There Are No Non-Trivially Uniformly (t, r)-Regular Graphs for t > 2.

Dean Hoffman¹, Peter Johnson¹, Kevin Lin², John McSorley³, Caleb Petrie⁴, and Luc Teirlinck¹ ¹Department of Mathematics and Statistics, Auburn University, AL 36849 johnspd@auburn.edu ²University of California, Berkeley ³Department of Mathematics Southern Illinois University Carbondale, Illinois 62901-4408 ⁴Biola University

Abstract

A finite simple graph is uniformly (t, r)-regular if it has at least t vertices and the open neighbor set of each set of t of its vertices is of cardinality r. If t > 1, such a graph is trivially uniformly (t, r)-regular if either it is a matching (t = r) or r is the number of non-isolated vertices in the graph. We prove the result stated in the title.

1 Uniform (t, r)-regularity

All graphs will be finite and simple, in this paper, and notation will largely be as in [10]. If G and H are graphs, V(G) is the vertex set of G, G+H is the disjoint union of G and H, and for a positive integer $m, mG = G + \cdots + G$ (msummands). If $u \in V(G), N_G(u) = \{v \in V(G) | u \text{ and } v \text{ are adjacent in } G\}$, and if $S \subseteq V(G), N_G(S) = \bigcup_{u \in S} N_G(u)$, the open neighbor set of S in G. The order of G will be denoted by n(G)(=|V(G)|), or just n, if G is the only graph in the discussion.

G is uniformly (t, r)-regular if $1 \leq t \leq n$ and for each $S \subseteq V(G)$ with |S| = t, $|N_G(S)| = r$. This property of graphs was introduced in [4] as "(t, r)-regularity"; the problem with that terminology is that it is also used for a seemingly similar but rather less exigent property, introduced in [3] and written on in [2], [5], and [7]. In [6] the word "strong" plays the role we assign to "uniform" here; we abandon that terminology because it misleadingly suggests an analogy with strong regularity of graphs. There is a powerful connection between the two when t = 2 (see [9]), but the analogy at the definitional level is distant.

Uniform (1, r)-regularity is just plain r-regularity. When t > 1 there are two easily found classes of uniformly (t, r)-regular graphs:

- (i) $G = mK_2$ for some $m \ge t/2$, a matching. In this case, t = r.
- (ii) $r = n(G_1)$, where G_1 is the subgraph of G induced by the non-isolated vertices of G, and t is "sufficiently large". Indeed, as noted in [6], if $r = n(G_1) > 0$ and $n(G) \delta(G_1) + 1 \le t \le n(G)$ then G is uniformly (t, r)-regular, but G is not uniformly $(n(G) \delta(G_1), r)$ -regular. And if $r = n(G_1) = 0$ then $G = nK_1$ and is uniformly (t, 0)-regular for all $t = 1, \ldots, n$.

For t > 1, uniform (t, r)-regularity due to either condition (i) or (ii) will be called *trivial*, and the big question (raised in [6]) is: are there non-trivially uniformly (t, r)-regular graphs, and, if so, what are they?

This question has been satisfactorily answered for t = 2. Any "strongly regular graph with $\lambda = \mu > 0$ ", that is, a regular graph G, say with degree d > 0, not complete, for which there exists μ such that for any two distinct $u, v \in V(G), |N_G(u) \cap N_G(v)| = \mu$, is non-trivially uniformly $(2, 2d - \mu)$ regular. There are infinitely many such graphs (see, e.g., [8]), and it has recently been shown [9] that there are no other non-trivially uniformly (2, r)regular graphs besides these. Here we settle the question for t > 2. The proof of the following theorem is postponed until section 3.

Theorem 1 If t > 2 then for no r does there exist a non-trivially uniformly (t, r)-regular graph.

2 An excursion into designs

If $n \geq t > 0$, an (n, t, λ) -design is a pair (V, \mathcal{B}) where V is a set with n elements ("points") and $\mathcal{B} = [B(i)|i \in I]$ is an indexed collection of subsets of V ("blocks") such that for each $T \subseteq V$ with |T| = t, $|\{i \in I | T \subseteq B(i)\}| = \lambda$. (That is, any t points of V lie together in exactly λ blocks.) We require \mathcal{B} to be an indexed collection because we want to allow "repeated blocks"; that is, it may be that B(i) = B(j) even though $i \neq j$. Also note that there is no requirement that the blocks be of the same size. Given such a design, let b = |I|, the number of blocks.

Fisher's Inequality [1, Theorem 2.6, p.66] If (V, \mathcal{B}) is an $(n, 2, \lambda)$ -design with $\lambda > 0$ and V not appearing as a block, then $b \ge n$.

Theorem 2 If t > 2, $\lambda > 0$, and (V, \mathcal{B}) is an (n, t, λ) -design with V not appearing as a block, then $b \ge n$ with equality if and only if \mathcal{B} can be reindexed to be $[V \setminus \{v\} | v \in V]$.

Proof. We go by induction on t, starting with t = 3. For each $v \in V$, let $I(v) = \{i \in I | v \in B(i)\}$ and consider the derived design $(V \setminus \{v\}, \mathcal{B}'(v))$, where $\mathcal{B}'(v) = [B(i) \setminus \{v\} | i \in I(v)]$. Each derived design is an $(n - 1, 2, \lambda)$ -design (because t = 3) and $V \setminus \{v\}$ does not appear in $\mathcal{B}'(v)$ because V does not appear in \mathcal{B} . By Fisher's inequality, $b'(v) = |I(v)| \ge n - 1$. On the other hand, $b'(v) \le b$.

If b = n - 1, then b'(v) = n - 1 = b, for every $v \in V$, so I(v) = I for every v. But then $v \in B(i)$ for every $i \in I$, and every v, so, not only does Vappear in \mathcal{B} , it is equal to B(i) for each i, wildly contrary to hypothesis. So $b \ge n$, as asserted. Suppose that b = n. Then b'(v) = |I(v)| = n or n - 1 for each $v \in V$ -i.e., v is in every block of \mathcal{B} or in every block but one.

On the other hand, each block of \mathcal{B} is missing some element of V. Think of a bipartite graph with bipartition V, I, with $v \in V$ adjacent to $i \in I$ if and only if $v \notin B(i)$. Then each $v \in V$ has degree ≤ 1 in this graph, and each $i \in I$ has degree ≥ 1 , and |V| = n = b = |I|. Thus the bipartite graph is a matching, and \mathcal{B} , possibly after renaming, is $[V \setminus \{v\} | v \in V]$.

Now suppose that t > 3. With I(v) and $\mathcal{B}'(v)$, $v \in V$, defined as above, each derived design $(V \setminus \{v\}, \mathcal{B}'(v))$ is an $(n-1, t-1, \lambda)$ -design, with $V \setminus \{v\}$ not among the blocks in $\mathcal{B}'(v)$. By the induction hypothesis, $b \ge b'(v) =$ $|\mathcal{B}'(v)| \ge n-1$ for each $v \in V$. From here the proof proceeds as in the case t = 3.

3 Proof of Theorem 1

Lemma 1 If t > 1 and G is non-trivially uniformly (t, r)-regular, then G has no isolated vertices.

Proof. Suppose that u is an isolated vertex of G. Let G_1 be the subgraph of G induced by the non-isolated vertices of G. Since G is non-trivial, $0 < r < n(G_1)$, and, therefore, $t < n(G_1)$. Let S be a (t-1)-subset of $V(G_1)$, and $T = S \cup \{u\}$; then $|N_G(T)| = |N_G(S)| = r$. Since $r < n(G_1)$, there is some $w \in V(G_1) \setminus N_G(S)$, and, by the definition of G_1 , some $v \in V(G_1)$ adjacent to w. But then $|S \cup \{v\}| = t$ while $|N_G(S \cup \{r\})| \ge r + 1$, contradicting the assumption that G is uniformly (t, r)-regular. The main idea that starts the proof of Theorem 1 is due to Khodkar and Leach [8]. Suppose that G is non-trivially (t, r)-regular, $t \ge 3$. For $v \in V(G)$, let $B(v) = V(G) \setminus N_G(v)$, and $\mathcal{B} = [B(v)|v \in V(G)]$. By the Lemma, no $v \in V(G)$ is isolated, so $B(v) \ne V(G)$. Further, r < n (nontriviality of G) and $(V(G), \mathcal{B})$ is an (n, t, n - r)-design, with b = |V(G)| = n. Since $t \ge 3$, by Theorem 2, for each $v \in V(G)$ there is a $u \in V(G)$ such that $B(v) = V(G) \setminus \{u\}$. Thus G is a matching, and is thus trivially uniformly (t, r)-regular, after all.

References

- T. Beth, D. Jungnickel, and H. Lenz, *Design Theory*, Second Edition, Cambridge University Press, 1999.
- [2] R. Faudree and D. Knisley, The characterization of large (2, r)-regular graphs, *Congressus Numerantium* 121 (1996), 105-108.
- [3] T. Haynes and D. Knisley, Generalized maximum degree and totally regular graphs, *Utilitas Mathematica* 54 (1998), 211-221.
- [4] Teresa W. Haynes and Lisa R. Markus, Generalized maximum degree, Utilitas Mathematica 59 (2001), 155-165.
- [5] R. E. Jamison and P. D. Johnson Jr., The structure of (t, r)-regular graphs of large order, *Discrete Math.* 272 (2003), 297-300.
- [6] Robert Jamison, Peter Johnson, Lisa Markus, Evan Morgan, and Emine Yazici, Strong (t, r)-regularity, submitted.
- [7] P. D. Johnson Jr. and E. J. Morgan, Sharpening the Faudree-Knisley theorem on (2, r)-regularity, *Bulletin of the ICA* 29 (2003), 21-26.
- [8] A Khodkar and C. D. Leach, On (2, r)-regular graphs, to appear in the *Bulletin of the ICA*.
- [9] Abdollah Khodkar, David Leach, and David Robinson, Every (2, r)-regular graph is strongly regular, submitted.
- [10] Douglas B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.