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Abstract

A vertex|matching-partition (V |M) of a simple graph G is a span-
ning collection of vertices and independent edges of G. Let vertex
v ∈ V have weight wv and edge e ∈ M have weight we. Then
the weight of V |M is w(V |M) =

∏
v∈V wv ·

∏
e∈M we. Define the

vertex|matching-partition function of G as W(G) =
∑

V |M w(V |M).
In this paper we study this function when G is a path and a cycle.
We generate all orthogonal polynomials as vertex|matching-partition
functions of suitably labelled paths, and indicate how to find their
derivatives in some cases. Here Taylor’s Expansion is used and an
application to associated polynomials is given. We also give a combi-
natorial interpretation of coefficients in the case of multiplicative and
additive weights. Results are extended to the weighted cycle.
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1 Vertex|Matching-Partition Function, 3-Term

Recurrence for Orthogonal Polynomials

In this paper we define a vertex|matching-partition and the vertex|matching-
partition function of a simple graph. The vertex|matching-partition function
of a path was briefly discussed without development in Viennot [7, pp.VI-
9], (see also Viennot [8]). Here we develop this idea further by showing
how to generate any orthogonal polynomial as the vertex|matching-partition
function of a suitably weighted path; many examples are given. We extend
our results to the vertex|matching-partition function of a weighted cycle.
Finally, we show how to generate derivatives of some orthogonal polynomials,
and consider an application to the associated polynomials of Van Assche [6].

Let G be a simple graph with vertices V (G) and edges E(G). A match-
ing M of G is a set of edges in E(G), no two of which are incident. For
a matching M of G, let VM = V denote the vertices of G which are not
incident to any edge in M . Call the pair V |M a vertex|matching-partition or
a vm-partition of G. For every v ∈ V (G) and every vm-partition V |M of G,
either v ∈ V or v is incident to an edge in M which (with a slight abuse of
notation) we write as v ∈ M , but not both. Call V the vertex-set and M the
matching of the vm-partition V |M . Let V∅ denote the empty vertex-set, and
M∅ the empty matching.

Let v ∈ V (G) have weight wv, and let e = (u, v) ∈ E(G) have weight
we = w(u,v). Now define the weight of a vm-partition V |M as

w(V |M) =
∏

v∈V

wv ·
∏

e∈M

we, (1)

where products over V∅ and M∅ are 1.

Finally define the vm-partition function of G as:

W(G) =
∑

V |M

w(V |M),

where the summation is over all vm-partitions V |M of G.
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Weighted Path P (n)

Let λ and µ be arbitrary variables, and let P (n) be the weighted path
on the n + 1 vertices {0, 1, . . . , n}, see below. The vertex labels {0, 1, . . . , n}
are shown below the path. The weights of the vertices and edges are shown
above the path. We call this Model I.

• • • • • •
λ µw(0,1)

w1 w(1,2)
w2 w(2,3)

w3

· · ·
wn−1 w(n−1,n)

wn

0 1 2 3 n−1 n

Let Pn be the vm-partition function of P (n), i.e.,

Pn = W(P (n)).

With P−1 = µ and P0 = λ we have,

Theorem 1.1 For n ≥ 1,

Pn = wnPn−1 + w(n−1,n)Pn−2. (2)

Proof. Note that P0 = W(P (0)) = λ and P1 = W(P (1)) = λw1 +µw(0,1).
Now, for n ≥ 1, consider vertex n, the last vertex of P (n); it has weight wn.
Let V |M be an arbitrary vm-partition of P (n), so either n ∈ V or n ∈ M .

If n ∈ V then wn occurs as a factor of w(V |M). Upon factoring out wn

we obtain the weight of a vm-partition of P (n − 1); conversely, given the
weight of any vm-partition of P (n− 1), its product with wn gives the weight
of a vm-partition of P (n) which contains n in its vertex-set. This accounts
for the first term in the right-hand side of (2).

If n ∈ M then w(n−1,n) occurs as a factor in w(V |M) and, by a simi-
lar argument to above, the sum of the weights of all such vm-partitions is
w(n−1,n)Pn−2, the second term in the right-hand side of (2).

Thus

Pn = wnPn−1 + w(n−1,n)Pn−2

=
∑

V |M
n∈V

w(V |M) +
∑

V |M
n∈M

w(V |M),
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where the first summation is over all vm-partitions of P (n) which contain
vertex n in its vertex-set, V ; the second over all vm-partitions of P (n) which
contain n in its matching, M . We say that equation (2) comes from decom-
posing Pn at vertex n.

Thus any sequence of polynomials which obey the 3-term recurrence (2)
can be obtained as the sequence of vm-partition functions of P (n); in par-
ticular orthogonal polynomials obey such a 3-term recurrence.

Example 1

P0 = W(P (0)) = λ
P1 = W(P (1)) = λw1 + µw(0,1)

P2 = W(P (2)) = λw1w2 + µw2w(0,1) + λw(1,2)

P3 = W(P (3)) = λw1w2w3+µw2w3w(0,1)+λw3w(1,2)+λw1w(2,3)+µw(0,1)w(2,3).

For example P3 comes from P (3), shown below

• • • •
λ µw(0,1)

w1 w(1,2)
w2 w(2,3)

w3

0 1 2 3

which has 5 vm-partitions:

vm-partition

• • • •
0 1 2 3

M∅

• •
2 3

• •
0 1

• •
0 3

• •
1 2

• •
0 1

• •
2 3

V∅ • •
0 1

• •
2 3

weight

λw1w2w3

w2w3µw(0,1)

λw3w(1,2)

λw1w(2,3)

µw(0,1)w(2,3)
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We now consider the two fundamental solutions to recurrence (2), fn and
gn.

The first fundamental solution, fn, of recurrence (2) is the solution with
initial values f−1 = µ = 0 and f0 = λ = 1. Thus, from Model I, decomposing
Pn at vertex 0, fn is the vm-partition function of

(3)• • • • •
w1 w(1,2)

w2 w(2,3)
w3

· · ·
wn−1 w(n−1,n)

wn

1 2 3 n−1 n

The second fundamental solution, gn, has g−1 = µ = 1 and g0 = λ = 0.
Thus, using Model I again, gn = w(0,1) × the vm-partition function of the
path

(4)• • • •
w2 w(2,3)

w3

· · ·
wn−1 w(n−1,n)

wn

2 3 n−1 n

Now, decomposing Pn at vertex 0, gives:

Theorem 1.2 For n ≥ 1,

Pn = λfn + µgn.

Remark 1.3 Let G be a graph with V (G) = {1, . . . , n} with vertex weights
wv for v ∈ V (G), and edge weights we for any edge e ∈ E(G), and with
vm-partition function G.
(i) Suppose we replace any particular vertex weight wv′ with ηwv′, and
replace the weights we′ on all edges e′ incident to v′ with weight ηwe′, then
the vm-partition function of this new graph is ηG.
(ii) Extending (i), suppose we replace every vertex weight wv with ηwv, and
replace every edge weight we with weight η2we, then the vm-partition func-
tion of this graph is ηnG.

As mentioned above, orthogonal polynomials obey a 3-term recurrence,
the next few examples involve well-known orthogonal polynomials.
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Example 2 Chebyshev polynomials. U−1(x) = 0 and U0(x) = 1.

Consider the recurrence below for n ≥ 1,

Pn = 2xPn−1 −Pn−2. (5)

The Chebyshev polynomials of the second kind, Un(x), are the first funda-
mental solution of this recurrence, i.e., Un(x) = fn(x), (µ = U−1 = 0, λ =
U0 = 1). Thus, comparing (5) with (2), then using (3) with wn = 2x for
n ≥ 1 and w(n−1,n) = −1 for n ≥ 2, we see that Un(x) is the vm-partition
function of

(6)• • • • •
2x −1 2x −1 2x

· · ·
2x −1 2x

1 2 3 n−1 n

The number of k-matchings in P (n) is
(

n−k
k

)
, see Godsil [3, p. 2], so

Un(x) =

bn
2
c∑

k=0

(−1)k

(
n − k

k

)
(2x)n−2k. (See Riordan [4, p. 59].)

The Chebyshev polynomials of the first kind, Tn(x), are given by Tn(x) =
fn(x) + x gn(x), (µ = T−1 = x, λ = T0 = 1). Thus Tn(x) is the vm-partition
function of

(7)• • • • • •
1 −x 2x −1 2x −1 2x

· · ·
2x −1 2x

0 1 2 3 n−1 n

Now decompose Tn(x) at vertex 0 which has weight 1. This gives Tn(x) =
1 · Un(x) + (−x) · Un−1(x), i.e.,

Tn(x) = Un(x)− xUn−1(x),

a well-known formula which involves both types of Chebyshev polynomials.
We derive the explicit formula for Tn(x) later in Example 7.
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Example 3 Associated Legendre polynomials. ρ−1(x) = 1 and ρ0(x) = 1.

Consider the recurrence below for n ≥ 1,

Pn = (x + 2)Pn−1 −Pn−2.

With µ = ρ−1 = 1 and λ = ρ0 = 1 we get the associated Legendre poly-
nomials, ρn(x) = fn(x) + gn(x), see Riordan [4, p. 66] . Thus, ρn(x) is the
vm-partition function of

(8)• • • • • •
1 −1 x + 2 −1 x + 2 −1 x + 2

· · ·
x + 2 −1 x + 2

0 1 2 3 n−1 n

Un(x
2

+ 1) is the vm-partition function of

• • • • •
x + 2 −1 x + 2 −1 x + 2

· · ·
x + 2 −1 x + 2

1 2 3 n−1 n

Decomposing the vm-partition function of (8), ρn(x), at vertex 0 yields

ρn(x) = Un

(x

2
+ 1

)
− Un−1

(x

2
+ 1

)
,

for n ≥ 0, see Riordan [4, p. 85] .

Example 4 Bessel polynomials. θ−1(x) = 1
x

and θ0(x) = 1.

Consider the recurrence below for n ≥ 1,

Pn = (2n − 1)Pn−1 + x2Pn−2.

The Bessel polynomials, θn(x), are the solutions of this recurrence with µ =
θ−1 = 1

x
and λ = θ0 = 1, i.e., θn(x) = fn(x) + 1

x
gn(x). Thus, θn(x) is the

vm-partition function of

• • • • • •
1 x 1 x2 3 x2 5

· · ·
2n − 3

x2 2n − 1

0 1 2 3 n−1 n
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For the polynomials θn(x
−1) the model is

• • • • • •
1 x−1 1 x−2 3 x−2 5

· · ·
2n − 3

x−2 2n − 1

0 1 2 3 n−1 n

Let yn(x) = xnθn(x
−1) be the reciprocal Bessel polynomials (see Rior-

dan [4, p. 77] ), then, modifying Remark 1.3(i) for the n vertices {1, . . . , n}
with η = x, we see that yn(x) is the vm-partition function of

• • • • • •
1 1 x 1 3x 1 5x

· · ·
(2n − 3)x 1 (2n − 1)x

0 1 2 3 n−1 n

By decomposing at vertex n we can derive the recurrence for yn = yn(x),

yn = (2n − 1)xyn−1 + yn−2,

with y−1 = y0 = 1.

Example 5 Hermite polynomials. H−1(x) = 0 and H0(x) = 1.

Consider the recurrence below for n ≥ 1,

Pn = 2xPn−1 − (2n − 2)Pn−2.

The Hermite polynomials, Hn(x), are the first fundamental solution of this
recurrence, i.e., Hn(x) = fn(x), (µ = H−1 = 0, λ = H0 = 1). Thus, using
(3), Hn(x) is the vm-partition function of

• • • • •
2x −2 2x −4 2x

· · ·
2x −2(n − 1) 2x

1 2 3 n−1 n

Now the coefficient of xn−2k in the vm-partition function of the above
weighted path is

2n−2k(−2)k
∑

Nk

∏

i∈Nk

i (9)

where Nk is a k-subset of {1, . . . , n − 1} in which no two elements are con-
secutive. Using (9) and the well-known formula:

Hn(x) =

bn
2
c∑

k=0

(−1)k n!

k! (n − 2k)!
(2x)n−2k,
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we have:

Corollary 1.4 Let Nk be a k-subset of {1, . . . , n − 1} in which no two
elements are consecutive. Then

∑

Nk

∏

i∈Nk

i =
n!

k! (n − 2k)! 2k
.

For example, if n = 7, k = 3, then N3 can be any of the four subsets
{1, 3, 5}, {1, 3, 6}, {1, 4, 6}, or {2, 4, 6}. We have

1 · 3 · 5 + 1 · 3 · 6 + 1 · 4 · 6 + 2 · 4 · 6 =
7!

3! 1! 23
5.

Remark 1.5 Note the polynomials Hen which satisfy the recurrence Hen =
xHen−1 − (n− 1)Hen−2. This recurrence arises by dividing all of the above
weights by 2, and the relation Hn(x) = 2n/2 Hen(x

√
2) corresponds to Re-

mark 1.3(ii).

Example 6 q-Lommel polynomials. U−1(x; a, b) = 0 and U0(x; a, b) = 1.

Consider the recurrence below for n ≥ 1,

Pn = x (1 + aqn−1)Pn−1 − bqn−2Pn−2.

Then the first fundamental solution of this recurrence, fn(x), are the poly-
nomials Un(x; a, b) which appear in Al-Salam and Ismail [1].

For example U1(x; a, b) = x (1+a) and U2(x; a, b) = x2 (1+a)(1+aq)−b.

Using (3), Un(x; a, b) is the vm-partition function of

• • • •
x(1 + a) −b x(1 + aq)

· · ·
x(1 + aqn−2)−bqn−2 x(1 + aqn−1)

1 2 n−1 n

Note that, as stated in Al-Salam and Ismail [1], Un( 2
x
;−qv, qv) are the

q-Lommel polynomials of Ismail [5].
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Weighted Cycle C(n)

The weighted path Model I generates Pn = λfn + µgn where fn is the
first fundamental solution of recurrence (2) and gn is the second fundamental
solution. Consider C(n), the cycle with n vertices and n edges, weighted as
shown in Fig. 1. Call this Model II.

•

•

• •

•

w3

w(2,3)

w2

λw(1,2)

λw1 µw(0,1)
wn

w(n−1,n)

wn−1

3

2

1 n

n−1

Figure 1. Weighted C(n)

Let Cn be the vm-partition function of C(n), i.e.,

Cn = W(C(n)).

Compare Theorem 1.2.

Theorem 1.6 For n ≥ 1,

Cn = λfn + µgn−1.

Proof. Let us decompose Cn at vertex n. This yields 3 types of vm-
partitions of C(n). (a) Those for which vertex n lies in the vertex set. From
Model II above, and using (3) for fn−1 and Remark 1.3 (i) on vertex 1 with
η = λ, we see that these vm-partitions sum to wn · λfn−1. (b) Those which
contain edge (n−1, n); these sum to w(n−1,n) ·λfn−2. Thus the vm-partitions
in (a) and (b) together sum to λ(wnfn−1 + w(n−1,n)fn−2) = λfn. (c) Those
which contain edge (n, 1). The sum of these is µgn−1, using (4).

The vm-partitions in (a), (b), and (c) partition the set of vm-partitions
of C(n), thus Cn = λfn + µgn−1, as required.
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Example 7 Here we use Model II to generate Tn(x), the Chebyshev poly-
nomials of the first kind, and derive the explicit form for Tn(x) as mentioned
in Example 2.

Let Tn = λfn + µgn−1, where fn and gn are the fundamental solutions of
(5). The values T0 = 1 and T1 = x give λ = µ = 1

2
i.e., Tn = 1

2
fn + 1

2
gn−1.

Thus Tn(x) is the vm-partition function of the weighted cycle in Fig. 2.

•

•

• •

•

2x

−1

2x

−1/2

x −1/2 2x

−1

2x

3

2

1 n

n−1

Figure 2. Chebyshev weights

And, using Remark 1.3(i) at vertex 1 with η = 2, we see that 2Tn(x) is the
vm-partition function of the weighted cycle in Fig. 3.

•

•

• •

•

2x

−1

2x

−1

2x −1 2x

−1

2x

3

2

1 n

n−1

Figure 3. Chebyshev weights

See Godsil [3, p. 144].
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The number of k-matchings in C(n) is n
n−k

(
n−k

k

)
, see Godsil [3, p. 14], so

2Tn(x) =

bn
2
c∑

k=0

(−1)k n

n − k

(
n − k

k

)
(2x)n−2k.

Now decompose 2Tn(x) at edge (n, 1). A vm-partition of Fig. 3 which does
not contain edge (n, 1) is a vm-partition of the path (6), the sum of all such
vm-partitions is Un(x). Similarly, the sum of the vm-partitions of Fig. 3
which contain edge (n, 1) is −Un−2(x). Thus we get

2Tn(x) = Un(x) − Un−2(x),

the well-known relation between the two types of Chebyshev polynomials,
see Riordan [4, p. 59] .

Example 8 Let t and u be arbitrary variables and consider the recurrence

Pn = (t + u)Pn−1 − tuPn−2. (10)

Now An = tn + un is a solution with A−1 = t−1 + u−1 = t+u
tu

and A0 = 2.
Thus An = 2fn + t+u

tu
gn where fn and gn are the fundamental solutions to

(10), and we could use Model I to generate An. However, a better generation
is given by Model II: solving An = λfn + µgn−1 at n = 0 yields λ = µ = 1.
Thus, for n ≥ 1, An = fn + gn−1 is the vm-partition function of the weighted
cycle in Fig. 4.

•

•

• •

•

t + u

−tu

t + u

−tu

t + u −tu t + u

−tu

t + u

3

2

1 n

n−1

Figure 4. General Chebyshev weights
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Similar to Example 7 we have,

bn
2
c∑

k=0

(−1)k n

n − k

(
n − k

k

)
(t + u)n−2k(tu)k = tn + un,

a ‘very old’ identity, see Riordan [4, p. 58] .

It seems worthwhile to mention that fn is the vm-partition function of

• • • • •
t + u −tu t + u −tu t + u

· · ·
t + u −tu t + u

1 2 3 n−1 n

and it is straightforward to prove by induction that fn =
∑n

i=0 tn−i ui =
tn+1 − un+1

t − u
, which is valid for t 6= u. Now the matchings polynomial of Pn

is
∑bn

2
c

k=0

(
n−k

k

)
xk, thus we have,

bn
2
c∑

k=0

(−1)k

(
n − k

k

)
(t + u)n−2k(tu)k =

n∑

i=0

tn−i ui =
tn+1 − un+1

t − u
,

which is valid for t 6= u.
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2 Derivatives of vm-Partition Functions

Vertex Weights containing x

Consider Model I in which each vertex weight has been multiplied by a
variable x. The other weight parameters λ, wv, and w(u,v) do not contain x.
This gives the weighted path P (n) as shown below. Call this Model I, the
case of multiplicative weights.

• • • • • •
xλ µw(0,1)

xw1 w(1,2)
xw2 w(2,3)

xw3

· · ·
xwn−1 w(n−1,n)

xwn

0 1 2 3 n−1 n

Let Pn(x) = Pn = W(P (n)) be the vm-partition function of this weighted

path, and let P(k)

n denote its k-th derivative with respect to x for k ≥ 1.

Let Vk = {v1, . . . , vk} be a set of k distinct vertices of P (n) and let
P (n) − Vk be the graph obtained when these k vertices and their incident
edges are removed. The empty graph is the graph with no vertices and no
edges, let its vm-partition function be 1.

Before the main result in this section we need:

For each i = 1, . . . ,m let Si be a weighted path. Let S = S1 ∪ S2 ∪ · · · ∪ Sm

be a disjoint union of m such paths. Let S∗ denote the path obtained from S
by joining the last vertex of S1 to the first vertex of S2, then the last vertex
of S2 to the first vertex of S3, ... , and so on. Let these m − 1 new edges all
have weight 0. Then, it is straightforward to prove,

Lemma 2.1
W(S) = W(S∗).

Now the main result in this section. (See Godsil [3, p. 2] for a similar
result with k = 1.)
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Theorem 2.2 For any n ≥ 0 and k ≥ 1, the k-th derivative of Pn is
given by

P(k)

n = k!
∑

Vk

wv1 · · ·wvk
W(P (n) − Vk), (11)

where the sum is over every Vk = {v1, . . . , vk}, a k-set of vertices of P (n).

Proof. For k = 1 denote P(1)

n by P ′
n, we use induction on n. First,

for n = 0, we have P0 = xλ and so P ′
0 = λ as the left-hand side of

(11); and the right-hand side equals λW(P (0) − {0}) = λ also, because
P (0) − {0} is the empty graph. For n = 1 we have P1 = x2λw1 + µw(0,1),

and P′
1 = 2xλw1 as the left-hand side of (11); the right-hand side equals

λW(P (1) − {0}) + w1W(P (1) − {1}) = λxw1 + w1xλ = 2xλw1, as required.

For n ≥ 2, Pn = xwnPn−1 + w(n−1,n)Pn−2. So, using the product rule
for derivatives at the first line, the induction hypothesis at the second line,
and a modification of (2) to include the vm-partition function of a union of
2 paths (see Lemma 2.1 with m = 2) at the fourth line, we have

P ′
n = wnPn−1 + xwnP

′
n−1 + w(n−1,n)P

′
n−2,

= wnPn−1 + xwn

n−1∑

v=0

wvW(P (n − 1) − {v})

+w(n−1,n)

n−2∑

v=0

wvW(P (n − 2) − {v})

= wnPn−1 + xwnwn−1W(P (n − 1) − {n − 1})

+

n−2∑

v=0

wv{xwnW(P (n − 1) − {v}) + w(n−1,n)W(P (n − 2) − {v})}

= wnPn−1 + xwnwn−1Pn−2 +
n−2∑

v=0

wvW(P (n) − {v})

=

n∑

v=0

wvW(P (n) − {v}),

as required. So (11) is true for k = 1.
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Now we induct on k, so assume (11) is true for k, then

P(k)

n = k!
∑

Vk

wv1 · · ·wvk
W(P (n) − Vk), and

P(k+1)

n = P(k)′

n = k!
∑

Vk

wv1 · · ·wvk
W(P (n) − Vk)

′.

Now the graph P (n) − Vk is a disjoint union of paths, hence, from Lemma 2.1
and the above,

P(k+1)

n = k!
∑

Vk

wv1 · · ·wvk


 ∑

vk+1 /∈Vk

wvk+1
W((P (n) − Vk) − {vk+1})


 .

Each set Vk ∪ {vk+1} will appear k + 1 times, so

P(k+1)

n = (k + 1)!
∑

Vk+1

wv1 · · ·wvk+1
W(P (n) − Vk+1),

where the sum is over every Vk+1 = {v1, . . . , vk+1}, a (k + 1)-set of vertices
of P (n); thus the induction goes through and (11) is true for all k ≥ 1.

From Taylor’s Expansion we have the following Corollaries, in which the
notation x = y means replace x by y, etc:

Corollary 2.3 The polynomials Pn(x) satisfy the identity

Pn(x + y) =

n+1∑

k=0

xk
∑

Vk

wv1 · · ·wvk
W(P (n) − Vk)

∣∣∣∣
x=y

Setting y = 0 gives

Corollary 2.4 The vm-partition function for P (n) with multiplicative weights
is

Pn(x) =
n+1∑

k=0

xk
∑

Vk

wv1 · · ·wvk
W(P (n) − Vk)

∣∣∣∣
x=0

17



Thus, we have a combinatorial interpretation of the coefficients of xk in the
case of multiplicative weights.

A special case of Corollary 2.4 is given by

Pn = Pn(1) =
n+1∑

k=0

∑

Vk

wv1 · · ·wvk
W(P (n) − Vk)

∣∣∣∣
x=0

which corresponds to arranging the terms of Pn so that we sum over the
vm-partitions V |M where |V | = k for k = 0, . . . n + 1.

We now give an alternative derivation of the above formula in Corol-
lary 2.4.

A perfect matching of a graph with an even number of vertices is a set
of edges, no two of which are incident and which cover every vertex exactly
once. Clearly a path with an even number of vertices has a unique perfect
matching obtained by choosing its left-most edge and then every second edge.

We say that the graph P (n)− Vk for any k = 0, . . . , n + 1 is composed of
k + 1 segments. Each segment is a path; we allow for an empty path if two
of the vertices in Vk are adjacent in P (n), or if vertex 0 ∈ Vk then the first
segment in P (n) − Vk is the empty path, similarly if vertex n ∈ Vk then the
last segment in P (n) − Vk is the empty path.

Now clearly W(P (n) − Vk)|x=0 = 0 unless each of the k + 1 segments
in P (n) − Vk is either the empty path or a path with an even number of
vertices, since in a path with an odd number of vertices every vm-partition
must contain at least one isolated vertex and hence every vm-partition has
weight 0. In this former case we have W(P (n) − Vk)|x=0 =

∏
e∈M we, where

M is the following set of edges: the first edge in the first non-empty segment
of P (n) − Vk followed by every second edge in this segment, then the first
edge in the second non-empty segment of P (n)−Vk followed by every second
edge in this segment,..., and so on. That is, M is the unique perfect matching
of P (n) − Vk.

Now, from (1), modified for the case of multiplicative weights, a typical
term in Pn(x) is

∏
v∈V x|V |wv ·

∏
e∈M we, where we now see that M is the

unique perfect matching of P (n) − V . Hence, setting |V | = k we have:

18



Pn(x) =
n+1∑

k=0

∑

Vk

∏

v∈Vk

xkwv ·
∏

e∈M

we

=
n+1∑

k=0

xk
∑

Vk

wv1 · · ·wvk
W(P (n) − Vk)

∣∣∣∣
x=0

as above.

The polynomials Un(x) from Example 2, Hn(x) from Example 5, and
Un(x; a, b) from Example 6 can be generated by Model I.

Example 9 H4(x) is the vm-partition function of

• • • •
2x −2 2x −4 2x −6 2x

1 2 3 4

So H4(x) = 16x4 − 48x2 +12 and its second derivative H
(2)
4 (x) = 192x2 − 96.

{1, 2} 2x −6 2x
• •
3 4

2 · 2 · (4x2 − 6)

{1, 3} 2x 2x
• •
2 4

2 · 2 · 4x2

{1, 4} 2x −4 2x
• •
2 3

2 · 2 · (4x2 − 4)

{2, 3} 2x 2x
• •
1 4

2 · 2 · 4x2

{2, 4} 2x 2x
• •
1 3

2 · 2 · 4x2

{3, 4} 2x −2 2x
• •
1 2

2 · 2 · (4x2 − 2)

96x2 − 48

V2 = {v1, v2} P (4) − V2 wv1wv2W(P (4) − V2)

But k = 2 so 2! · (96x2 − 48) = 192x2 − 96 = H
(2)
4 (x).
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We have a similar result for Model I with vertex weights x−λ on vertex 0
and x−wv on vertex v ∈ {1, 2, . . . , n}, where λ, wv, and w(u,v) do not contain

x. Call this weighted path P̂ (n) and let P̂n be its vm-partition function; it

is shown below. We call this Model Î, the case of additive weights.

• • • •
x− λ µw(0,1)

x − w1
· · ·

x − wn−1 w(n−1,n)
x− wn

0 1 n−1 n

Example 10 Poisson-Charlier polynomials. P−1(x) = 0 and P0(x) = 1.
Consider the recurrence below for n ≥ 1,

Pn = (x − t − n + 1)Pn−1 + t(n − 1)Pn−2.

Then the first fundamental solution of this recurrence are the Poisson-Charlier
polynomials Pn(x, t), which can be generated by Model Î, shown below.

• • • •
(x − t) t (x − t − 1)

· · ·
(x − t − (n − 2)) (n − 1)t (x − t − (n − 1))

1 2 n−1 n

We have the following Theorem, the proof of which is similar to that of
Theorem 2.2.

Theorem 2.5 For any n ≥ 0 and k ≥ 1, the k-th derivative of P̂n is given
by

P̂(k)
n = k!

∑

Vk

W(P̂ (n) − Vk),

where the sum is over every Vk, a k-set of vertices of P̂ (n).

and as for Theorem 2.2 we have the Corollaries:

Corollary 2.6 The polynomials P̂n(x) satisfy the identity

P̂n(x + y) =
n+1∑

k=0

xk
∑

Vk

W(P̂ (n) − Vk)

∣∣∣∣
x=y
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and

Corollary 2.7 The vm-partition functionfor P̂ (n) with additive weights is

P̂n(x) =

n+1∑

k=0

xk
∑

Vk

W(P̂ (n) − Vk)

∣∣∣∣
x=0

As before, this gives a combinatorial interpretation of the coefficients of xk

in the case of additive weights.

We observe that:

W(P̂ (n) − Vk)

∣∣∣∣
x=0

= W(P (n) − Vk)

∣∣∣∣
x=−1

Finally, see Feinsilver, McSorley, and Schott [2] for an application of
Theorem 2.5 to Lommel polynomials.
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Segment Polynomials

Consider Model I. For any 0 ≤ ` ≤ m ≤ n let P (`,m) denote the
weighted subpath of P (n) starting at vertex ` and ending at vertex m,

• • • • •
w` w(`,`+1)

w`+1 w(`+1,`+2)
w`+2

· · ·
wm−1 w(m−1,m)

wm

` `+1 `+2 m−1 m

Now define
P`,m = W(P (`,m))

to be the vm-partition function of P (`,m).

Example 11
Starting with P (3) we have the weighted subpath P (1, 3):

• • •
w1 w(1,2)

w2 w(2,3)
w3

1 2 3

which has 3 vm-partitions:

vm-partition

• • •
1 2 3

M∅

•
3

• •
1 2

•
1

• •
2 3

weight

w1w2w3

w3w(1,2)

w1w(2,3)

Thus P1,3 = w1w2w3 + w3w(1,2) + w1w(2,3).

Note that P0,n = Pn for n ≥ 0. We also define P0,−1 = P−1 = µ. Then,
with the starting conditions P`,`−2 = 0 and P`,`−1 = 1, we have for m ≥ 1,

P`,m = wmP`,m−1 + w(m−1,m)P`,m−2.
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Example 12 With natural notation we see, from the weighted path (6)
in Example 2, that U`,m(x) = Um−`+1(x), for ` ≥ 1, these are Chebyshev
segment polynomials of the second kind. Similarly, from the weighted path
(7) we have T`,m(x) = Um−`+1(x), for ` ≥ 1, the Chebyshev segment polyno-
mials of the first kind. We also have ρ`,m(x) = ρm−`+1(x + 2), for ` ≥ 1, the
associated Legendre segment polynomials.

For orthogonal polynomials satisfying the three-term recurrence

x pn(x) = an+1 pn+1(x) + bn pn(x) + an pn−1(x)

with p−1(x) = 0, p0(x) = 1, i.e., the first fundamental solution to the re-
currence, the `th associated polynomials, p(n,`)(x) are the first fundamental
solution to the recurrence

x p(n,`)(x) = an+`+1 p(n+1,`)(x) + bn+` p(n,`)(x) + an+` p(n−1,`)(x)

(see Van Assche [6], with our notation a slight variant). In other words,
the subscripts on the coefficients are shifted up ` units. This corresponds
exactly to moving up ` vertices along the path, namely our segment polyno-
mials. Thus we have a (new) combinatorial interpretation of the associated
polynomials.

Equation 2.10 of Theorem 1 of [6] gives the relation

p′n(x) =

n∑

j=1

1

aj
pj−1(x) p(n−j,j)(x). (12)

This is the case k = 1 of our Theorem 2.2 which expands the first deriva-
tive of Pn(x) in terms of segment polynomials. Explicitly, we have

P ′
n =

n∑

v=0

wvP0,v−1Pv+1,n =
n∑

v=0

wvPv−1Pv+1,n. (13)

Furthermore, our model gives formulas for 2nd and higher derivatives of Pn

in terms of more complicated combinations of segment polynomials.
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Example 13 Note that equation (12) suggests the form of a convolution.
An example that illustrates this is given by the Gegenbauer polynomials,
Cλ

n(x), with generating function

G(x, v;λ) = (1 − 2xv + v2)−λ =
∞∑

n=0

vnCλ
n(x).

Differentiating both sides with respect to x gives

2vλ G(x, v;λ + 1) =
∞∑

n=0

vn(Cλ
n(x))′.

Or, for n ≥ 1,
(Cλ

n(x))′ = 2λCλ+1
n−1 (x).

Observe that the relation G(x, v;λ + µ) = G(x, v;λ)G(x, v;µ) may be read
as the statement that the sequence {Cλ+µ

n }n≥0 is the convolution of the se-
quences {Cλ

n}n≥0 and {Cµ
n}n≥0. Now, the case µ = 1 gives Cλ

n = Un, Cheby-
shev polynomials of the second kind. Thus,

(Cλ
n(x))′ = 2λCλ+1

n−1 (x) = 2λ
n∑

j=1

Cλ
n−j(x)Uj−1(x)

holds in general. In particular, taking λ = 1, recalling equation (12) to
the effect that the Un are their own associated/segment polynomials, we
have an exact correspondence with equations (12) and (13) for Chebyshev
polynomials of the second kind.
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Edge Weights containing x

Finally we consider derivatives with respect to variables on the edges of
Model I.

Consider Model I in which each weight has been multiplied by the variable
x. As before, other weight parameters do not contain x. Let Q(n) denote
this weighted path and let Qn be its vm-partition function, see below.

• • • • • •
λ xµw(0,1)

w1 xw(1,2)
w2 xw(2,3)

w3

· · ·
wn−1 xw(n−1,n)

wn

0 1 2 3 n−1 n

Let Mk = {e1, . . . , ek} be a k-matching of Q(n), then we have the follow-
ing theorem, the proof of which is similar to the above proof of Theorem 2.2.

Theorem 2.8 For any n ≥ 0 and k ≥ 1, the k-th derivative of Qn is
given by

Q(k)

n = k!
∑

Mk

we1 · · ·wek
W(Q(n) −Mk),

the sum is over every Mk = {e1, . . . , ek}, a k-matching of Q(n).

And Taylor’s Expansion gives results analogous to Corollaries 2.3 and 2.4.
Finally, proceeding as before, call the weighted path with edge weights

as shown below Q̂(n), and call its vm-partition function Q̂n.

• • • • •
λ x − µw(0,1)

w1 x − w(1,2)
w2

· · ·
wn−1 x −w(n−1,n)

wn

0 1 2 n−1 n

Theorem 2.9 For any n ≥ 0 and k ≥ 1, the k-th derivative of Q̂n is
given by

Q̂(k)
n = k!

∑

Mk

W(Q̂(n) − Mk),

where the sum is over every Mk, a k-matching of Q̂(n).

Similarly there are results analogous to Corollaries 2.6 and 2.7.
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