There Are No Non-Trivially Uniformly (t, r)-Regular Graphs for $t>2$.

Dean Hoffman ${ }^{1}$, Peter Johnson ${ }^{1}$, Kevin Lin ${ }^{2}$, John McSorley ${ }^{3}$, Caleb Petrie ${ }^{4}$, and Luc Teirlinck ${ }^{1}$
${ }^{1}$ Department of Mathematics and Statistics, Auburn University, AL 36849 johnspd@auburn.edu
${ }^{2}$ University of California, Berkeley
${ }^{3}$ Department of Mathematics
Southern Illinois University
Carbondale, Illinois 62901-4408
${ }^{4}$ Biola University

Abstract

A finite simple graph is uniformly (t, r)-regular if it has at least t vertices and the open neighbor set of each set of t of its vertices is of cardinality r. If $t>1$, such a graph is trivially uniformly (t, r)-regular if either it is a matching $(t=r)$ or r is the number of non-isolated vertices in the graph. We prove the result stated in the title.

1 Uniform (t, r)-regularity

All graphs will be finite and simple, in this paper, and notation will largely be as in [10]. If G and H are graphs, $V(G)$ is the vertex set of $G, G+H$ is the disjoint union of G and H, and for a positive integer $m, m G=G+\cdots+G$ (m summands). If $u \in V(G), N_{G}(u)=\{v \in V(G) \mid u$ and v are adjacent in $G\}$, and if $S \subseteq V(G), N_{G}(S)=\bigcup_{u \in S} N_{G}(u)$, the open neighbor set of S in G. The order of G will be denoted by $n(G)(=|V(G)|)$, or just n, if G is the only graph in the discussion.
G is uniformly (t, r)-regular if $1 \leq t \leq n$ and for each $S \subseteq V(G)$ with $|S|=t,\left|N_{G}(S)\right|=r$. This property of graphs was introduced in [4] as " (t, r)-regularity"; the problem with that terminology is that it is also used for a seemingly similar but rather less exigent property, introduced in [3] and written on in [2], [5], and [7]. In [6] the word "strong" plays the role we assign to "uniform" here; we abandon that terminology because it misleadingly suggests an analogy with strong regularity of graphs. There is a powerful connection between the two when $t=2$ (see [9]), but the analogy at the definitional level is distant.

Uniform (1,r)-regularity is just plain r-regularity. When $t>1$ there are two easily found classes of uniformly (t, r)-regular graphs:
(i) $G=m K_{2}$ for some $m \geq t / 2$, a matching. In this case, $t=r$.
(ii) $r=n\left(G_{1}\right)$, where G_{1} is the subgraph of G induced by the non-isolated vertices of G, and t is "sufficiently large". Indeed, as noted in [6], if $r=n\left(G_{1}\right)>0$ and $n(G)-\delta\left(G_{1}\right)+1 \leq t \leq n(G)$ then G is uniformly (t, r)-regular, but G is not uniformly $\left(n(G)-\delta\left(G_{1}\right), r\right)$-regular. And if $r=n\left(G_{1}\right)=0$ then $G=n K_{1}$ and is uniformly $(t, 0)$-regular for all $t=1, \ldots, n$.

For $t>1$, uniform (t, r)-regularity due to either condition (i) or (ii) will be called trivial, and the big question (raised in [6]) is: are there non-trivially uniformly (t, r)-regular graphs, and, if so, what are they?

This question has been satisfactorily answered for $t=2$. Any "strongly regular graph with $\lambda=\mu>0$ ", that is, a regular graph G, say with degree $d>0$, not complete, for which there exists μ such that for any two distinct $u, v \in V(G),\left|N_{G}(u) \cap N_{G}(v)\right|=\mu$, is non-trivially uniformly $(2,2 d-\mu)$ regular. There are infinitely many such graphs (see, e.g., [8]), and it has recently been shown [9] that there are no other non-trivially uniformly $(2, r)$ regular graphs besides these. Here we settle the question for $t>2$. The proof of the following theorem is postponed until section 3.

Theorem 1 If $t>2$ then for no r does there exist a non-trivially uniformly (t, r)-regular graph.

2 An excursion into designs

If $n \geq t>0$, an (n, t, λ)-design is a pair (V, \mathcal{B}) where V is a set with n elements ("points") and $\mathcal{B}=[B(i) \mid i \in I]$ is an indexed collection of subsets of V ("blocks") such that for each $T \subseteq V$ with $|T|=t,|\{i \in I \mid T \subseteq B(i)\}|=\lambda$. (That is, any t points of V lie together in exactly λ blocks.) We require \mathcal{B} to be an indexed collection because we want to allow "repeated blocks"; that is, it may be that $B(i)=B(j)$ even though $i \neq j$. Also note that there is no requirement that the blocks be of the same size. Given such a design, let $b=|I|$, the number of blocks.

Fisher's Inequality [1, Theorem 2.6, p.66] If (V, \mathcal{B}) is an ($n, 2, \lambda$)-design with $\lambda>0$ and V not appearing as a block, then $b \geq n$.

Theorem 2 If $t>2, \lambda>0$, and (V, \mathcal{B}) is an (n, t, λ)-design with V not appearing as a block, then $b \geq n$ with equality if and only if \mathcal{B} can be reindexed to be $[V \backslash\{v\} \mid v \in V]$.

Proof. We go by induction on t, starting with $t=3$. For each $v \in V$, let $I(v)=\{i \in I \mid v \in B(i)\}$ and consider the derived design $\left(V \backslash\{v\}, \mathcal{B}^{\prime}(v)\right)$, where $\mathcal{B}^{\prime}(v)=[B(i) \backslash\{v\} \mid i \in I(v)]$. Each derived design is an $(n-1,2, \lambda)$ design (because $t=3$) and $V \backslash\{v\}$ does not appear in $\mathcal{B}^{\prime}(v)$ because V does not appear in \mathcal{B}. By Fisher's inequality, $b^{\prime}(v)=|I(v)| \geq n-1$. On the other hand, $b^{\prime}(v) \leq b$.

If $b=n-1$, then $b^{\prime}(v)=n-1=b$, for every $v \in V$, so $I(v)=I$ for every v. But then $v \in B(i)$ for every $i \in I$, and every v, so, not only does V appear in \mathcal{B}, it is equal to $B(i)$ for each i, wildly contrary to hypothesis. So $b \geq n$, as asserted. Suppose that $b=n$. Then $b^{\prime}(v)=|I(v)|=n$ or $n-1$ for each $v \in V$-i.e., v is in every block of \mathcal{B} or in every block but one.

On the other hand, each block of \mathcal{B} is missing some element of V. Think of a bipartite graph with bipartition V, I, with $v \in V$ adjacent to $i \in I$ if and only if $v \notin B(i)$. Then each $v \in V$ has degree ≤ 1 in this graph, and each $i \in I$ has degree ≥ 1, and $|V|=n=b=|I|$. Thus the bipartite graph is a matching, and \mathcal{B}, possibly after renaming, is $[V \backslash\{v\} \mid v \in V]$.

Now suppose that $t>3$. With $I(v)$ and $\mathcal{B}^{\prime}(v), v \in V$, defined as above, each derived design $\left(V \backslash\{v\}, \mathcal{B}^{\prime}(v)\right)$ is an $(n-1, t-1, \lambda)$-design, with $V \backslash\{v\}$ not among the blocks in $\mathcal{B}^{\prime}(v)$. By the induction hypothesis, $b \geq b^{\prime}(v)=$ $\left|\mathcal{B}^{\prime}(v)\right| \geq n-1$ for each $v \in V$. From here the proof proceeds as in the case $t=3$.

3 Proof of Theorem 1

Lemma 1 If $t>1$ and G is non-trivially uniformly (t, r)-regular, then G has no isolated vertices.

Proof. Suppose that u is an isolated vertex of G. Let G_{1} be the subgraph of G induced by the non-isolated vertices of G. Since G is non-trivial, $0<$ $r<n\left(G_{1}\right)$, and, therefore, $t<n\left(G_{1}\right)$. Let S be a $(t-1)$-subset of $V\left(G_{1}\right)$, and $T=S \cup\{u\}$; then $\left|N_{G}(T)\right|=\left|N_{G}(S)\right|=r$. Since $r<n\left(G_{1}\right)$, there is some $w \in V\left(G_{1}\right) \backslash N_{G}(S)$, and, by the definition of G_{1}, some $v \in V\left(G_{1}\right)$ adjacent to w. But then $|S \cup\{v\}|=t$ while $\left|N_{G}(S \cup\{r\})\right| \geq r+1$, contradicting the assumption that G is uniformly (t, r)-regular.

The main idea that starts the proof of Theorem 1 is due to Khodkar and Leach [8]. Suppose that G is non-trivially (t, r)-regular, $t \geq 3$. For $v \in V(G)$, let $B(v)=V(G) \backslash N_{G}(v)$, and $\mathcal{B}=[B(v) \mid v \in V(G)]$. By the Lemma, no $v \in V(G)$ is isolated, so $B(v) \neq V(G)$. Further, $r<n$ (nontriviality of G) and $(V(G), \mathcal{B})$ is an $(n, t, n-r)$-design, with $b=|V(G)|=n$. Since $t \geq 3$, by Theorem 2, for each $v \in V(G)$ there is a $u \in V(G)$ such that $B(v)=V(G) \backslash\{u\}$. Thus G is a matching, and is thus trivially uniformly (t, r)-regular, after all.

References

[1] T. Beth, D. Jungnickel, and H. Lenz, Design Theory, Second Edition, Cambridge University Press, 1999.
[2] R. Faudree and D. Knisley, The characterization of large ($2, r$)-regular graphs, Congressus Numerantium 121 (1996), 105-108.
[3] T. Haynes and D. Knisley, Generalized maximum degree and totally regular graphs, Utilitas Mathematica 54 (1998), 211-221.
[4] Teresa W. Haynes and Lisa R. Markus, Generalized maximum degree, Utilitas Mathematica 59 (2001), 155-165.
[5] R. E. Jamison and P. D. Johnson Jr., The structure of (t, r)-regular graphs of large order, Discrete Math. 272 (2003), 297-300.
[6] Robert Jamison, Peter Johnson, Lisa Markus, Evan Morgan, and Emine Yazici, Strong (t, r)-regularity, submitted.
[7] P. D. Johnson Jr. and E. J. Morgan, Sharpening the Faudree-Knisley theorem on (2, r)-regularity, Bulletin of the ICA 29 (2003), 21-26.
[8] A Khodkar and C. D. Leach, On (2, r)-regular graphs, to appear in the Bulletin of the ICA.
[9] Abdollah Khodkar, David Leach, and David Robinson, Every (2,r)regular graph is strongly regular, submitted.
[10] Douglas B. West, Introduction to Graph Theory, Second Edition, Prentice Hall, 2001.

