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Abstract. Diffusion models have been found in various applications in
the study of spatial population dynamics for modeling the species dis-
persal process in natural environments. Diffusion coefficient is a critical
parameter in diffusion equations. In this paper, a new method for esti-
mating the diffusion coefficient of insects is presented in terms of occu-
pancy time and the method can produce any desired accuracy.

The study of modeling biological organism movement behaviors in a
nonhomogeneous landscape is critical in investigating the interplay be-
tween environmental heterogeneity and organism movements. By
constructing a set of eigenvalues, we can characterize the insect biased
movement when insect crosses the intersection of two different type of
landscape elements. Some numerical examples are provided to illustrate
the theoretical outcomes obtained in the paper.

Keywords: Diffusion Equation, Probability Density, Edge Behavior,
Nonhomogeneous Landscape.

1 Introduction

It is becoming more and more important to develop frameworks for understand-
ing and predicting the effect of habitat alteration on biodiversity (e.g. see [9]).
Landscape composition significantly affects the inter patch dispersal and move-
ment patterns of insect (see [6]). It is well-known that the distribution of insects
within a host-plant patch is strongly matrix dependent (e.g. see [7]). For instance,
the planthopper Prokelisia crocea inhabits a complex landscape composed of
patches of its host plant cordgrass (Spartina pectinata) embedded in a matrix of
mudflat, other native grasses, and the introduced grass smooth brome (Bromus
inermis). Dispersal (diffusion) rates also varied radically between cordgrass and
brome vs. mudflat. Local and regional population dynamics of the planthopper
are also strongly matrix dependent. Patches of cordgrass surrounded by brome
typically have lower and more variable densities and populations that are very
extinction prone, relative to patches in mudflat ( see [4]).

Diffusion models have been found in various applications in the study of spa-
tial population dynamics for modeling the species dispersal process in natural
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environments. The advantage of diffusion models is that they can be applied
to any initial distribution of organisms and have been widely used in empirical
insect movement modeling.

The quantity, diffusion coefficient, plays critical role in the diffusion model
approach. On a homogeneous landscape, the linear diffusion model is in the
form of

∂u

∂t
= D

(
∂2u

∂x2
+

∂2u

∂y2

)
− c0u (1)

where u is the density of the organisms which is subjected to boundary conditions
and initial conditions, D is called the diffusion coefficient, the parameter c0 is
the disappearance rate of the organisms during experiments. Disappearance can
include mortality as well as dispersal not captured by the experiment.

In order to use model (1) to describe insect dispersal dynamics, a key issue
is how to estimate the diffusion rate D accurately. In current literature, the
diffusion coefficient D is mainly estimated by two ways: (i) a static approach
requiring the tedious location of large numbers of individuals at particular time,
and then applying the method of maximum likelihood parameter estimation
to determine the parameter that maximizes the probability (likelihood) of the
sample data (see, e.g., [5], [11],[10], and references therein); (ii) extended ob-
servations of the movement patterns of individual organisms and then use the
method of maximum likelihood or similar methods employed (e.g. [2] and [15]).

However, both methods mentioned above are required sample data to be cov-
ered almost the entire landscape, thus the implementation is mathematically
and computationally intense even if this approach is applicable. Moreover mea-
surement noise during data collection might be quite large due to the scale of
the measurement.

Fagan proposes a complement of existing methods by measuring the cumula-
tive proportion of initial number of insects across the boundaries at certain time
instances, and then employs the maximum likelihood method to estimate D (see
[13]). This approach reduces the overall required computational cost comparing
to traditional methods, however, the complexity (including the size of samples
as well as the computational cost) for applying the maximum likelihood method
to the boundaries still remains.

Furthermore, when insect movements across different type of landscape ele-
ments are considered, the diffusion model becomes

∂u1

∂t
= D1

(
∂2u1

∂x2
+

∂2u1

∂y2

)
− c0u1 on Ω1

∂u2

∂t
= D2

(
∂2u2

∂x2
+

∂2u2

∂y2

)
− c0u2 on Ω2 (2)

where ui stands for the insect population density located in Ωi, respectively.
Here for simplicity, we assume the disappearance rates on both Ω1 and Ω2 are
the same.

In this paper, we develop new methodology for the estimation of the diffusion
coefficients by using the mean occupancy time, which usually is not difficult
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to be measured in field experiments. The concept of occupancy time is first
introduced by Ovaskainen (see [11]) in a formal mathematical terminology. It is
quite often to observe in various experiments that in a given area, the shorter
mean occupancy time the organisms have, the higher diffusion rate is expected.
For a given homogeneous area Ω, the mathematical description of the mean
occupancy time is given by

TΩ =

∫
Ω

∫ ∞

0

u(x, y; t)dtdA (3)

where u is the density function of insects under observing. We establish a re-
lationship between TΩ and D appeared in (1). The first step is to define a
homogeneous landscape through which the insects are dispersing and to select a
(relatively small comparing with the entire landscape) rectangle located inside
this landscape. We then specify that the four edges of the rectangle are absorbing
boundaries, since insects away from the rectangle (resided in a large homoge-
neous landscape) are unlikely to return (see [5] and [13]). An explicit formula
D = f(TΩ) is obtained for the estimation of D in terms of TΩ when Ω is set
to be rectangular. For the other shapes of landscape, the proposed method is
also applicable. The advantage of our proposed approach is essentially one-step
method and thus the computational cost is greatly reduced since there is no need
to rely on a large set of sample data such as the one used in maximum likelihood
method.

This paper is organized as follows. In section 2, we present our main results
which provides a formula to estimate the diffusion rate via the mean occupancy
time. Technical details are given in section 3 to support the proposed approaches.
A summary of experimental procedure, including numerical simulations, is pro-
vided in section 4. The paper ends with concluding remarks.

2 Main Results

Estimation of Diffusion Rate D. To model the dispersal of insects by the
discrete two-dimensional random walks, it is often assumed in the literature that
individuals take random steps towards a direction and each step is independent
of the others. By taking the continuum limit of the Taylor expansion with in-
finitesimal small step length and frequency, the population dynamics can be
described by the following two-dimensional diffusion equation:

∂u

∂t
= D(

∂2u

∂x2
+

∂2u

∂y2
)− c0u, (x, y) ∈ [0, l]× [0,m], t > 0, (4)

where u(x, y, t) is the insects population density in the location (x, y) at time t,D
is the diffusion coefficient, and c0 denotes the disappearance rate of insects. The
boundary of the rectangular domain is set to be absorbing, which implies that
insects do not return after leaving the rectangle. This assumption is consistent
with many field experiments when the observed area is relatively small comparing
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to the entire landscape ( e.g., [5]). The initial distribution is given by u(x, y; 0) =
f(x, y), where f is a given integrable function over the rectangle [0, l]× [0,m].

Suppose that the mean occupancy time TΩ is available. Then the diffusion
coefficient D can be expressed as

D =
4l2m2

π4TΩ

∞∑
i=1

∞∑
j=1

Ai,j

ij(i2m2 + j2l2)
[1− cos(πi)][1 − cos(πj)], (5)

where Ai,j is given by

Ai,j =

∫
Ω

f(x, y) sin(
πix

l
) sin(

πjy

m
)dA. (6)

If an individual is released at (x0, y0) ∈ (0, l)× (0,m), then the diffusion coeffi-
cient D is given by

D =
4l2m2

π4TΩ

∞∑
i=1

∞∑
j=1

1

ij(i2m2 + j2l2)
sin(

πi

l
x0) sin(

πj

m
y0)[1−cos(πi)][1−cos(πj)].

(7)
The summation of the first 25 terms is given

D ≈ 4l2m2

π4TΩ

5∑
i=1

5∑
j=1

1

ij(i2m2 + j2l2)
sin(

πi

l
x0) sin(

πj

m
y0)[1−cos(πi)][1−cos(πj)],

(8)
which offers a quite accurate approximation according to our numerical simula-
tions.

Table 1. Estimations of diffusion rate D by using formula (8) for different releasing
points and mean occupancy times

Released point (40,55) (40,55) (55,55) (55,55) (40,70) (40,70)

Mean occupancy time TΩ 0.2540 0.7200 0.2540 0.7200 0.2540 0.7200

Diffusion rate D 0.3898 0.1375 0.4640 0.1637 0.3553 0.1253

If we set the rectangular area to be [0, 110]× [0, 110] and the releasing point
at the center (55, 55), then the estimation formula (8) gives

D ≈ 8.9789× 102

TΩ
.

Notice l = m = 110, the error is given by

4l2m2

π4TΩ

∞∑
i=6

∞∑
j=6

1

ij(i2m2 + j2l2)
sin(

πi

l
x0) sin(

πj

m
y0)[1 − cos(πi)][1 − cos(πj)].
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Fig. 1. Diffusion Rates Estimation with Centered Point Release at (55, 55)

Clearly the mean occupancy time is negatively associated with the diffusion rate
(seeFig. 1),which is consistentwith the intuition.Wealso calculated a fewdiffusion
ratesD for different releasing points and mean occupancy times TΩ (see Table 1).
The mean occupancy time TΩ in the Table 1 is the total seconds of an individual
remained inside of [0, 110]×[0, 110]. For convenience,TΩ = 0.7200 inTable 1stands
for 0.7200 × 104 seconds, which approximately equals to 120 minutes. Without
further specification, all time appeared in this paper use the same scale.

3 Technical Approach

When insects can be followed during field experiments, mark-recapture study
provides a wealth of information about their movements. For example, an in-
dividual can be tracked (or observed) in a given area and then the duration
time before leaving the area can be recorded. This quantity can be characterized
as occupancy time, which is an important quantity for insect’s duration in the
domain Ω. As expected, short mean occupancy time TΩ implies high diffusion
rate, while long mean occupancy time yields low diffusion dynamics (see Fig. 1).

We consider the diffusion equation (4) on a rectangular homogeneous land-
scape subject to Dirichlet boundary condition:

∂u

∂t
= D(

∂2u

∂x2
+

∂2u

∂y2
)− c0u, (x, y) ∈ Ω = [0, l]× [0,m], t > 0,

u(0, y, t) = u(l, y, t) = u(x, 0, t) = u(x,m, t) = 0, (9)

u(x, y, 0) = f(x, y), (x0, y0) ∈ Ω = [0, l]× [0,m],

where f = f(x, y) is a given integrable function on Ω. By using method of sepa-
ration of variables, one can obtain the general solution to the diffusion equation
in terms of a double Fourier series
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u(x, y, t) =
∞∑
i=1

∞∑
j=1

Ai,j sin(
πix

l
) sin(

πjy

m
)e{−D[(πi

l )2+(πj
m )2+

c0
D ]t}, (10)

where the numbers Ai,j are constants to be determined. Applying the initial
condition in (9), we have

u(x, y, 0) =
∞∑
i=1

∞∑
j=1

Ai,j sin(
πix

l
) sin(

πjy

m
) = f(x, y), (11)

and thus the coefficient Ai,j is given by

Ai,j =

∫
Ω

f(x, y) sin(
πix

l
) sin(

πjy

m
)dA. (12)

Thus, the occupancy time TΩ can be obtained by

TΩ =
∫m

0

∫ l

0

∫∞
0

u(x, y, t)dtdxdy (13)

= 4l2m2

Dπ2

∑∞
i=1

∑∞
j=1

Ai,j

Dπ2ij(i2m2+j2l2)+c0l2m2 [1− cos(iπ)][1− cos(jπ)]. (14)

If the initial distribution is a point release, i.e., f(x, y) = Mδ(x − x0, y − y0)
(where M represents the amount of insects and (x0, y0) is the release location),
then the solution of (9) is given by

u(x, y, t) =
4M

lm

∞∑

i=1

∞∑

j=1

sin(
πix0

l
) sin(

πjy0
m

) sin(
πix

l
) sin(

πjy

m
)e{−D[(πi

l
)2+(πj

m
)2+

c0
D

]t},

(15)

and the occupancy time is

TΩ =

∫ m

0

∫ l

0

∫ ∞

0

u(x, y, t)dtdxdy

=
4l2m2M

Dπ4

∞∑
i=1

∞∑
j=1

(1− cos(iπ))(1 − cos(jπ))

Dπ2ij(i2m2 + j2l2) + c0l2m2
sin(

πix0

l
) sin(

πjy0
m

).

Hence the diffusion rate D can be expressed as

D =
4l2m2M

π4TΩ

∞∑
i=1

∞∑
j=1

(1 − cos(iπ))(1 − cos(jπ))

ij(i2m2 + j2l2)
sin(

πix0

l
) sin(

πjy0
m

). (16)

when the disappearance rate c0 is assumed to be zero.
It is worthy to making a comment here. Although the technical approach

is straightforward, the result contains two important implications: (i) the idea
based on occupancy time is a natural approach in field studies and the calcu-
lation for D is simple; (ii) this method leads to the possibility for estimating
the returning probabilities across different type of landscape elements, as shown
below.
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4 Summary and Illustration of Simulations

In this paper we consider a homogeneous rectangular area resided in the same
type of landscape, denoted as Ω = [0, �]× [0, s]. Then we measure the occupancy
time for a set of insects in Ω, provided that the initial distribution f = f(x, y)
is known. The diffusion coefficient D then can be estimated by

D =
4�2s2

π4TΩ

∞∑
i=1

∞∑
j=1

Ai,j

ij(i2s2 + j2�2)
[1− cos(πi)][1 − cos(πj)], (17)

where Ai,j is given by

Ai,j =

∫
Ω

f(x, y) sin(
πix

�
) sin(

πjy

s
)dA. (18)

If the first N2 summation is used, then

D ≈ 4�2s2

π4TΩ

N∑
i=1

N∑
j=1

Ai,j

ij(i2s2 + j2�2)
[1− cos(πi)][1 − cos(πj)], (19)

and the error is given by

Error =
4�2s2

π4TΩ

∞∑
i=N+1

∞∑
j=N+1

Ai,j

ij(i2s2 + j2�2)
[1− cos(πi)][1 − cos(πj)]. (20)

Obviously, the error approaches to zero as N → ∞.
If M individuals are released at (x0, y0) ∈ (0, �) × (0, s), then the diffusion

coefficient D is given by

D =
4�2s2M

π4TΩ

∞∑
i=1

∞∑
j=1

1

ij(i2s2 + j2�2)
sin(

πi

�
x0) sin(

πj

s
y0)[1−cos(πi)][1−cos(πj)].

(21)

5 Concluding Remarks

The estimation of diffusion coefficient in the nonhomogeneous landscapes is crit-
ical in describing the dynamical behaviors of biological organism. Different from
current literature, in this paper, we provide a simple, new method to estimate
the diffusion coefficient by the insect occupancy time without making use of the
maximum likelihood method. This method can achieve any desired accuracy. The
proposed approaches in this paper are readily implemented once the occupancy
time is available in the field studies. Furthermore, a methodology for estimating
the returning probability by the occupancy time was developed by constructing a
set of eigenvalues which can capture the biased movement along the intersection
of two different type of habitats in the nonhomogeneous landscapes. However,
the method is not included here.
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