A first order differential equation can be Bernoulli in either variable. A Bernoulli equation in y would be written in the form

$$
y^{\prime}+p(t) y=f(t) y^{n} .
$$

A Bernoulli equation in t would be written in the form

$$
t^{\prime}+p(y) t=f(y) t^{n}
$$

We will look at the first case. The basic idea is to make a change of variables and reduce this nonlinear equation to a linear equation.

Steps:

1. Let $v(t)=(y(t))^{1-n}$.
2. Compute the derivative $\frac{d v}{d t}=(1-n) y^{-n} \frac{d y}{d t}$.
3. Solve for $\frac{d y}{d t}=\frac{y^{n}}{1-n} \frac{d v}{d t}$ and substitute into the ODE.
4. Divide by y^{n}.
5. Change y^{1-n} terms into v.
6. The equation is now linear in v.

Example A. $y^{\prime}+\frac{1}{2 t} y=\frac{\sin t}{2 t} y^{-1}$

1. The $v(t)=(y(t))^{1-(-1)}=(y(t))^{2}$
2. $\frac{d v}{d t}=2 y \frac{d y}{d t}$.
3. $\frac{d y}{d t}=\frac{1}{2 y} \frac{d v}{d t}$ so that $\frac{1}{2 y} \frac{d v}{d t}+\frac{1}{2 t} y=\frac{\sin t}{2 t y}$
4. $\frac{1}{2} \frac{d v}{d t}+\frac{1}{2 t} y^{2}=\frac{\sin t}{2 t}$
5. $\frac{1}{2} \frac{d v}{d t}+\frac{1}{2 t} v=\frac{\sin t}{2 t}$ Now solve as a linear equation. You still have work to do!

Example B. $(\sin y) t^{\prime}-(\cos y) t=y t^{2}$

1. $v(y)=(t(y))^{1-2}=(t(y))^{-1}$
2. $\frac{d v}{d y}=-1 t^{-2} \frac{d t}{d y}$.
3. $\frac{d t}{d y}=-t^{2} \frac{d v}{d y}$ so that $(\sin y)\left(-t^{2} \frac{d v}{d y}\right)-(\cos y) t=y t^{2}$
4. $(-\sin y) \frac{d v}{d y}-(\cos y) t^{-1}=y$
5. $-(\sin y) \frac{d v}{d y}-(\cos y) v=y$ Can you finish this?? Hint: It's linear in v !

Problems:

1. $y^{\prime}+y=t^{2} e^{t} y^{1 / 2} \quad y(0)=4$
2. $y^{\prime}-x y=\frac{1}{2} e^{-x^{2}} y^{3} \quad y(1)=1$
3. $2 x^{\prime}-x=\frac{e^{s}}{s x} \quad x(1)=4$
4. $s^{2} t^{\prime}+s t=\frac{\ln s}{2 t} \quad t(e)=3$
5. $(\sin x) y^{\prime}+2(\cos x) y=x y^{3 / 2} \quad y\left(\frac{\pi}{4}\right)=1$

Solutions:

1. $e^{1 / 2 t} y^{1 / 2}=t^{2} e^{t / 2}-4 t e^{t / 2}+8 e^{t / 2}-4$
2. $\frac{e^{x^{2}}}{y^{2}}=x+e-1$
3. $x^{2} e^{-s}=\ln s-16 e^{-1}$
4. $s^{2} t^{2}=s \ln s-s+9 e^{2}$
5. $\frac{y^{-1 / 2}}{\sin x}=x \cot x-\ln |\sin x|+\sqrt{2}-1+\ln \sqrt{2}$
