2004, http://designtheory.org/software/gap_design/

